Review Article

Current Quest in Natural Bioactive Compounds for Alzheimer’s Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence

Author(s): Ashif Iqubal, Syed Obaidur Rahman, Musheer Ahmed, Pratichi Bansal, Md Rafi Haider, Mohammad Kashif Iqubal, Abul Kalam Najmi, Faheem Hyder Pottoo and Syed Ehtaishamul Haque*

Volume 22, Issue 6, 2021

Published on: 09 December, 2020

Page: [685 - 720] Pages: 36

DOI: 10.2174/1389450121999201209201004

Price: $65

Abstract

Alzheimer’s disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer’s disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.

Keywords: Neurodegeneration, natural products, tau proteins, molecular docking, dementia, computational studies; clinical trials.

« Previous
Graphical Abstract

[1]
Ahmad SS, Akhtar S, Jamal QM, et al. Multiple targets for the management of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2016; 15(10): 1279-89.
[http://dx.doi.org/10.2174/1871527315666161003165855] [PMID: 27712576]
[2]
Uddin MS, Kabir MT, Rahman MM, Mathew B, Shah MA, Ashraf GM. TV 3326 for Alzheimer’s dementia: a novel multimodal ChE and MAO inhibitors to mitigate Alzheimer’s-like neuropathology. J Pharm Pharmacol 2020; 72(8): 1001-12.
[http://dx.doi.org/10.1111/jphp.13244] [PMID: 32149402]
[3]
Sharma P, Sharma A, Fayaz F, Wakode S, Pottoo FHJCTMC. Biological Signatures of Alzheimer’s Disease. Curr Top Med Chem 2020; 20(9): 770-81.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[4]
Butterfield DA, Mattson MP. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol 2020; p. 104795.
[5]
Crous-Bou M, Gascon M, Gispert JD, et al. Sunyer; Impact of urban environmental exposures on cognitive performance and brain structure of healthy individuals at risk for Alzheimer’s dementia. Environ 2020; p. 105546.
[6]
Mir RH, Sawhney G, Pottoo FH, et al. Role of environmental pollutants in Alzheimer’s disease: a review. Environ Sci Pollut Res Int 2020; 1-19.
[PMID: 32715424]
[7]
Singh RK. Recent trends in management of Alzheimer’s disease: Current therapeutic options and drug repurposing approaches. Curr Neuropharmacol 2020; 18(9): 868-82.
[http://dx.doi.org/10.2174/1570159X18666200128121920] [PMID: 31989900]
[8]
Vijayan D, Chandra R. Amyloid Beta Hypothesis in Alzheimer’s Disease: Major Culprits and Recent Therapeutic Strategies. Curr Drug Targets 2020; 21(2): 148-66.
[http://dx.doi.org/10.2174/1389450120666190806153206] [PMID: 31385768]
[9]
Husain I, Akhtar M, Abdin MZ, Islamuddin M, Shaharyar M, Najmi AJH. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. Hum Exp Toxicol 2018; 37(4): 399-411.
[http://dx.doi.org/10.1177/0960327117705431]
[10]
Corbett A, Pickett J, Burns A, et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov 2012; 11(11): 833-46.
[http://dx.doi.org/10.1038/nrd3869] [PMID: 23123941]
[11]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[12]
Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos 2014; 42(3): 301-17.
[http://dx.doi.org/10.1124/dmd.113.055236] [PMID: 24335390]
[13]
Iqubal MK, Saleem S, Iqubal A, et al. Natural, synthetic and their combinatorial nanocarriers based drug delivery system in the treatment paradigm for wound healing via dermal targeting. Curr Pharm Des 2020; 26(36): 4551-68.
[http://dx.doi.org/10.2174/1381612826666200612164511] [PMID: 32532188]
[14]
Mannix RC, Zhang J, Berglass J, Qui J. Whalen MJJBi. Beneficial effect of amyloid beta after controlled cortical impact. Brain Inj 2013; 27(6): 743-8.
[http://dx.doi.org/10.3109/02699052.2013.771797] [PMID: 23672448]
[15]
Uddin MS, Kabir MT, Niaz K, et al. Molecular insight into the therapeutic promise of flavonoids against alzheimer’s disease. Molecules 2020; 25(6): 1267.
[http://dx.doi.org/10.3390/molecules25061267] [PMID: 32168835]
[16]
Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18(5): 281-98.
[http://dx.doi.org/10.1038/nrn.2017.29] [PMID: 28360418]
[17]
Jannat S, Balupuri A, Ali MY, et al. Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability. Exp Mol Med 2019; 51(2): 1-18.
[http://dx.doi.org/10.1038/s12276-019-0205-7] [PMID: 30755593]
[18]
Ray B, Maloney B, Sambamurti K. kumar Karnati, H.; Nelson, P. T.; Greig, N. H.; Lahiri, D. K. J., Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Transl Psychiatry 2020; 10(1): 1-17.
[PMID: 32066695]
[19]
Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A. Computer-aided drug design of β-secretase, γ-secretase and anti-tau inhibitors for the discovery of novel alzheimer’s therapeutics. Int J Mol Sci 2020; 21(3): 703.
[http://dx.doi.org/10.3390/ijms21030703] [PMID: 31973122]
[20]
Yang T, Zhu Z, Yin E, et al. Alleviation of symptoms of Alzheimer’s disease by diminishing Aβ neurotoxicity and neuroinflammation. Chem Sci (Camb) 2019; 10(43): 10149-58.
[http://dx.doi.org/10.1039/C9SC03042E] [PMID: 32055369]
[21]
Graeber MB, Kösel S, Egensperger R, et al. Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. Neurogenetics 1997; 1(1): 73-80.
[http://dx.doi.org/10.1007/s100480050011] [PMID: 10735278]
[22]
Mamun AA, Uddin MS, Mathew B, Ashraf GM. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen Res 2020; 15(8): 1417-20.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[23]
Zhang M, Wu Q, Yao X, et al. Xanthohumol inhibits tau protein aggregation and protects cells against tau aggregates. Food Funct 2019; 10(12): 7865-74.
[http://dx.doi.org/10.1039/C9FO02133G] [PMID: 31793596]
[24]
Dolan PJ, Johnson GVJ. The role of tau kinases in Alzheimer’s disease. Curr Opin Drug Discov Devel 2010; 13(5): 595-603.
[PMID: 20812151]
[25]
Billingsley ML, Kincaid RLJ. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 1997; 323(3): 577-91.
[http://dx.doi.org/10.1042/bj3230577]
[26]
Mroczko B, Groblewska M, Litman-Zawadzka AJ. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer′ s Disease (AD). Int J Mol 2019; 20(19): 4661.
[http://dx.doi.org/10.3390/ijms20194661]
[27]
Kwon YH, Bishayee K, Rahman A, Hong JS, Lim S-S, Huh S-OJ. Morus alba accumulates reactive oxygen species to initiate apoptosis via FOXO-caspase 3-dependent pathway in neuroblastoma cells. Mol Cells 2015; 38(7): 630-7.
[http://dx.doi.org/10.14348/molcells.2015.0030] [PMID: 25921607]
[28]
Iqubal A, Sharma S, Sharma K, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci 2018; 211: 172-81.
[http://dx.doi.org/10.1016/j.lfs.2018.09.025] [PMID: 30227132]
[29]
Birla H, Minocha T, Kumar G, Misra A, Singh SK. Role of oxidative stress and metal toxicity in the progression of alzheimer’s disease. Curr Neuropharmacol 2020; 18(7): 552-62.
[http://dx.doi.org/10.2174/1570159X18666200122122512] [PMID: 31969104]
[30]
Calabrese V, Sultana R, Scapagnini G, et al. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid Redox Signal 2006; 8(11-12): 1975-86.
[http://dx.doi.org/10.1089/ars.2006.8.1975] [PMID: 17034343]
[31]
Iqubal A, Iqubal MK, Sharma S, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2019; 218: 112-31.
[http://dx.doi.org/10.1016/j.lfs.2018.12.018] [PMID: 30552952]
[32]
Maher AM, Saleh SR, Elguindy NM, Hashem HM, Yacout GAJ. Exogenous melatonin restrains neuroinflammation in high fat diet induced diabetic rats through attenuating indoleamine 2,3-dioxygenase 1 expression. Life Sci 2020; 247117427
[http://dx.doi.org/10.1016/j.lfs.2020.117427] [PMID: 32067945]
[33]
Sharma S, Rabbani SA, Narang JK, et al. Role of Rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chem Phys Lipids 2020; 228104890
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104890] [PMID: 32032570]
[34]
Rahman MA, Bishayee K, Sadra A. Huh S-OJBe. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim Biophys Acta, Gen Subj 2017; 1861(2): 23-36.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.025] [PMID: 27815218]
[35]
Iqubal A, Sharma S, Najmi AK, et al. Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: Plausible role of Nrf2 and NF- κB. Life Sci 2019; 236116867
[http://dx.doi.org/10.1016/j.lfs.2019.116867] [PMID: 31520598]
[36]
Shen H, Guan Q, Zhang X, et al. New mechanism of neuroinflammation in Alzheimer’s disease: The activation of NLRP3 inflammasome mediated by gut microbiota. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100109884
[http://dx.doi.org/10.1016/j.pnpbp.2020.109884] [PMID: 32032696]
[37]
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 2019; 27(4): 663-77.
[http://dx.doi.org/10.1007/s10787-019-00580-x] [PMID: 30874945]
[38]
Wang H, Shen Y, Chuang H, Chiu C, Ye Y, Zhao L. Neuro inflammation in alzheimer’s disease: microglia, molecular participants and therapeutic choices. Curr Alzheimer Res 2019; 16(7): 659-74.
[http://dx.doi.org/10.2174/1567205016666190503151648] [PMID: 31580243]
[39]
Iqubal A, Syed MA, Haque MM, Najmi AK, Ali J, Haque SE. Effect of nerolidol on cyclophosphamide-induced bone marrow and hematologic toxicity in Swiss albino mice. Exp Hematol 2020; 82: 24-32.
[http://dx.doi.org/10.1016/j.exphem.2020.01.007] [PMID: 31987924]
[40]
Iqubal A, Sharma S, Ansari MA, et al. Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss Albino mice. Eur J Pharmacol 2019; 863172666
[http://dx.doi.org/10.1016/j.ejphar.2019.172666] [PMID: 31541628]
[41]
Snowden SG, Ebshiana AA, Hye A, et al. Neurotransmitter imbalance in the brain and alzheimer’s disease pathology. J Alzheimers Dis 2019; 72(1): 35-43.
[http://dx.doi.org/10.3233/JAD-190577] [PMID: 31561368]
[42]
Sangubotla R, Kim JJT. Recent trends in analytical approaches for detecting neurotransmitters in Alzheimer’s disease. Trends Analyt Chem 2018; 105: 240-50.
[http://dx.doi.org/10.1016/j.trac.2018.05.014]
[43]
Rahman MA, Kim H, Lee KH, et al. 5-Hydroxytryptamine 6 Receptor (5-HT6R)-Mediated Morphological Changes via RhoA-Dependent Pathways. Mol Cells 2017; 40(7): 495-502.
[PMID: 28681593]
[44]
Geldenhuys WJ, Van der Schyf CJJ. Serotonin 5-HT6 receptor antagonists for the treatment of Alzheimer’s disease. Curr Top Med Chem 2008; 8(12): 1035-48.
[http://dx.doi.org/10.2174/156802608785161420] [PMID: 18691131]
[45]
Barnes NM, Costall B, Naylor RJ, Williams TJ, Wischik CMJNAI. Normal densities of 5-HT3 receptor recognition sites in Alzheimer’s disease. Neuroreport 1990; 1(3-4): 253-4.
[http://dx.doi.org/10.1097/00001756-199011000-00021] [PMID: 1966609]
[46]
Madsen K, Neumann W-J, Holst K, et al. Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer’s disease. J Alzheimers Dis 2011; 26(3): 457-66.
[http://dx.doi.org/10.3233/JAD-2011-110056] [PMID: 21673407]
[47]
Lin C-H, Hashimoto K, Lane H-YJ. Editorial: Glutamate-Related Biomarkers for Neuropsychiatric Disorders. Front Psychiatry 2019; 10: 904.
[http://dx.doi.org/10.3389/fpsyt.2019.00904] [PMID: 31920753]
[48]
Kroeger D, Ferrari LL, Petit G, et al. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci 2017; 37(5): 1352-66.
[http://dx.doi.org/10.1523/JNEUROSCI.1405-16.2016] [PMID: 28039375]
[49]
Ryoo N, Rahman MA, Hwang H, et al. Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons. J Ginseng Res 2019; 296(2): 247-54.
[http://dx.doi.org/10.1016/j.jgr.2019.04.002] [PMID: 32372871]
[50]
Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010; 460(2): 525-42.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[51]
Teich AF, Nicholls RE, Puzzo D, et al. Synaptic therapy in Alzheimer’s disease: a CREB-centric approach. Neurotherapeutics 2015; 12(1): 29-41.
[http://dx.doi.org/10.1007/s13311-014-0327-5] [PMID: 25575647]
[52]
Conway ME. Alzheimer’s disease: targeting the glutamatergic system. Biogerontology 2020; 21(3): 257-74.
[http://dx.doi.org/10.1007/s10522-020-09860-4] [PMID: 32048098]
[53]
Nobili A, Latagliata EC, Viscomi MT, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 2017; 8(1): 14727.
[http://dx.doi.org/10.1038/ncomms14727] [PMID: 28367951]
[54]
Nyberg L, Karalija N, Salami A, et al. Dopamine D2 receptor availability is linked to hippocampal-caudate functional connectivity and episodic memory. Proc Natl Acad Sci USA 2016; 113(28): 7918-23.
[http://dx.doi.org/10.1073/pnas.1606309113] [PMID: 27339132]
[55]
Doze VA, Papay RS, Goldenstein BL, et al. Long-term α1A-adrenergic receptor stimulation improves synaptic plasticity, cognitive function, mood, and longevity. Mol Pharmacol 2011; 80(4): 747-58.
[http://dx.doi.org/10.1124/mol.111.073734] [PMID: 21791575]
[56]
Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, Unnerstall JR. Adrenergic receptors in aging and Alzheimer’s disease: increased β 2-receptors in prefrontal cortex and hippocampus. J Neurochem 1989; 53(6): 1772-81.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09242.x] [PMID: 2553864]
[57]
Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci 2015; 9: 220.
[http://dx.doi.org/10.3389/fnins.2015.00220] [PMID: 26136654]
[58]
Purkayastha S, Raven PBJ. The functional role of the alpha-1 adrenergic receptors in cerebral blood flow regulation. Indian J Pharmacol 2011; 43(5): 502-6.
[http://dx.doi.org/10.4103/0253-7613.84950] [PMID: 22021989]
[59]
Kabir MT, Uddin MS, Begum MM, et al. Cholinesterase inhibitors for alzheimer’s disease: multitargeting strategy based on anti-alzheimer’s drugs repositioning. Curr Pharm Des 2019; 25(33): 3519-35.
[http://dx.doi.org/10.2174/1381612825666191008103141] [PMID: 31593530]
[60]
Pulikkal BP, Marunnan SM, Bandaru S, Yadav M, Nayarisseri A, Sureshkumar S. Common sar derived from linear and non-linear qsar studies on ache inhibitors used in the treatment of alzheimer’s disease. Curr Neuropharmacol 2017; 15(8): 1093-9.
[http://dx.doi.org/10.2174/1570159X14666161213142841] [PMID: 27964704]
[61]
Nalivaeva NN, Turner AJ. ChE and the amyloid precursor protein (APP) - Cross-talk in Alzheimer’s disease Chem Biol Interact 2016; 259(Pt B): 301-6.
[http://dx.doi.org/10.1016/j.cbi.2016.04.009] [PMID: 27062894]
[62]
Naudé J, Didienne S, Takillah S, Prévost-Solié C, Maskos U, Faure P. Acetylcholine-dependent phasic dopamine activity signals exploratory locomotion and choices. bioRxiv 2018.242438
[63]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[64]
Hampel H, Mesulam M-M, Cuello AC, et al. disease, C. S. W. G. J. T. Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis 2019; 6(1): 2-15.
[PMID: 30569080]
[65]
Wang L, Wang Y, Tian Y, et al. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg Med Chem 2017; 25(1): 360-71.
[http://dx.doi.org/10.1016/j.bmc.2016.11.002] [PMID: 27856236]
[66]
Bartolini M, Marco-Contelles J. Tacrines as therapeutic agents for alzheimer’s disease. iv. the tacripyrines and related annulated tacrines. Chem Rec 2019; 19(5): 927-37.
[http://dx.doi.org/10.1002/tcr.201800155] [PMID: 30489012]
[67]
Sabbagh MN. Editorial: Alzheimer’s Disease Drug Development Pipeline 2020. J Prev Alzheimers Dis 2020; 7(2): 66-7.
[PMID: 32236392]
[68]
Karthivashan G, Ganesan P, Park S-Y, Kim J-S, Choi D-K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 2018; 25(1): 307-20.
[http://dx.doi.org/10.1080/10717544.2018.1428243] [PMID: 29350055]
[69]
Iqubal A, Iqubal MK, Khan A, Ali J, Baboota S, Haque SE. Gene therapy, a novel therapeutic tool for neurological disorders: Current progress, challenges and future prospective. Curr Gene Ther 2020; 20(3): 184-94.
[http://dx.doi.org/10.2174/1566523220999200716111502] [PMID: 32674730]
[70]
Freyssin A, Page G, Fauconneau B, Rioux Bilan A. Natural stilbenes effects in animal models of Alzheimer’s disease. Neural Regen Res 2020; 15(5): 843-9.
[http://dx.doi.org/10.4103/1673-5374.268970] [PMID: 31719245]
[71]
Mir RH, Shah AJ, Mohi-Ud-Din R, et al. Natural Anti-inflammatory compounds as Drug candidates in Alzheimer’s disease. Curr Med Chem 2020.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[72]
Husain I, Zameer S, Madaan T, et al. Exploring the multifaceted neuroprotective actions of Emblica officinalis (Amla): a review. Metab Brain Dis 2019; 34(4): 957-65.
[http://dx.doi.org/10.1007/s11011-019-00400-9] [PMID: 30848470]
[73]
Li J, Zhao R, Jiang Y, et al. Bilberry anthocyanins improve neuroinflammation and cognitive dysfunction in APP/PSEN1 mice via the CD33/TREM2/TYROBP signaling pathway in microglia. Food Funct 2020; 11(2): 1572-84.
[http://dx.doi.org/10.1039/C9FO02103E] [PMID: 32003387]
[74]
Braidy N, Jugder B-E, Poljak A, et al. Molecular targets of tannic acid in Alzheimer’s disease. Curr Alzheimer Res 2017; 14(8): 861-9.
[http://dx.doi.org/10.2174/1567205014666170206163158] [PMID: 28176625]
[75]
Nakajima A, Ohizumi Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int J Mol Sci 2019; 20(14): 3380.
[http://dx.doi.org/10.3390/ijms20143380] [PMID: 31295812]
[76]
Geiss JMT, Sagae SC, Paz EDR, et al. Oral administration of lutein attenuates ethanol-induced memory deficit in rats by restoration of acetylcholinesterase activity. Physiol Behav 2019; 204: 121-8.
[http://dx.doi.org/10.1016/j.physbeh.2019.02.020] [PMID: 30772442]
[77]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer’s Disease. Int J Mol Sci 2019; 20(20): 5090.
[http://dx.doi.org/10.3390/ijms20205090] [PMID: 31615073]
[78]
Velander P, Wu L, Henderson F, Zhang S, Bevan DR, Xu B. Natural product-based amyloid inhibitors. Biochem Pharmacol 2017; 139: 40-55.
[http://dx.doi.org/10.1016/j.bcp.2017.04.004] [PMID: 28390938]
[79]
Gąssowska M, Baranowska-Bosiacka I, Moczydłowska J, et al. Perinatal exposure to lead (Pb) promotes Tau phosphorylation in the rat brain in a GSK-3β and CDK5 dependent manner: Relevance to neurological disorders. Toxicology 2016; 347-349: 17-28.
[http://dx.doi.org/10.1016/j.tox.2016.03.002] [PMID: 27012722]
[80]
Llorens-Martín M, Jurado J, Hernández F, Ávila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 7: 46.
[PMID: 24904272]
[81]
Chauhan NBJ. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. J Ethnopharmacol 2006; 108(3): 385-94.
[http://dx.doi.org/10.1016/j.jep.2006.05.030] [PMID: 16842945]
[82]
Mei Z, Zhang F, Tao L, et al. Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates β-amyloid deposition through upregulating α-secretase in vivo and in vitro. Neurosci Lett 2009; 452(2): 90-5.
[http://dx.doi.org/10.1016/j.neulet.2009.01.013] [PMID: 19154776]
[83]
Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005; 25(38): 8807-14.
[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005] [PMID: 16177050]
[84]
Peng Y, Hu Y, Xu S, et al. L-3-n-butylphthalide reduces tau phosphorylation and improves cognitive deficits in AβPP/PS1-Alzheimer’s transgenic mice. J Alzheimers Dis 2012; 29(2): 379-91.
[http://dx.doi.org/10.3233/JAD-2011-111577] [PMID: 22233765]
[85]
Marumoto S, Miyazawa M J P R. β‐secretase inhibitory effects of furanocoumarins from the root of Angelica dahurica. an international journal devoted to pharmacological and toxicological evaluation of natural product derivatives 2010; 24(4): 510-3.
[86]
Jung HA, Min B-S, Yokozawa T, Lee J-H, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 2009; 32(8): 1433-8.
[http://dx.doi.org/10.1248/bpb.32.1433] [PMID: 19652386]
[87]
Lv J, Jia H, Jiang Y, et al. Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-β secretion in vitro. Acta Physiol (Oxf) 2009; 196(4): 419-25.
[http://dx.doi.org/10.1111/j.1748-1716.2009.01961.x] [PMID: 19208093]
[88]
Jia H, Jiang Y, Ruan Y, et al. Tenuigenin treatment decreases secretion of the Alzheimer’s disease amyloid β-protein in cultured cells. Neurosci Lett 2004; 367(1): 123-8.
[http://dx.doi.org/10.1016/j.neulet.2004.05.093] [PMID: 15308312]
[89]
Choi YH, Yoo MY, Choi CW, et al. A new specific BACE-1 inhibitor from the stembark extract of Vitis vinifera. Planta Med 2009; 75(5): 537-40.
[http://dx.doi.org/10.1055/s-0029-1185311] [PMID: 19184970]
[90]
Jeon S-Y, Kwon S-H, Seong Y-H, et al. β-secretase (BACE1)-inhibiting stilbenoids from Smilax Rhizoma. Phytomedicine 2007; 14(6): 403-8.
[http://dx.doi.org/10.1016/j.phymed.2006.09.003] [PMID: 17084604]
[91]
Fujiwara H, Tabuchi M, Yamaguchi T, et al. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteins in vitro and n vivo. J Neurochem 2009; 109(6): 1648-57.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06069.x] [PMID: 19457098]
[92]
Fujiwara H, Iwasaki K, Furukawa K, et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s β-amyloid proteins. J Neurosci Res 2006; 84(2): 427-33.
[http://dx.doi.org/10.1002/jnr.20891] [PMID: 16676329]
[93]
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res 2004; 75(6): 742-50.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[94]
Shytle RD, Bickford PC, Rezai-zadeh K, et al. Optimized turmeric extracts have potent anti-amyloidogenic effects. Curr Alzheimer Res 2009; 6(6): 564-71.
[http://dx.doi.org/10.2174/156720509790147115] [PMID: 19715544]
[95]
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease: an update. Ann Neurosci 2017; 24(1): 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[96]
Bui TT, Nguyen TH. Natural product for the treatment of Alzheimer’s disease. J Basic Clin Physiol Pharmacol 2017; 28(5): 413-23.
[http://dx.doi.org/10.1515/jbcpp-2016-0147] [PMID: 28708573]
[97]
Lee JK, Kim NJ. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 2017; 22(8): 1287.
[http://dx.doi.org/10.3390/molecules22081287] [PMID: 28767069]
[98]
Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol Res 2017; 124: 146-55.
[http://dx.doi.org/10.1016/j.phrs.2017.08.004] [PMID: 28811228]
[99]
Ghofrani S, Joghataei M-T, Mohseni S, et al. Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms. Eur J Pharmacol 2015; 764: 195-201.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.001] [PMID: 26148826]
[100]
Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 2019; 224(224): 109-19.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[101]
Kheradmand E, Hajizadeh Moghaddam A, Zare M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed Pharmacother 2018; 97: 1096-101.
[http://dx.doi.org/10.1016/j.biopha.2017.11.047] [PMID: 29136946]
[102]
Kiasalari Z, Heydarifard R, Khalili M, et al. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer’s disease: an exploration of underlying mechanisms. Psychopharmacology (Berl) 2017; 234(12): 1841-52.
[http://dx.doi.org/10.1007/s00213-017-4589-6] [PMID: 28303372]
[103]
Tan L, Yang H, Pang W, et al. Investigation on the Role of BDNF in the Benefits of Blueberry Extracts for the Improvement of Learning and Memory in Alzheimer’s Disease Mouse Model. J Alzheimers Dis 2017; 56(2): 629-40.
[http://dx.doi.org/10.3233/JAD-151108] [PMID: 28035919]
[104]
Sha D, Li L, Ye L, Liu R, Xu Y. Icariin inhibits neurotoxicity of β-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport 2009; 20(17): 1564-7.
[http://dx.doi.org/10.1097/WNR.0b013e328332d345] [PMID: 19858766]
[105]
Hsieh C-J, Hall K, Ha T, Li C, Krishnaswamy G, Chi DS. Baicalein inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from human mast cells via regulation of the NF-kappaB pathway. Clin Mol Allergy 2007; 5(1): 5-5.
[http://dx.doi.org/10.1186/1476-7961-5-5] [PMID: 18039391]
[106]
Lim J-Y, Won TJ, Hwang BY, et al. The new diterpene isodojaponin D inhibited LPS-induced microglial activation through NF-kappaB and MAPK signaling pathways. Eur J Pharmacol 2010; 642(1-3): 10-8.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.047] [PMID: 20534383]
[107]
Park S-Y. Neuroprotective and neurotrophic effects of isorosmanol. Z Natforsch C J Biosci 2009; 64(5-6): 395-8.
[http://dx.doi.org/10.1515/znc-2009-5-616] [PMID: 19678545]
[108]
Lee JW, Lee YK, Lee BJ, et al. Inhibitory effect of ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol Biochem Behav 2010; 95(1): 31-40.
[http://dx.doi.org/10.1016/j.pbb.2009.12.003] [PMID: 20004682]
[109]
Zhang J, Cheng Y, Zhang JT. [Protective effect of (-) clausenamide against neurotoxicity induced by okadaic acid and beta-amyloid peptide25-35 Yao Xue Xue Bao 2007; 42(9): 935-42.
[PMID: 18050734]
[110]
Dinamarca MC, Cerpa W, Garrido J, Hancke JL, Inestrosa NC. Hyperforin prevents β-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer’s amyloid-β-deposits. Mol Psychiatry 2006; 11(11): 1032-48.
[http://dx.doi.org/10.1038/sj.mp.4001866] [PMID: 16880827]
[111]
Jin CY, Lee JD, Park C, Choi YH, Kim GY. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacol Sin 2007; 28(10): 1645-51.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00651.x] [PMID: 17883952]
[112]
Chang Y-L, Shen J-J, Wung B-S, Cheng J-J, Wang DL. Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol Pharmacol 2001; 60(3): 507-13.
[PMID: 11502881]
[113]
Kimura Y, Matsushita N, Yokoi-Hayashi K, Okuda H. Effects of baicalein isolated from Scutellaria baicalensis Radix on adhesion molecule expression induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. Planta Med 2001; 67(4): 331-4.
[http://dx.doi.org/10.1055/s-2001-14328] [PMID: 11458449]
[114]
Gong Y, Xue B, Jiao J, Jing L, Wang X. Triptolide inhibits COX-2 expression and PGE2 release by suppressing the activity of NF-kappaB and JNK in LPS-treated microglia. J Neurochem 2008; 107(3): 779-88.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05653.x] [PMID: 18761708]
[115]
Nilsson P, Loganathan K, Sekiguchi M, et al. Aβ secretion and plaque formation depend on autophagy. Cell Rep 2013; 5(1): 61-9.
[http://dx.doi.org/10.1016/j.celrep.2013.08.042] [PMID: 24095740]
[116]
Pierzynowska K, Podlacha M, Gaffke L, et al. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer’s disease. Neuropharmacology 2019; 148: 332-46.
[http://dx.doi.org/10.1016/j.neuropharm.2019.01.030] [PMID: 30710571]
[117]
Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis 2018; 61(3): 843-66.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[118]
Zeng Q, Siu W, Li L, et al. Autophagy in Alzheimer’s disease and promising modulatory effects of herbal medicine. Exp Gerontol 2019; 119: 100-10.
[http://dx.doi.org/10.1016/j.exger.2019.01.027] [PMID: 30710681]
[119]
Dá Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. Insights on the pathophysiology of Alzheimer’s disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev 2016; 68: 547-62.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.014] [PMID: 27328788]
[120]
Iqubal A, Syed MA, Najmi AK, Ali J, Haque SE. Ameliorative effect of nerolidol on cyclophosphamide-induced gonadal toxicity in Swiss Albino mice: Biochemical-, histological- and immunohistochemical-based evidences. Andrologia 2020; 52(4)e13535
[http://dx.doi.org/10.1111/and.13535] [PMID: 32048763]
[121]
Uddin MS, Al Mamun A, Jakaria M, et al. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci Total Environ 2019; 25(6): 1267.
[PMID: 31784171]
[122]
Ibrahim AM, Pottoo FH, Dahiya ES, Khan FA, Kumar JBS. Neuron-glia interactions: Molecular basis of alzheimer’s disease and applications of neuroproteomics. Eur J Neurosci 2020; 52(2): 2931-43.
[http://dx.doi.org/10.1111/ejn.14838] [PMID: 32463535]
[123]
Kumar H, Kim I-S, More SV, Kim B-W, Choi D-K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31(1): 109-39.
[http://dx.doi.org/10.1039/C3NP70065H] [PMID: 24292194]
[124]
Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 2012; 37(9): 1829-42.
[http://dx.doi.org/10.1007/s11064-012-0799-9] [PMID: 22614926]
[125]
Sanderson TM, Bradley CA, Georgiou J, et al. The probability of neurotransmitter release governs AMPA receptor trafficking via activity-dependent regulation of mGluR1 surface expression. Cell Rep 2018; 25(13): 3631-3646.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.12.010] [PMID: 30590038]
[126]
Muir JL. Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 1997; 56(4): 687-96.
[http://dx.doi.org/10.1016/S0091-3057(96)00431-5] [PMID: 9130295]
[127]
Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007; 14(4): 289-300.
[http://dx.doi.org/10.1016/j.phymed.2007.02.002] [PMID: 17346955]
[128]
128. Krishna, G.; Ying, Z.; Gomez‐Pinilla, F. Blueberry Supplementation Mitigates Altered Brain Plasticity and Behavior after Traumatic Brain Injury in Rats. Mol Nutr Food Res 2019; 63(15)1801055
[http://dx.doi.org/10.1002/mnfr.201801055]
[129]
Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations. Curr Med Chem 2013; 20(32): 3955-85.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]
[130]
Wang J, Varghese M, Ono K, et al. Cocoa extracts reduce oligomerization of amyloid-β: implications for cognitive improvement in Alzheimer’s disease. J Alzheimers Dis 2014; 41(2): 643-50.
[http://dx.doi.org/10.3233/JAD-132231] [PMID: 24957018]
[131]
Ortega MG, Agnese AM, Cabrera JL. Anticholinesterase activity in an alkaloid extract of Huperzia saururus. Phytomedicine 2004; 11(6): 539-43.
[http://dx.doi.org/10.1016/j.phymed.2003.07.006] [PMID: 15500266]
[132]
Sramek JJ, Frackiewicz EJ, Cutler NR. Review of the acetylcholinesterase inhibitor galanthamine. Expert Opin Investig Drugs 2000; 9(10): 2393-402.
[http://dx.doi.org/10.1517/13543784.9.10.2393] [PMID: 11060814]
[133]
Kang SY, Lee KY, Sung SH, Park MJ, Kim YC. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J Nat Prod 2001; 64(5): 683-5.
[http://dx.doi.org/10.1021/np000441w] [PMID: 11374978]
[134]
Awang K, Chan G, Litaudon M, Ismail NH, Martin M-T, Gueritte F. 4-Phenylcoumarins from Mesua elegans with acetylcholinesterase inhibitory activity. Bioorg Med Chem 2010; 18(22): 7873-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.044] [PMID: 20943395]
[135]
Rollinger JM, Hornick A, Langer T, Stuppner H, Prast H. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem 2004; 47(25): 6248-54.
[http://dx.doi.org/10.1021/jm049655r] [PMID: 15566295]
[136]
Youkwan J, Sutthivaiyakit S, Sutthivaiyakit P, Citrusosides A. Citrusosides A-D and furanocoumarins with cholinesterase inhibitory activity from the fruit peels of Citrus hystrix. J Nat Prod 2010; 73(11): 1879-83.
[http://dx.doi.org/10.1021/np100531x] [PMID: 20964319]
[137]
Wu C-R, Chang C-L, Hsieh P-Y, Lin L-W, Ching H. Psoralen and isopsoralen, two coumarins of Psoraleae Fructus, can alleviate scopolamine-induced amnesia in rats. Planta Med 2007; 73(3): 275-8.
[http://dx.doi.org/10.1055/s-2007-967127] [PMID: 17318785]
[138]
Choudhary MI, Nawaz SA. Zaheer-ul-Haq , et al Juliflorine: a potent natural peripheral anionic-site-binding inhibitor of acetylcholinesterase with calcium-channel blocking potential, a leading candidate for Alzheimer’s disease therapy. Biochem Biophys Res Commun 2005; 332(4): 1171-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.068] [PMID: 16021692]
[139]
Choudhary MI, Nawaz SA. ul-Haq Z, et al Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 2005; 334(1): 276-87.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.086] [PMID: 16108094]
[140]
Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev Res 2020; 81(2): 165-83.
[http://dx.doi.org/10.1002/ddr.21587] [PMID: 31820476]
[141]
Aggarwal BB, Surh Y-J, Shishodia S. The molecular targets and therapeutic uses of curcumin in health and disease. Springer Science & Business Media 2007; Vol. 595.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1]
[142]
Mandal M, Jaiswal P, Mishra A. Role of curcumin and its nanoformulations in neurotherapeutics: A comprehensive review. J Biochem Mol Toxicol 2020; 34(6)e22478
[http://dx.doi.org/10.1002/jbt.22478] [PMID: 32124518]
[143]
Pradeep H, Yenisetti SC, Rajini P, Muralidhara M. Neuroprotective Propensity of Curcumin: Evidence in Animal Models, Mechanisms, and Its Potential Therapeutic Value.Curcumin for Neurological and Psychiatric Disorders. Elsevier 2019; pp 01-323.
[144]
Li H, Yang J, Wang Y, Liu Q, Cheng J, Wang F. Neuroprotective effects of increasing levels of HSP70 against neuroinflammation in Parkinson’s disease model by inhibition of NF-κB and STAT3. Life Sci 2019; 234116747
[http://dx.doi.org/10.1016/j.lfs.2019.116747] [PMID: 31408661]
[145]
Cox KH, Pipingas A, Scholey AB. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 2015; 29(5): 642-51.
[http://dx.doi.org/10.1177/0269881114552744] [PMID: 25277322]
[146]
Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry 2018; 26(3): 266-77.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[147]
Berger R G. Flavours and fragrances: chemistry, bioprocessing and sustainability 2007.
[http://dx.doi.org/10.1007/978-3-540-49339-6]
[148]
Li HQ, Tan L, Yang HP, Pang W, Xu T, Jiang YG. Changes of hippocampus proteomic profiles after blueberry extracts supplementation in APP/PS1 transgenic mice. Nutr Neurosci 2020; 23(1): 75-84.
[http://dx.doi.org/10.1080/1028415X.2018.1471251] [PMID: 29781405]
[149]
Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci 2018; 21(4): 297-305.
[http://dx.doi.org/10.1080/1028415X.2017.1287833] [PMID: 28221821]
[150]
Joseph JA, Bielinski DF, Fisher DR. Blueberry treatment antagonizes C-2 ceramide-induced stress signaling in muscarinic receptor-transfected COS-7 cells. J Agric Food Chem 2010; 58(6): 3380-92.
[http://dx.doi.org/10.1021/jf9039155] [PMID: 20178393]
[151]
Goyarzu P, Lau F, Kaufmann J, et al. DH, M. Washington DC, age-related increase in brain NF-B is attenuated by blueberry-enriched antioxidant diet. J Neurosci 2003.
[152]
Krikorian R, Shidler MD, Nash TA, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem 2010; 58(7): 3996-4000.
[http://dx.doi.org/10.1021/jf9029332] [PMID: 20047325]
[153]
Houghton PJ, Howes MJ. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 2005; 14(1-2): 6-22.
[http://dx.doi.org/10.1159/000085382] [PMID: 15956811]
[154]
Batiha GE-S, Alkazmi LM, Nadwa EH, et al. Therapeutics, Physostigmine: A plant alkaloid isolated from Physostigma venenosum: A review on pharmacokinetics, pharmacological and toxicological activities. J Drug Deliv Ther 2020; 10(1-s): 187-90.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3866]
[155]
Arens AM, Kearney T. Adverse effects of physostigmine. J Med Toxicol 2019; 15(3): 184-91.
[http://dx.doi.org/10.1007/s13181-019-00697-z] [PMID: 30747326]
[156]
Adeniyi AA, Conradie J. Computational insight into the anticholinesterase activities and electronic properties of physostigmine analogs. Future Med Chem 2019; 11(15): 1907-28.
[http://dx.doi.org/10.4155/fmc-2018-0421] [PMID: 31517530]
[157]
McCaleb R. Nature’s medicine for memory loss. HerbalGram 1990; 23: 15.
[158]
Asthana S, Greig NH, Hegedus L, et al. Clinical pharmacokinetics of physostigmine in patients with Alzheimer’s disease. Clin Pharmacol Ther 1995; 58(3): 299-309.
[http://dx.doi.org/10.1016/0009-9236(95)90246-5] [PMID: 7554703]
[159]
Sahoo AK, Dandapat J, Dash UC, Kanhar S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J Ethnopharmacol 2018; 215: 42-73.
[http://dx.doi.org/10.1016/j.jep.2017.12.015] [PMID: 29248451]
[160]
Rao YL, Ganaraja B, Joy T, Pai MM, Ullal SD, Murlimanju BV. Neuroprotective effects of resveratrol in Alzheimer’s disease. Front Biosci (Elite Ed) 2020; 12: 139-49.
[http://dx.doi.org/10.2741/e863] [PMID: 31585875]
[161]
Chen J-Y, Zhu Q, Zhang S, OuYang D, Lu JH. Resveratrol in experimental Alzheimer’s disease models: A systematic review of preclinical studies. Pharmacol Res 2019; 150104476
[http://dx.doi.org/10.1016/j.phrs.2019.104476] [PMID: 31605783]
[162]
Savaskan E, Olivieri G, Meier F, Seifritz E, Wirz-Justice A, Müller-Spahn F. Red wine ingredient resveratrol protects from β-amyloid neurotoxicity. Gerontology 2003; 49(6): 380-3.
[http://dx.doi.org/10.1159/000073766] [PMID: 14624067]
[163]
Kong D, Yan Y, He X-Y, et al. Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer’s disease. Biomed Res Int 2019.
[http://dx.doi.org/10.1155/2019/8983752]
[164]
Ahmed T, Javed S, Javed S, et al. Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol 2017; 54(4): 2622-35.
[http://dx.doi.org/10.1007/s12035-016-9839-9] [PMID: 26993301]
[165]
Braidy N, Jugder B-E, Poljak A, et al. Resveratrol as a potential therapeutic candidate for the treatment and management of Alzheimer’s disease. Curr Top Med Chem 2016; 16(17): 1951-60.
[http://dx.doi.org/10.2174/1568026616666160204121431] [PMID: 26845555]
[166]
Kumar A, Naidu PS, Seghal N, Padi SS. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology 2007; 79(1): 17-26.
[http://dx.doi.org/10.1159/000097511] [PMID: 17135773]
[167]
Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 2017; 14(1): 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[168]
Zhu CW, Grossman H, Neugroschl J, et al. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement (N Y) 2018; 4: 609-16.
[http://dx.doi.org/10.1016/j.trci.2018.09.009] [PMID: 30480082]
[169]
Sugarman DE, De Aquino JP, Poling J, Sofuoglu M. Feasibility and effects of galantamine on cognition in humans with cannabis use disorder. Pharmacol Biochem Behav 2019; 181: 86-92.
[http://dx.doi.org/10.1016/j.pbb.2019.05.004] [PMID: 31082417]
[170]
Doytchinova I, Atanasova M, Stavrakov G, Philipova I, Zheleva-Dimitrova D. Galantamine Derivatives as Acetylcholinesterase Inhibitors: Docking, Design, Synthesis, and Inhibitory ActivityComputational Modeling of Drugs Against Alzheimer’s Disease. Springer 2018; pp. 163-76.
[http://dx.doi.org/10.1007/978-1-4939-7404-7_6]
[171]
Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: multicentre randomised controlled trial. Galantamine International-1 Study Group. BMJ 2000; 321(7274): 1445-9.
[http://dx.doi.org/10.1136/bmj.321.7274.1445] [PMID: 11110737]
[172]
Zhang X, Shao J, Wei Y, Zhang H. Efficacy of galantamine in treatment of Alzheimer’s disease: an update meta-analysis. Int J Clin Exp Med 2016; 9(4): 7423-30.
[173]
Tariot PN, Solomon P, Morris J, Kershaw P, Lilienfeld S, Ding C. Group, G. U.-S., A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology 2000; 54(12): 2269-76.
[http://dx.doi.org/10.1212/WNL.54.12.2269] [PMID: 10881251]
[174]
Yuan N-N, Cai C-Z, Wu M-Y, Su H-X, Li M, Lu J-H. Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies. BMC Complement Altern Med 2019; 19(1): 109.
[http://dx.doi.org/10.1186/s12906-019-2510-z] [PMID: 31122236]
[175]
Ghotbi Ravandi S, Shabani M, Bashiri H, Saeedi Goraghani M, Khodamoradi M, Nozari M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Neurosci Lett 2019; 706: 151-7.
[http://dx.doi.org/10.1016/j.neulet.2019.05.029] [PMID: 31103726]
[176]
Huang L, Shi A, He F, Li X. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Bioorg Med Chem 2010; 18(3): 1244-51.
[http://dx.doi.org/10.1016/j.bmc.2009.12.035] [PMID: 20056426]
[177]
Lin J-W. Ginkgo Biloba as a New Medication for Resisting Dementia: A New Proposal. J Pharm Res Int 2019; 31(6): 1-3.
[http://dx.doi.org/10.9734/jpri/2019/v31i630322]
[178]
Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019; 16(3): 666-74.
[http://dx.doi.org/10.1007/s13311-019-00767-8] [PMID: 31376068]
[179]
de Souza GA, de Marqui SV, Matias JN, Guiguer EL, Barbalho SM. Effects of Ginkgo biloba on Diseases Related to Oxidative Stress. Planta Med 86(6): 376-86.
[180]
Mohammed NA, Abdou HM, Tass MA, Alfwuaires M, Abdel-Moneim AM, Essawy AE. Oral Supplements of <i>Ginkgo biloba</i> Extract Alleviate Neuroinflammation, Oxidative Impairments and Neurotoxicity in Rotenone-Induced Parkinsonian Rats. Curr Pharm Biotechnol 2020; 21(12): 1259-68.
[http://dx.doi.org/10.2174/1389201021666200320135849] [PMID: 32196446]
[181]
Ihl R, Tribanek M, Bachinskaya N, Group GS. GOTADAY Study Group. Efficacy and tolerability of a once daily formulation of Ginkgo biloba extract EGb 761® in Alzheimer’s disease and vascular dementia: results from a randomised controlled trial. Pharmacopsychiatry 2012; 45(2): 41-6.
[http://dx.doi.org/10.1055/s-0031-1291217] [PMID: 22086747]
[182]
Rapp M, Burkart M, Kohlmann T, Bohlken J. Similar treatment outcomes with Ginkgo biloba extract EGb 761 and donepezil in Alzheimer’s dementia in very old age: A retrospective observational study. Int J Clin Pharmacol Ther 2018; 56(3): 130-3.
[http://dx.doi.org/10.5414/CP203103] [PMID: 29319499]
[183]
Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 1998; 55(11): 1409-15.
[http://dx.doi.org/10.1001/archneur.55.11.1409] [PMID: 9823823]
[184]
DeKosky ST, Williamson JD, Fitzpatrick AL, et al. Ginkgo Evaluation of Memory (GEM) Study Investigators. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 2008; 300(19): 2253-62.
[http://dx.doi.org/10.1001/jama.2008.683] [PMID: 19017911]
[185]
Snitz BE, O’Meara ES, Carlson MC, et al. Ginkgo Evaluation of Memory (GEM) Study Investigators. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA 2009; 302(24): 2663-70.
[http://dx.doi.org/10.1001/jama.2009.1913] [PMID: 20040554]
[186]
Yang H, Ma Y, Wang X, Zhu DJ, Huperzine A. A Mini-Review of Biological Characteristics, Natural Sources, Synthetic Origins, and Future Prospects. Russ J Org Chem 2020; 56(1): 148-57.
[http://dx.doi.org/10.1134/S1070428020010236]
[187]
Gul A, Bakht J, Mehmood F. Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J Chin Med Assoc 2019; 82(1): 40-3.
[http://dx.doi.org/10.1016/j.jcma.2018.07.004] [PMID: 30839402]
[188]
Thu D K, Vui D T, Huyen N T N, Duyen D K, Tung B T. Pharmacology, The use of Huperzia species for the treatment of Alzheimer’s disease. J Basic Clin Physiol Pharmacol 2019; 31(3): 0159.
[189]
Wang HY, Wu M, Diao JL, Li JB, Sun YX, Xiao XQ. Huperzine A ameliorates obesity-related cognitive performance impairments involving neuronal insulin signaling pathway in mice. Acta Pharmacol Sin 2020; 41(2): 145-53.
[http://dx.doi.org/10.1038/s41401-019-0257-1] [PMID: 31213670]
[190]
Zhang HY, Yan H, Tang XC. Huperzine A enhances the level of secretory amyloid precursor protein and protein kinase C-α in intracerebroventricular β-amyloid-(1-40) infused rats and human embryonic kidney 293 Swedish mutant cells. Neurosci Lett 2004; 360(1-2): 21-4.
[http://dx.doi.org/10.1016/j.neulet.2004.01.055] [PMID: 15082169]
[191]
Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer disease and related disorders: consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 1997; 278(16): 1363-71.
[http://dx.doi.org/10.1001/jama.1997.03550160083043] [PMID: 9343469]
[192]
Zhang Z, Wang X, Chen Q, Shu L, Wang J, Shan G. [Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial Zhonghua Yi Xue Za Zhi 2002; 82(14): 941-4.
[PMID: 12181083]
[193]
Xu S-S, Gao Z-X, Weng Z, et al. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Zhongguo Yao Li Xue Bao 1995; 16(5): 391-5.
[PMID: 8701750]
[194]
Birla H, Keswani C, Rai SN, et al. Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. Behav Brain Funct 2019; 15(1): 9.
[http://dx.doi.org/10.1186/s12993-019-0160-4] [PMID: 31064381]
[195]
Kalra R, Kaushik N. Withania somnifera (Linn.) Dunal: a review of chemical and pharmacological diversity. Phytochem Rev 2017; 16(5): 953-87.
[http://dx.doi.org/10.1007/s11101-017-9504-6]
[196]
Mahrous R, Ghareeb DA, Fathy HM. The protective effect of Egyptian Withania somnifera against Alzheimer’s. J Med Aromat Plants 2017.
[197]
Chatterjee S, Srivastava S, Khalid A, et al. Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 2010; 71(10): 1085-94.
[http://dx.doi.org/10.1016/j.phytochem.2010.04.001] [PMID: 20483437]
[198]
Bhattacharya SK, Kumar A, Ghosal S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 1995; 9(2): 110-3.
[http://dx.doi.org/10.1002/ptr.2650090206]
[199]
Dhuley JN. Effect of some Indian herbs on macrophage functions in ochratoxin A treated mice. J Ethnopharmacol 1997; 58(1): 15-20.
[http://dx.doi.org/10.1016/S0378-8741(97)00072-X] [PMID: 9324000]
[200]
Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of Ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl 2017; 14(6): 599-612.
[http://dx.doi.org/10.1080/19390211.2017.1284970] [PMID: 28471731]
[201]
Cai Z, Hu X, Tan R, et al. Neuroprotective effect of green tea extractives against oxidative stress by enhancing the survival and proliferation of PC12 cells. Mol Cell Toxicol 2019; 15(4): 391-7.
[http://dx.doi.org/10.1007/s13273-019-0042-8]
[202]
Kakutani S, Watanabe H, Murayama N. Green tea intake and risks for dementia, Alzheimer’s disease, mild cognitive impairment, and cognitive impairment: A systematic review. Nutrients 2019; 11(5): 1165.
[http://dx.doi.org/10.3390/nu11051165] [PMID: 31137655]
[203]
Sharman MJ, Gyengesi E, Liang H, et al. Assessment of diets containing curcumin, epigallocatechin-3-gallate, docosahexaenoic acid and α-lipoic acid on amyloid load and inflammation in a male transgenic mouse model of Alzheimer’s disease: Are combinations more effective? Neurobiol Dis 2019; 124: 505-19.
[http://dx.doi.org/10.1016/j.nbd.2018.11.026] [PMID: 30610916]
[204]
Zhou F, Jongberg S, Zhao M, Sun W, Skibsted LH. Antioxidant efficiency and mechanisms of green tea, rosemary or maté extracts in porcine Longissimus dorsi subjected to iron-induced oxidative stress. Food Chem 2019; 298125030
[http://dx.doi.org/10.1016/j.foodchem.2019.125030] [PMID: 31260978]
[205]
Zhao BL, Li XJ, He RG, Cheng SJ, Xin WJ. Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 1989; 14(2): 175-85.
[http://dx.doi.org/10.1007/BF02797132] [PMID: 2472207]
[206]
Kim C-Y, Lee C, Park GH, Jang J-H. Neuroprotective effect of epigallocatechin-3-gallate against β-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity. Arch Pharm Res 2009; 32(6): 869-81.
[http://dx.doi.org/10.1007/s12272-009-1609-z] [PMID: 19557365]
[207]
Gao Z, Han Y, Hu Y, et al. Targeting HO-1 by epigallocatechin-3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways. PLoS One 2016; 11(2)e0149032
[http://dx.doi.org/10.1371/journal.pone.0149032] [PMID: 26866373]
[208]
Haque AM, Hashimoto M, Katakura M, Hara Y, Shido O. Green tea catechins prevent cognitive deficits caused by Abeta1-40 in rats. J Nutr Biochem 2008; 19(9): 619-26.
[http://dx.doi.org/10.1016/j.jnutbio.2007.08.008] [PMID: 18280729]
[209]
Feng L, Li J, Ng T-P, Lee T-S, Kua E-H, Zeng Y. Tea drinking and cognitive function in oldest-old Chinese. J Nutr Health Aging 2012; 16(9): 754-8.
[http://dx.doi.org/10.1007/s12603-012-0077-1] [PMID: 23131816]
[210]
Ng T-P, Feng L, Niti M, Kua E-H, Yap K-B. Tea consumption and cognitive impairment and decline in older Chinese adults. Am J Clin Nutr 2008; 88(1): 224-31.
[http://dx.doi.org/10.1093/ajcn/88.1.224] [PMID: 18614745]
[211]
Gu Y-J, He C-H, Li S, et al. Tea consumption is associated with cognitive impairment in older Chinese adults. Aging Ment Health 2018; 22(9): 1232-8.
[http://dx.doi.org/10.1080/13607863.2017.1339779] [PMID: 28636413]
[212]
Roohi Broujeni H, Ganji F, Roohi Broujeni P. The effect of combination of Zingeber and Althea officinalis extracts in acute bronchitis-induced cough. Shahrekord Univ Med Sci J 2009; 10(4)
[213]
Oboh G, Ademiluyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol 2012; 64(4): 315-9.
[http://dx.doi.org/10.1016/j.etp.2010.09.004] [PMID: 20952170]
[214]
Tung B T, Thu D K, Thu N T K, Hai N T. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract. J Complement Integr Med 2017; 14(4): 0116.
[215]
Adefegha A, Oboh G, Akinyemi A, Ademiluyi A. Research, N., Inhibitory effects of aqueous extract of two varieties of ginger on some key enzymes linked to type-2 diabetes in vitro. J Food Nutr Res 2010; 49(1): 14-20.
[216]
Lleó A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med 2006; 57: 513-33.
[http://dx.doi.org/10.1146/annurev.med.57.121304.131442] [PMID: 16409164]
[217]
McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database Syst Rev 2019; 3(3)CD003154
[PMID: 30891742]
[218]
Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg Med Chem 2019; 27(6): 895-930.
[http://dx.doi.org/10.1016/j.bmc.2019.01.025] [PMID: 30744931]
[219]
Dias KS, Viegas C Jr. Multi-target directed drugs: a modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr Neuropharmacol 2014; 12(3): 239-55.
[http://dx.doi.org/10.2174/1570159X1203140511153200] [PMID: 24851088]
[220]
Notarachille G, Arnesano F, Calò V, Meleleo D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease. Biometals 2014; 27(2): 371-88.
[http://dx.doi.org/10.1007/s10534-014-9719-6] [PMID: 24557150]
[221]
Choudhary S, Singh PK, Verma H, Singh H, Silakari O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur J Med Chem 2018; 151: 62-97.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.057] [PMID: 29605809]
[222]
Ökten S, Ekiz M, Tutar A, Koçyiğit Ü, Bütün B, Topçu G. Gülçin. SAR evaluation of disubstituted tacrine analogues as promising cholinesterase and carbonic anhydrase inhibitors. Indian J Pharm Educ Res 2019; 53: 268-75.
[http://dx.doi.org/10.5530/ijper.53.2.35]
[223]
Ansari MA, Iqubal A, Ekbbal R, Haque SE. Effects of nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats. Biomed Pharmacother 2019; 109: 1372-80.
[http://dx.doi.org/10.1016/j.biopha.2018.10.199] [PMID: 30551388]
[224]
Iwasaki Y, Asai M, Yoshida M, et al. Nilvadipine inhibits nuclear factor-kappaB-dependent transcription in hepatic cells. Clin Chim Acta 2004; 350(1-2): 151-7.
[http://dx.doi.org/10.1016/j.cccn.2004.07.012] [PMID: 15530472]
[225]
Quintanova C, Keri RS, Marques SM, et al. Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs. Image result for MedChemComm. MedChemComm 2015; 6(11): 1969-77.
[http://dx.doi.org/10.1039/C5MD00236B]
[226]
Mantoani SP, Chierrito TP, Vilela AF, Cardoso CL, Martínez A, Carvalho I. Carvalho. Novel triazole-quinoline derivatives as selective dual binding site acetylcholinesterase inhibitors. Molecules 2016; 21(2): 193.
[http://dx.doi.org/10.3390/molecules21020193] [PMID: 26861273]
[227]
Ulus R, Zengin Kurt B, Gazioğlu I, Kaya M. Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg Chem 2017; 70: 245-55.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.005] [PMID: 28153340]
[228]
Liu Z, Fang L, Zhang H, Gou S, Chen L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg Med Chem 2017; 25(8): 2387-98.
[http://dx.doi.org/10.1016/j.bmc.2017.02.049] [PMID: 28302511]
[229]
Przybyłowska M, Kowalski S, Dzierzbicka K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Tacrine Analogues. Curr Neuropharmacol 2019; 17(5): 472-90.
[http://dx.doi.org/10.2174/1570159X16666180412091908] [PMID: 29651948]
[230]
Bohn P, Le Fur N, Hagues G, et al. Rational design of central selective acetylcholinesterase inhibitors by means of a “bio-oxidisable prodrug” strategy. Org Biomol Chem 2009; 7(12): 2612-8.
[http://dx.doi.org/10.1039/b903041g] [PMID: 19503937]
[231]
Kitz RJ, Ginsburg S, Wilson IB. The reaction of acetylcholinesterase with O-dimethylcarbamyl esters of quaternary quinolinium compounds. Biochem Pharmacol 1967; 16(11): 2201-9.
[http://dx.doi.org/10.1016/0006-2952(67)90019-6] [PMID: 6076610]
[232]
Prokai L, Prokai-Tatrai K, Bodor N. Targeting drugs to the brain by redox chemical delivery systems. Med Res Rev 2000; 20(5): 367-416.
[http://dx.doi.org/10.1002/1098-1128(200009)20:5<367:AID-MED3>3.0.CO;2-P] [PMID: 10934349]
[233]
Sang Z, Li Y, Qiang X, et al. Multifunctional scutellarin-rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer’s disease. Bioorg Med Chem 2015; 23(4): 668-80.
[http://dx.doi.org/10.1016/j.bmc.2015.01.005] [PMID: 25614117]
[234]
Spilovska K, Korabecny J, Sepsova V, et al. Novel tacrine-scutellarin hybrids as multipotent anti-Alzheimer’s agents: Design, synthesis and biological evaluation. Molecules 2017; 22(6): 1006.
[http://dx.doi.org/10.3390/molecules22061006] [PMID: 28621747]
[235]
Weinreb O, Amit T, Bar-Am O, Youdim MB. A novel anti-Alzheimer’s disease drug, ladostigil: neuroprotective, multimodal brain-selective monoamine oxidase and cholinesterase inhibitorInt Rev Neurobiol. Elsevier 2011; pp. 191-215.
[236]
Cai P, Fang S-Q, Yang H-L, et al. Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer’s disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur J Med Chem 2018; 157: 161-76.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.005] [PMID: 30096650]
[237]
Sussman JL, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991; 253(5022): 872-9.
[http://dx.doi.org/10.1126/science.1678899] [PMID: 1678899]
[238]
Wang J, Wang Z-M, Li X-M, et al. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin. Bioorg Med Chem 2016; 24(18): 4324-38.
[http://dx.doi.org/10.1016/j.bmc.2016.07.025] [PMID: 27460699]
[239]
Xu W, Wang X-B, Wang Z-M, et al. Synthesis and evaluation of donepezil–ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. MedChemComm 2016; 7(5): 990-8.
[http://dx.doi.org/10.1039/C6MD00053C]
[240]
Mishra CB, Kumari S, Manral A, et al. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur J Med Chem 2017; 125: 736-50.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.057] [PMID: 27721157]
[241]
Cai P, Fang S-Q, Yang X-L, et al. Rational design and multibiological profiling of novel donepezil–trolox hybrids against Alzheimer’s disease, with cholinergic, antioxidant, neuroprotective, and cognition enhancing properties. ACS Chem Neurosci 2017; 8(11): 2496-511.
[http://dx.doi.org/10.1021/acschemneuro.7b00257 PMID: 28806057]
[242]
Unzeta M, Esteban G, Bolea I, et al. Marco-Contelles. Multi-target directed donepezil-like ligands for Alzheimer’s disease. Front Neurosci 2016; 10: 205.
[http://dx.doi.org/10.3389/fnins.2016.00205] [PMID: 27252617]
[243]
Bautista-Aguilera OM, Esteban G, Chioua M, et al. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids. Drug Des Devel Ther 2014; 8: 1893-910.
[PMID: 25378907]
[244]
Rizzo S, Bartolini M, Ceccarini L, et al. Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem 2010; 18(5): 1749-60.
[http://dx.doi.org/10.1016/j.bmc.2010.01.071] [PMID: 20171894]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy