Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection

Author(s): Laavanya Rayaprolu, Sivasubramani Selvanayagam, D. Manohar Rao, Rajeev Gupta, Roma Rani Das, Abhishek Rathore, Prasad Gandham, K.N.S. Usha Kiranmayee, Santosh P. Deshpande* and Ashok Kumar Are*

Volume 28, Issue 8, 2021

Published on: 15 February, 2021

Page: [909 - 928] Pages: 20

DOI: 10.2174/0929866528666210215141243

Price: $65

Abstract

Background: Production of biofuels from lignocellulosic crop biomass is an alternative to reduce greenhouse gas emissions. The biofuel production involves collecting biomass, breaking down cell wall components followed by the conversion of sugars to ethanol. The lingo-cellulosic biomass comprises 40-50% cellulose, 20-30% hemicellulose, and 10-25% lignin. Sorghum is a widely adapted energy crop for biofuel production. Biomass with low lignin, high cellulose, and high hemicellulose contents are exploited to attain maximum biofuel production efficiency. Resistance to lodging, pest, disease, and abiotic stresses related to cell wall components is well documented, and quantitative trait loci were identified to understand these traits' genetic correlation. Selection for reduced lignin and increased cellulose content in stover can increase the ethanol yield. The Genome-Wide Association Studies (GWAS) is a complementary approach to evaluating the marker and phenotype associations among large diversity panels. Single nucleotide polymorphisms were scanned to identify loci associated with the traits of interest. In this study, the GWAS was performed on 245 sorghum minicore genotypes to analyze agronomic traits (days to 50%flowering, fresh biomass yield, dry biomass yield) and cell wall components (cellulose, hemicellulose, and lignin). Further, in-silico validation of the candidate genes was performed in a global gene expression data from large-scale RNA sequencing studies in sorghum available in the NCBI GEO database was used.

Objective: The objectives of this study are to evaluate native variations in biofuel related agronomic traits and stalk cell wall components and to identify significant SNPs or loci related to the cell wall components.

Methods: In this article, an association mapping panel, comprising of 245 sorghum minicore germplasm accessions, was evaluated during two post rainy seasons of 2013 and 2014, and observations were recorded on the whole plot- for days to 50% flowering, fresh biomass yield (tha-1), and dry biomass yield (tha-1). The biomass of sun-dried plants from both seasons was collected separately, chopped, dried, and ground to powder. The cellulose, hemicellulose, and lignin contents were determined in the powdered. The content of each of these three components in sorghum was expressed in percent of dry matter. The data on agronomic traits and composition analysis was subjected to Analysis of Variance. For the current study, we remapped the raw GBS data with the sorghum assembly version v3.1. A total of 27,589 SNPs were obtained with a minor allele frequency (MAF) >1% and missing data <50%. The GWAS was performed in a single minicore population using FarmCPU, in R software. The synteny positions of the identified significant SNPs between sorghum and other model crop species viz., maize, switchgrass, and Arabidopsis were represented using CIRCOS software for traits viz., dry biomass yield, cellulose, hemicellulose, and lignin. The transcriptome dataset from where sorghum gene atlas studies of grain, sweet, and bioenergy sorghums are available through NCBI's Gene Expression Omnibus (GEO) under accession number GSE49879, was used to cross-validate the identified SNPs for cellulose, hemicellulose, and lignin through GWAS.

Results: High broad-sense heritability was exhibited for all the traits in individual seasons along with significant genotype × environment interaction across seasons except lignin. Association mapping with a P < 1×10-4 revealed genomic regions associated with the- (i) agronomic traits (days to 50% flowering, fresh and dry biomass), and (ii) biochemical traits (cellulose, hemicellulose, and lignin) associated with biofuels production, in individual seasons. Twelve significant SNPs for flowering time, 30 fresh biomass yields, and 24 for dry biomass yield, 25 for cellulose, 7 for hemicellulose, and 21 for lignin were identified. CIRCOS plot was constructed to identify and analyze similarities and differences while comparing the sorghum genome with different crops. For cellulose high similarity of >80% was observed for all sorghum gene sequences with the maize homologs. The overall similarity of sorghum homologs with foxtail millet was >65%, for Arabidopsis from 30.6% to 48.6%, and rice from 28.2% to 92.8%. SNPs for hemicellulose displayed maximum similarity to foxtail millet followed by maize. The sequence similarity of lignin SNPs in sorghum was highest with the maize genome followed by Arabidopsis. Both rice and foxtail millet showed >55% similarity to the sorghum genome.

Conclusion: This study reports large variability for agronomic and biofuel traits in the sorghum minicore collection with high heritability. The genetic architecture of cell wall components using the GWAS approach was studied and candidate genes for each component were annotated. These results give a better understanding of the genetic basis of the sorghum cell wall composition. The association analysis identified regions of the genome that could be targeted to enhance the quality of biomass and yield along with the desired composition promoting breeding efficiency for enhanced biofuel yield.

Keywords: Sorghum minicore, cellulose, hemicellulose, lignin, association mapping, SNP, Manhattan plots.

Graphical Abstract

[1]
Murray, S.C.; Rooney, W.L.; Mitchell, S.E.; Sharma, A.; Klein, P.E.; Mullet, J.E.; Kresovich, S. Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci., 2008, 48(6), 2180-2193.
[http://dx.doi.org/10.2135/cropsci2008.01.0068]
[2]
Akia, M.; Yazdani, F.; Motaee, E.; Han, D.; Arandiyan, H. A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Research. J., 2014, 1(1), 16-25.
[http://dx.doi.org/10.18331/BRJ2015.1.1.5]
[3]
Wegrzyn, J.L.; Eckert, A.J.; Choi, M.; Lee, J.M.; Stanton, B.J.; Sykes, R.; Davis, M.F.; Tsai, C.J.; Neale, D.B. Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol., 2010, 188(2), 515-532.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03415.x] [PMID: 20831625]
[4]
Upadhyaya, H.D.; Wang, Y-H.; Sharma, S.; Singh, S. Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome, 2012, 55(6), 471-479.
[http://dx.doi.org/10.1139/g2012-034] [PMID: 22680231]
[5]
Byrt, C.S.; Betts, N.S.; Tan, H.T.; Lim, W.L.; Ermawar, R.A.; Nguyen, H.Y.; Shirley, N.J.; Lahnstein, J.; Corbin, K.; Fincher, G.B.; Knauf, V.; Burton, R.A. Prospecting for energy-rich renewable raw materials: sorghum stem case study. PLoS One, 2016, 11(5), e0156638.
[http://dx.doi.org/10.1371/journal.pone.0156638] [PMID: 27232754]
[6]
Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-Industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci., 2014, 7(2), 163-173.
[http://dx.doi.org/10.1016/j.jrras.2014.02.003]
[7]
Jung, S.J.; Kim, S.H.; Chung, I.M. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy, 2015, 83, 322-327.
[http://dx.doi.org/10.1016/j.biombioe.2015.10.007]
[8]
Murray, S.C.; Sharma, A.; Rooney, W.L.; Klein, P.E.; Mullet, J.E.; Mitchell, S.E.; Kresovich, S. Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci., 2008, 48(6), 2165-2179.
[http://dx.doi.org/10.2135/cropsci2008.01.0016]
[9]
Burton, R.A.; Wilson, S.M.; Hrmova, M.; Harvey, A.J.; Shirley, N.J.; Medhurst, A.; Stone, B.A.; Newbigin, E.J.; Bacic, A.; Fincher, G.B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science, 2006, 311(5769), 1940-1942.
[http://dx.doi.org/10.1126/science.1122975] [PMID: 16574868]
[10]
Sivasankar, S.; Collinson, S.; Gupta, R.; Kanwarpal, S.D. Handbook of Bioenergy Crop Plants; CRC Press: Boca Raton, FL, 2012.
[11]
Li, K.; Wang, H.; Hu, X.; Liu, Z.; Wu, Y.; Huang, C. Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One, 2016, 11(8), e0158906.
[http://dx.doi.org/10.1371/journal.pone.0158906] [PMID: 27479588]
[12]
Morris, G.P.; Ramu, P.; Deshpande, S.P.; Hash, C.T.; Shah, T.; Upadhyaya, H.D.; Riera-Lizarazu, O.; Brown, P.J.; Acharya, C.B.; Mitchell, S.E.; Harriman, J.; Glaubitz, J.C.; Buckler, E.S.; Kresovich, S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. USA, 2013, 110(2), 453-458.
[http://dx.doi.org/10.1073/pnas.1215985110] [PMID: 23267105]
[13]
Chen, J.; Chopra, R.; Hayes, C.; Morris, G.; Marla, S.; Burke, J.; Xin, Z.; Burow, G. Genome-wide association study of developing leaves’ heat tolerance during vegetative growth stages in a Sorghum Association Panel. Plant Genome, 2017, 10(2)
[http://dx.doi.org/10.3835/plantgenome2016.09.0091] [PMID: 28724078]
[14]
Zhao, J.; Mantilla Perez, M.B.; Hu, J.; Salas Fernandez, M.G. Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome, 2016, 9(2)
[http://dx.doi.org/10.3835/plantgenome2015.06.0044] [PMID: 27898806]
[15]
Boyles, R.E.; Pfeiffer, B.K.; Cooper, E.A.; Rauh, B.L.; Zielinski, K.J.; Myers, M.T.; Brenton, Z.; Rooney, W.L.; Kresovich, S. Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theor. Appl. Genet., 2017, 130(4), 697-716.
[http://dx.doi.org/10.1007/s00122-016-2844-6] [PMID: 28028582]
[16]
Rhodes, D.H.; Hoffmann, L., Jr; Rooney, W.L.; Herald, T.J.; Bean, S.; Boyles, R.; Brenton, Z.W.; Kresovich, S. Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics, 2017, 18(1), 15.
[http://dx.doi.org/10.1186/s12864-016-3403-x] [PMID: 28056770]
[17]
Adeyanju, A.; Little, C.; Yu, J.; Tesso, T. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum. G3 Genes Genomes Genetics, 2015, 5(6), 1165-1175.
[18]
Porth, I.; Klapšte, J.; Skyba, O.; Hannemann, J.; McKown, A.D.; Guy, R.D.; DiFazio, S.P.; Muchero, W.; Ranjan, P.; Tuskan, G.A.; Friedmann, M.C.; Ehlting, J.; Cronk, Q.C.; El-Kassaby, Y.A.; Douglas, C.J.; Mansfield, S.D. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol., 2013, 200(3), 710-726.
[http://dx.doi.org/10.1111/nph.12422] [PMID: 23889164]
[19]
Houston, K.; Russell, J.; Schreiber, M.; Halpin, C.; Oakey, H.; Washington, J.M.; Booth, A.; Shirley, N.; Burton, R.A.; Fincher, G.B.; Waugh, R. A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics, 2014, 15(907), 907.
[http://dx.doi.org/10.1186/1471-2164-15-907] [PMID: 25326272]
[20]
Upadhyaya, H.D.; Pundir, R.P.S.; Dwivedi, S.L.; Gowda, C.L.L.; Reddy, V.G.; Singh, S. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci., 2009, 49(5), 1769-1780.
[http://dx.doi.org/10.2135/cropsci2009.01.0014]
[21]
Shakoor, N.; Nair, R.; Crasta, O.; Morris, G.; Feltus, A.; Kresovich, S. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol., 2014, 14(1), 35.
[http://dx.doi.org/10.1186/1471-2229-14-35] [PMID: 24456189]
[22]
Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 1991, 74(10), 3583-3597.
[http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2] [PMID: 1660498]
[23]
Statistical Analysis Systems Institute Inc. SAS/STAT® 9.2 User’s Guide, 2nd ed; SAS Institute Inc.: Cary, NC, 2009.
[24]
Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E.A. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6(5), e19379.
[http://dx.doi.org/10.1371/journal.pone.0019379] [PMID: 21573248]
[25]
Browning, B.L.; Zhou, Y.; Browning, S.R. A one-penny imputed genome from Next-generation reference panels. Am. J. Hum. Genet., 2018, 103(3), 338-348.
[http://dx.doi.org/10.1016/j.ajhg.2018.07.015] [PMID: 30100085]
[26]
Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet., 2016, 12(2), e1005767.
[http://dx.doi.org/10.1371/journal.pgen.1005767] [PMID: 26828793]
[27]
Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: an information aesthetic for comparative genomics. Genome Res., 2009, 19(9), 1639-1645.
[http://dx.doi.org/10.1101/gr.092759.109] [PMID: 19541911]
[28]
Aruna, C.; Swarnalatha, M.; Praveen Kumar, P.; Devender, V.; Suguna, M.; Blümmel, M.; Patil, J.V. Genetic options for improving fodder yield and quality in forage sorghum. Trop. Grassl.-Forrajes Trop., 2015, 3(1), 49.
[http://dx.doi.org/10.17138/TGFT(3)49-58]
[29]
Vikas, K.; Keerthika, A. Genetic evaluation for agronomical traits in sorghum under arid condition. Res. J. Chem. Environ., 2016, 20(7), 9-13.
[30]
Iraddi, V.; Reddy, T.D.; Akula, U.; Reddy, V.V.; Bhave, M.H.V. Genetic variability, heritability and character association studies in sweet sorghum (Sorghum bicolor(L). Moench). Journal of Research ANGRAU, 2013, 41(1), 30-38.
[31]
Shiringani, A.L.; Friedt, W. QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor. Appl. Genet., 2011, 123(6), 999-1011.
[http://dx.doi.org/10.1007/s00122-011-1642-4] [PMID: 21739141]
[32]
Karthikeyan, B.J.; Babu, C.; Amalraj, J.J. Nutritive value and fodder potential of different sorghum (Sorghum Bicolor L. Moench) cultivars. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6(8), 898-911.
[http://dx.doi.org/10.20546/ijcmas.2017.608.112]
[33]
da Silva, M.J.; Pastina, M.M.; de Souza, V.F.; Schaffert, R.E.; Carneiro, P.C.S.; Noda, R.W.; Carneiro, J.E.S.; Damasceno, C.M.B.; Parrella, R.A.D.C. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production. PLoS One, 2017, 12(8), e0183504.
[http://dx.doi.org/10.1371/journal.pone.0183504] [PMID: 28817696]
[34]
Pikaard, C.S.; Haag, J.R.; Ream, T.; Wierzbicki, A.T. Roles of RNA polymerase IV in gene silencing. Trends Plant Sci., 2008, 13(7), 390-397.
[http://dx.doi.org/10.1016/j.tplants.2008.04.008] [PMID: 18514566]
[35]
Synek, L.; Schlager, N.; Eliás, M.; Quentin, M.; Hauser, M.T.; Zárský, V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J., 2006, 48(1), 54-72.
[http://dx.doi.org/10.1111/j.1365-313X.2006.02854.x] [PMID: 16942608]
[36]
Mockaitis, K.; Estelle, M. Auxin receptors and plant development: a new signaling paradigm. Annu. Rev. Cell Dev. Biol., 2008, 24, 55-80.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123214] [PMID: 18631113]
[37]
Martin, F.; Boiffin, V.; Pfeffer, P.E. Carbohydrate and amino acid metabolism in the Eucalyptus globulus-pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol., 1998, 118(2), 627-635.
[http://dx.doi.org/10.1104/pp.118.2.627] [PMID: 9765549]
[38]
Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Commentary: why don’t plant leaves get fat? Plant Sci., 2013, 207, 128-134.
[http://dx.doi.org/10.1016/j.plantsci.2013.03.003]
[39]
Schulman, B.A. Twists and turns in ubiquitin-like protein conjugation cascades. Protein Sci., 2011, 20(12), 1941-1954.
[http://dx.doi.org/10.1002/pro.750] [PMID: 22012881]
[40]
Zhu, D.; Chu, W.; Wang, Y.; Yan, H.; Chen, Z.; Xiang, Y. Genome-wide identification, classification and expression analysis of the serine carboxypeptidase-like protein family in poplar. Physiol. Plant., 2018, 162(3), 333-352.
[http://dx.doi.org/10.1111/ppl.12642] [PMID: 28902414]
[41]
Endler, A.; Kesten, C.; Schneider, R.; Zhang, Y.; Ivakov, A.; Froehlich, A.; Funke, N.; Persson, S. A mechanism for sustained cellulose synthesis during salt stress. Cell, 2015, 162(6), 1353-1364.
[http://dx.doi.org/10.1016/j.cell.2015.08.028] [PMID: 26343580]
[42]
Li, J.; Li, C.; Smith, S.M. Hormone metabolism and signaling in plants, Elsevier, 2017.
[43]
Wang, P.; Hussey, P.J. Interactions between plant endomembrane systems and the actin cytoskeleton. Front. Plant Sci., 2015, 6(June), 422.
[http://dx.doi.org/10.3389/fpls.2015.00422] [PMID: 26106403]
[44]
Henriksson, G.; Johansson, G.; Pettersson, G. A critical review of cellobiose dehydrogenases. J. Biotechnol., 2000, 78(2), 93-113.
[http://dx.doi.org/10.1016/S0168-1656(00)00206-6] [PMID: 10725534]
[45]
Landi, S.; Esposito, S. Nitrate uptake affects cell wall synthesis and modeling. Front. Plant Sci., 2017, 8(August), 1376.
[http://dx.doi.org/10.3389/fpls.2017.01376] [PMID: 28848580]
[46]
Li, J.; Tang, W.; Zhang, Y-W.; Chen, K-N.; Wang, C.; Liu, Y.; Zhan, Q.; Wang, C.; Wang, S-B.; Xie, S-Q.; Wang, L. Genome-wide association studies for five forage quality-related traits in sorghum (Sorghum bicolor L.). Front. Plant Sci., 2018, 9(August), 1146.
[http://dx.doi.org/10.3389/fpls.2018.01146] [PMID: 30186292]
[47]
Wei, L.; Yan, T.; Wu, Y.; Chen, H.; Zhang, B. Optimization of alkaline extraction of hemicellulose from sweet sorghum bagasse and its direct application for the production of acidic xylooligosaccharides by Bacillus subtilis strain MR44. PLoS One, 2018, 13(4), e0195616.
[http://dx.doi.org/10.1371/journal.pone.0195616] [PMID: 29634785]
[48]
Vartapetian, A.B.; Tuzhikov, A.I.; Chichkova, N.V.; Taliansky, M.; Wolpert, T.J. A plant alternative to animal caspases: subtilisin-like proteases. Cell Death Differ., 2011, 18(8), 1289-1297.
[http://dx.doi.org/10.1038/cdd.2011.49] [PMID: 21546909]
[49]
Figueiredo, J.; Sousa Silva, M.; Figueiredo, A. Subtilisin-like proteases in plant defence: the past, the present and beyond. Mol. Plant Pathol., 2018, 19(4), 1017-1028.
[http://dx.doi.org/10.1111/mpp.12567] [PMID: 28524452]
[50]
Lim, E.K.; Li, Y.; Parr, A.; Jackson, R.; Ashford, D.A.; Bowles, D.J. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem., 2001, 276(6), 4344-4349.
[http://dx.doi.org/10.1074/jbc.M007263200] [PMID: 11042211]
[51]
Wang, Y.W.; Wang, W.C.; Jin, S.H.; Wang, J.; Wang, B.; Hou, B.K. Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. J. Exp. Bot., 2012, 63(7), 2799-2808.
[http://dx.doi.org/10.1093/jxb/ers001] [PMID: 22268132]
[52]
Reuscher, S.; Akiyama, M.; Yasuda, T.; Makino, H.; Aoki, K.; Shibata, D.; Shiratake, K. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant Cell Physiol., 2014, 55(6), 1123-1141.
[http://dx.doi.org/10.1093/pcp/pcu052] [PMID: 24833026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy