Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Characterization and Expression Analysis of Resistance Gene Analogues in Elite Sugarcane Genotypes

Author(s): Aqsa Parvaiz, Ghulam Mustafa*, Muhammad Sarwar Khan and Muhammad Amjad Ali

Volume 28, Issue 8, 2021

Published on: 29 January, 2021

Page: [929 - 937] Pages: 9

DOI: 10.2174/0929866528666210129153025

Price: $65

Abstract

Background: Resistance Gene Analogues (RGAs) are an important source of disease resistance in crop plants and have been extensively studied for their identification, tagging and mapping of Quantitative Trait Loci (QTLs). Tracking these RGAs in sugarcane can be of great help for the selection and screening of disease resistant clones.

Objective: In the present study expression of different Resistance Gene Analogues (RGAs) was assessed in indigenous elite sugarcane genotypes which include resistant, highly resistant, susceptible and highly susceptible to disease infestation.

Methods: Total cellular DNA and RNA were isolated from fourteen indigenous elite sugarcane genotypes. PCR, semi-quantitative RT PCR and real time qPCR analyses were performed. The resultant amplicons were sequence characterized, chromosomal localization and phylogenetic analysis were performed.

Results: All of the 15 RGA primers resulted in amplification of single or multiple fragments from genomic DNA whereas only five RGA primers resulted in amplification from cDNA. Sequence characterization of amplified fragments revealed 86-99% similarity with disease resistance proteins indicating their potential role in disease resistance response. Phylogenetic analysis also validated these findings. Further, expression of RGA-012, RGA-087, RGA-118, RGA-533 and RGA-542 appeared to be upregulated and down regulated in disease resistant and susceptible genotypes, respectively, after inoculation with Colletotrichum falcatum.

Conclusion: RGAs are present in most of our indigenous genotypes. Anyhow, differential expression of five RGAs indicated that they have some critical role in disease resistance. So, the retrieved results can not only be employed to devise molecular markers for the screening of disease resistant genotypes but can also be used to develop disease resistant plants through transgenic technology.

Keywords: Resistance gene analogues, sugarcane, red rot disease, expression analysis, Colletotrichum falcatum, chromosomal location.

Graphical Abstract

[1]
Mustafa, G.; Joyia, F.A.; Anwar, S.; Parvaiz, A.; Khan, M.S. Biotechnological interventions for the improvement of sugarcane crop and sugar production. In: Sugarcane-Technology and Research; Oliveira, A.D., Ed.; IntechOpen, 2018; pp. 113-138.
[http://dx.doi.org/10.5772/intechopen.71496]
[2]
Ahmad, M.; Ali, R.; Fasihi, S. Effect of different infection level of red rot of sugarcane on cane weight and juice quality. J. Agric. Res. (Lahore), 1986, 24(2), 129-131.
[3]
Hussnain, Z.; Afghan, S. Impact of major cane diseases on sugarcane yield and sugar recovery. Annual Report, Shakarganj Sugar Research Institute, Jhang., 2006, 78-80.
[4]
Viswanathan, R.; Samiyappan, R. Red rot disease in sugarcane: a major constraint for the Indian sugar industry. Sugar Cane, 1999.
[5]
Subhani, M.N.; Chaudhry, M.A.; Khaliq, A.; Muhammad, F. Efficacy of various fungicides against sugarcane red rot (Colletotrichum falcatum). Int. J. Agric. Biol., 2008, 10(6), 725-727.
[6]
El-Saeid, M.H. Antifungal activity of natural piperitone as fungicide on root rot fungi. Am.-Eurasian J. Agric. Environ. Sci., 2011, 11(2), 149-153.
[7]
Sundar, A.R.; Velazhahan, R.; Viswanathan, R.; Padmanaban, P.; Vidhyasekaran, P. Induction of systemic resistance to Colletotrichum falcatum in sugarcane by a synthetic signal molecule, acibenzolar-S-Methyl (CGA-245704). Phytoparasitica, 2001, 29(3), 231-242.
[http://dx.doi.org/10.1007/BF02983455]
[8]
Ali, M.A.; Shahzadi, M.; Zahoor, A.; Dababat, A.A.; Toktay, H.; Bakhsh, A.; Nawaz, M.A.; Li, H. Resistance to cereal cyst nematodes in wheat and barley: an emphasis on classical and modern approaches. Int. J. Mol. Sci., 2019, 20(2), 432.
[http://dx.doi.org/10.3390/ijms20020432] [PMID: 30669499]
[9]
Parvaiz, A.; Mustafa, G.; Joyia, F.A. Understanding invasive plant mycoparasites and their remedy through advanced molecular approaches. Pak. J. Phytopathol., 2018, 30(2), 213-227.
[http://dx.doi.org/10.33866/phytopathol.030.02.0452]
[10]
Rasul, I.; Zafar, F.; Ali, M.A.; Nadeem, H.; Siddique, M.H.; Shahid, M.; Ashfaq, U.A.; Azeem, F. Genetic basis for biotic stress resistance of Solanaceae family: a review. Int. J. Agric. Biol., 2019, 22, 178-194.
[http://dx.doi.org/10.17957/IJAB/15.1048]
[11]
Bozkurt, O.; Hakki, E.E.; Akkaya, M.S. Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem. Genet., 2007, 45(5-6), 469-486.
[http://dx.doi.org/10.1007/s10528-007-9089-7] [PMID: 17453333]
[12]
Botella, M.A.; Coleman, M.J.; Hughes, D.E.; Nishimura, M.T.; Jones, J.D.; Somerville, S.C. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J., 1997, 12(5), 1197-1211.
[http://dx.doi.org/10.1046/j.1365-313X.1997.12051197.x] [PMID: 9418057]
[13]
Graham, M.A.; Marek, L.F.; Lohnes, D.; Cregan, P.; Shoemaker, R.C. Expression and genome organization of resistance gene analogs in soybean. Genome, 2000, 43(1), 86-93.
[http://dx.doi.org/10.1139/g99-107] [PMID: 10701117]
[14]
Mago, R.; Nair, S.; Mohan, M. Resistance gene analogues from rice: cloning, sequencing and mapping. Theor. Appl. Genet., 1999, 99(1-2), 50-57.
[http://dx.doi.org/10.1007/s001220051207]
[15]
Collins, N.C.; Webb, C.A.; Seah, S.; Ellis, J.G.; Hulbert, S.H.; Pryor, A. The isolation and mapping of disease resistance gene analogs in maize. Mol. Plant Microbe Interact., 1998, 11(10), 968-978.
[http://dx.doi.org/10.1094/MPMI.1998.11.10.968] [PMID: 9768514]
[16]
Seah, S.; Sivasithamparam, K.; Karakousis, A.; Lagudah, E.S. Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet., 1998, 97(5-6), 937-945.
[http://dx.doi.org/10.1007/s001220050974]
[17]
Gao, Y.; Xu, Z.; Jiao, F.; Yu, H.; Xiao, B.; Li, Y.; Lu, X. Cloning, structural features, and expression analysis of resistance gene analogs in tobacco. Mol. Biol. Rep., 2010, 37(1), 345-354.
[http://dx.doi.org/10.1007/s11033-009-9749-2] [PMID: 19728156]
[18]
Wan, H.; Zhao, Z.; Malik, A.A.; Qian, C.; Chen, J. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biol., 2010, 10(1), 186.
[http://dx.doi.org/10.1186/1471-2229-10-186] [PMID: 20731821]
[19]
Sekhwal, M.K.; Li, P.; Lam, I.; Wang, X.; Cloutier, S.; You, F.M. Disease resistance gene analogs (RGAs) in plants. Int. J. Mol. Sci., 2015, 16(8), 19248-19290.
[http://dx.doi.org/10.3390/ijms160819248] [PMID: 26287177]
[20]
Rossi, M.; Araujo, P.G.; Van Sluys, M.A. Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genet. Mol. Biol., 2001, 24(1-4), 141-146.
[http://dx.doi.org/10.1590/S1415-47572001000100020]
[21]
Sharma, R.; Tamta, S. Red rot resistant gene characterization using RGAP markers among sugarcane cultivars resistant and susceptible to the red rot disease. 3 Biotech., 2017, 7(5), 306.
[22]
Parvaiz, A.; Mustafa, G.; Khan, H.M.W.A.; Joyia, F.A.; Niazi, A.K.; Anwar, S; Khan, M.S. Field evaluation ratified by transcript and computational analyses unveils myco-protective role of SUGARWIN proteins in sugarcane. 3 Biotech., 2018, 30(2), 213-227.
[23]
Paterson, A.H.; Brubaker, C.L.; Wendel, J.F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol. Biol. Report., 1993, 11(2), 122-127.
[http://dx.doi.org/10.1007/BF02670470]
[24]
Ling, H.; Wu, Q.; Guo, J.; Xu, L.; Que, Y. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative rt-PCR. PLoS One, 2014, 9(5), e97469.
[http://dx.doi.org/10.1371/journal.pone.0097469] [PMID: 24823940]
[25]
Rossi, M.; Araujo, P.G.; Paulet, F.; Garsmeur, O.; Dias, V.M.; Chen, H.; Van Sluys, M.A.; D’Hont, A. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol. Genet. Genomics, 2003, 269(3), 406-419.
[http://dx.doi.org/10.1007/s00438-003-0849-8] [PMID: 12733061]
[26]
McIntyre, C.L.; Casu, R.E.; Drenth, J.; Knight, D.; Whan, V.A.; Croft, B.J.; Jordan, D.R.; Manners, J.M. Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome, 2005, 48(3), 391-400.
[http://dx.doi.org/10.1139/g05-006] [PMID: 16121236]
[27]
Jayashree, J.; Selvi, A.; Nair, N.V. Characterization of resistance gene analog polymorphisms in sugarcane cultivars with varying levels of red rot resistance. Electron. J. Plant Breed., 2010, 1(4), 1191-1199.
[28]
Bogdanove, A.J.; Martin, G.B. AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 8836-8840.
[http://dx.doi.org/10.1073/pnas.97.16.8836] [PMID: 10922043]
[29]
Amano, Y.; Tsubouchi, H.; Shinohara, H.; Ogawa, M.; Matsubayashi, Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 18333-18338.
[http://dx.doi.org/10.1073/pnas.0706403104] [PMID: 17989228]
[30]
Silva, N.F.; Goring, D.R. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol. Biol., 2002, 50(4-5), 667-685.
[http://dx.doi.org/10.1023/A:1019951120788] [PMID: 12374299]
[31]
Cross, T.G.; Scheel-Toellner, D.; Henriquez, N.V.; Deacon, E.; Salmon, M.; Lord, J.M. Serine/threonine protein kinases and apoptosis. Exp. Cell Res., 2000, 256(1), 34-41.
[http://dx.doi.org/10.1006/excr.2000.4836] [PMID: 10739649]
[32]
Xu, Y.; Liu, F.; Zhu, S.; Li, X. The maize NBS-LRR gene ZmNBS25 enhances disease resistance in rice and Arabidopsis. Front. Plant Sci., 2018, 9, 1033.
[http://dx.doi.org/10.3389/fpls.2018.01033] [PMID: 30065743]
[33]
Rose, L.E.; Bittner-Eddy, P.D.; Langley, C.H.; Holub, E.B.; Michelmore, R.W.; Beynon, J.L. The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics, 2004, 166(3), 1517-1527.
[http://dx.doi.org/10.1534/genetics.166.3.1517] [PMID: 15082565]
[34]
Yuan, Q.; Xie, R.; Zhang, Z.; Ma, Z.; Li, J.; Li, S.; Chen, J.; Lü, Y. Identification of expressed resistance gene analogs (RGA) and development of RGA-SSR markers in tobacco. Arch. Biol. Sci., 2015, 67(2), 467-481.
[http://dx.doi.org/10.2298/ABS140902011Y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy