Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advances in Microbiome Detection Technologies and Application in Antirheumatic Drug Design

Author(s): Xin Wu, Xiang Chen, Xiaochen Lyu and Hao Zheng*

Volume 27, Issue 7, 2021

Published on: 10 December, 2020

Page: [891 - 899] Pages: 9

DOI: 10.2174/1381612826666201211114609

Price: $65

Abstract

Rheumatic diseases are a kind of chronic inflammatory and autoimmune disease affecting the connection or supporting structures of the human body, such as the most common diseases Ankylosing spondylitis (AS), gout and Systemic lupus erythematosus (SLE). Although the precise etiology and pathogenesis of the different types of rheumatic diseases remain mostly unknown, it is now commonly believed that these diseases are attributed to some complex interactions between genetics and environmental factors, especially the gut microbiome. Altered microbiome showed clinical improvement in disease symptoms and partially restored to normality after prescribing disease-modifying antirheumatic drugs (DMARDs) or other treatment strategies. Recent advances in next-generation sequencing-based microbial profiling technology, especially metagenomics, have identified alteration of the composition and function of the gut microbiota in patients. Clinical and experimental data suggest that dysbiosis may play a pivotal role in the pathogenesis of these diseases. In this paper, we provide a brief review of the advances in the microbial profiling technology and up-to-date resources for accurate taxonomic assignment of metagenomic reads, which is a key step for metagenomics studies. In addition, we review the altered gut microbiota signatures that have been reported so far across various studies, upon which diagnostics classification models can be constructed, and the drug-induced regulation of the host microbiota can be used to control disease progression and symptoms.

Keywords: Gut microbiome, microbiota, rheumatic diseases, DMARD, NGS, antirheumatic.

Next »
[1]
Zhang L, Hu Y, Xu Y, et al. The correlation between intestinal dysbiosis and the development of ankylosing spondylitis. Microb Pathog 2019; 132: 188-92.
[http://dx.doi.org/10.1016/j.micpath.2019.04.038] [PMID: 31039390]
[2]
Neuman H, Koren O. The gut microbiota: a possible factor influencing systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29(4): 374-7.
[http://dx.doi.org/10.1097/BOR.0000000000000395] [PMID: 28376066]
[3]
Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164(3): 337-40.
[http://dx.doi.org/10.1016/j.cell.2016.01.013] [PMID: 26824647]
[4]
Ezkurdia I, Juan D, Rodriguez JM, et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 2014; 23(22): 5866-78.
[http://dx.doi.org/10.1093/hmg/ddu309] [PMID: 24939910]
[5]
Andoh A. Physiological role of gut microbiota for maintaining human health. Digestion 2016; 93(3): 176-81.
[http://dx.doi.org/10.1159/000444066] [PMID: 26859303]
[6]
Sartor RB, Balfour Sartor R. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008; 134(2): 577-94.
[http://dx.doi.org/10.1053/j.gastro.2007.11.059] [PMID: 18242222]
[7]
Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ 2018; 360: j5145.
[http://dx.doi.org/10.1136/bmj.j5145] [PMID: 29311119]
[8]
Tyson GW, Chapman J, Hugenholtz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004; 428(6978): 37-43.
[http://dx.doi.org/10.1038/nature02340] [PMID: 14961025]
[9]
Malla MA, Dubey A, Kumar A, Yadav S, Hashem A, Abd Allah EF. Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front Immunol 2019; 9: 2868.
[http://dx.doi.org/10.3389/fimmu.2018.02868] [PMID: 30666248]
[10]
Wiley GB, Kelly JA, Gaffney PM. Use of next-generation DNA sequencing to analyze genetic variants in rheumatic disease. Arthritis Res Ther 2014; 16(6): 490.
[http://dx.doi.org/10.1186/s13075-014-0490-4] [PMID: 25789374]
[11]
Altorok N, Nada S, Nagaraja V, Kahaleh B. Epigenetics in Bone and Joint Disorders. Academic Press. Tollefsbol, TO 2016; pp. 295-314.
[12]
Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet 2017; 390(10089): 73-84.
[http://dx.doi.org/10.1016/S0140-6736(16)31591-4] [PMID: 28110981]
[13]
Exarchou S, Lindström U, Askling J, et al. The prevalence of clinically diagnosed ankylosing spondylitis and its clinical manifestations: a nationwide register study. Arthritis Res Ther 2015; 17: 118.
[http://dx.doi.org/10.1186/s13075-015-0627-0] [PMID: 25956915]
[14]
Park J-S, Hong J-Y, Park Y-S, Han K, Suh S-W. Trends in the prevalence and incidence of ankylosing spondylitis in South Korea, 2010-2015 and estimated differences according to income status. Sci Rep 2018; 8(1): 7694.
[http://dx.doi.org/10.1038/s41598-018-25933-4] [PMID: 29769560]
[15]
Crane AM, Bradbury L, van Heel DA, et al. Role of NOD2 variants in spondylarthritis. Arthritis Rheum 2002; 46(6): 1629-33.
[http://dx.doi.org/10.1002/art.10329] [PMID: 12115195]
[16]
Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of ankylosing spondylitis - recent advances and future directions. Nat Rev Rheumatol 2017; 13(6): 359-67.
[http://dx.doi.org/10.1038/nrrheum.2017.56] [PMID: 28446810]
[17]
Lin P, Bach M, Asquith M, et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 2014; 9(8)e105684
[http://dx.doi.org/10.1371/journal.pone.0105684] [PMID: 25140823]
[18]
Yin J, Sternes PR, Wang M, et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy and the host’s genotype upon microbiome composition. bioRxiv Cold Spring Harbor Laboratory 2019; 571430.
[19]
Van Praet L, Jacques P, Van den Bosch F, Elewaut D. The transition of acute to chronic bowel inflammation in spondyloarthritis. Nat Rev Rheumatol 2012; 8(5): 288-95.
[http://dx.doi.org/10.1038/nrrheum.2012.42] [PMID: 22508429]
[20]
Ahmed S, Shaffique S, Asif HM, Hussain G, Ahmad K. Pathophysiology, clinical consequences, epidemiology and treatment of hyperurecemic gout. RADS J Pharmacy Pharm Sci 2018; 6: 88-94.
[21]
Doherty M. New insights into the epidemiology of gout. Rheumatology (Oxford) 2009; 48(Suppl. 2): ii2-8.
[http://dx.doi.org/10.1093/rheumatology/kep086] [PMID: 19447779]
[22]
Basseville A, Bates SE. Gout, genetics and ABC transporters. F1000 Biol Rep 2011; 3: 23.
[http://dx.doi.org/10.3410/B3-23] [PMID: 22065982]
[23]
Guo Z, Zhang J, Wang Z, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 2016; 6: 20602.
[http://dx.doi.org/10.1038/srep20602] [PMID: 26852926]
[24]
Yongliang C, Yufen H, Qingchun H, et al. Metagenomic study revealed the potential role of the gut microbiome in gout. medRxiv. Cold Spring Harbor Laboratory Press 2019.https://www.medrxiv.org/content/10.1101/2019.12.21.19014142v1 1 Internet abstract
[25]
Wang J, Jia H. Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 2016; 14(8): 508-22.
[http://dx.doi.org/10.1038/nrmicro.2016.83] [PMID: 27396567]
[26]
Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J Clin Pathol 2003; 56(7): 481-490 Available from:.https://jcp.bmj.com/content/56/7/481.short
[27]
Mu Q, Zhang H, Liao X, et al. Control of lupus nephritis by changes of gut microbiota.Microbiome microbiomejournalbiomedcentral 2017; 5: 73.
[http://dx.doi.org/10.1186/s40168-017-0300-8]
[28]
Bodkhe R, Balakrishnan B, Taneja V. The role of microbiome in rheumatoid arthritis treatment. Ther Adv Musculoskelet Dis 2019; 11: 1759720X19844632.
[http://dx.doi.org/10.1177/1759720X19844632]
[29]
Masuko K. A Potential benefit of “balanced diet” for rheumatoid arthritis. Front Med (Lausanne) 2018; 5: 141.
[http://dx.doi.org/10.3389/fmed.2018.00141] [PMID: 29868593]
[30]
Bikel S, Valdez-Lara A, Cornejo-Granados F, et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 2015; 13: 390-401.
[31]
Uyaguari-Diaz MI, Chan M, Chaban BL, et al. A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. Microbiome 2016; 4(1): 20.
[http://dx.doi.org/10.1186/s40168-016-0166-1] [PMID: 27391119]
[32]
Liu J, Yu Y, Cai Z, Bartlam M, Wang Y. Comparison of ITS and 18S rDNA for estimating fungal diversity using PCR-DGGE. World J Microbiol Biotechnol 2015; 31(9): 1387-95.
[http://dx.doi.org/10.1007/s11274-015-1890-6] [PMID: 26081603]
[33]
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017; 35(9): 833-44.
[http://dx.doi.org/10.1038/nbt.3935] [PMID: 28898207]
[34]
Lavelle A, Sokol H. Gut microbiota: Beyond metagenomics, metatranscriptomics illuminates microbiome functionality in IBD. Nat Rev Gastroenterol Hepatol 2018; 15(4): 193-4.
[http://dx.doi.org/10.1038/nrgastro.2018.15] [PMID: 29463904]
[35]
Westreich ST, Treiber ML, Mills DA, Korf I, Lemay DG. SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinformatics 2018; 19(1): 175.
[http://dx.doi.org/10.1186/s12859-018-2189-z] [PMID: 29783945]
[36]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357-9.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[37]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[38]
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15(3): R46.
[http://dx.doi.org/10.1186/gb-2014-15-3-r46] [PMID: 24580807]
[39]
Lu YY, Chen T, Fuhrman JA, Sun F. COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge. Bioinformatics 2017; 33(6): 791-8.
[PMID: 27256312]
[40]
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013; 31(6): 533-8.
[http://dx.doi.org/10.1038/nbt.2579] [PMID: 23707974]
[41]
Nielsen HB, Almeida M, Juncker AS, et al. MetaHIT Consortium; MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014; 32(8): 822-8.
[http://dx.doi.org/10.1038/nbt.2939] [PMID: 24997787]
[42]
Beaulaurier J, Zhu S, Deikus G, et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat Biotechnol 2018; 36(1): 61-9.
[http://dx.doi.org/10.1038/nbt.4037] [PMID: 29227468]
[43]
Alneberg J, Bjarnason BS, de Bruijn I, et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014; 11(11): 1144-6.
[http://dx.doi.org/10.1038/nmeth.3103] [PMID: 25218180]
[44]
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015; 3e1165
[http://dx.doi.org/10.7717/peerj.1165] [PMID: 26336640]
[45]
Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016; 32(4): 605-7.
[http://dx.doi.org/10.1093/bioinformatics/btv638] [PMID: 26515820]
[46]
Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep 2016; 6: 24175.
[http://dx.doi.org/10.1038/srep24175] [PMID: 27067514]
[47]
Sieber CMK, Probst AJ, Sharrar A, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018; 3(7): 836-43.
[http://dx.doi.org/10.1038/s41564-018-0171-1] [PMID: 29807988]
[48]
Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 2018; 6(1): 158.
[http://dx.doi.org/10.1186/s40168-018-0541-1] [PMID: 30219103]
[49]
Tong Y, Marion T, Schett G, Luo Y, Liu Y. Microbiota and metabolites in rheumatic diseases. Autoimmun Rev 2020; 19(8)102530
[http://dx.doi.org/10.1016/j.autrev.2020.102530] [PMID: 32240855]
[50]
Rehaume LM, Mondot S, Aguirre de Cárcer D, et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol 2014; 66(10): 2780-92.
[http://dx.doi.org/10.1002/art.38773] [PMID: 25048686]
[51]
Taurog JD, Richardson JA, Croft JT, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180(6): 2359-64.
[http://dx.doi.org/10.1084/jem.180.6.2359] [PMID: 7964509]
[52]
Gaston H. Faculty of 1000 evaluation for High Chlamydia Burden Promotes Tumor Necrosis Factor-Dependent Reactive Arthritis in, SKG Mice. F1000 - Post-publication peer review of the biomedical literature 2015..
[http://dx.doi.org/10.3410/f.725526868.793507141]
[53]
Wen C, Zheng Z, Shao T, et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol 2017; 18(1): 142.
[http://dx.doi.org/10.1186/s13059-017-1271-6] [PMID: 28750650]
[54]
Li M, Dai B, Tang Y, et al. Altered bacterial-fungal interkingdom networks in the guts of ankylosing spondylitis patients. mSystems 2019; 4(2): e00176.-18.
[http://dx.doi.org/10.1128/mSystems.00176-18] [PMID: 30944880]
[55]
Chen Z, Qi J, Zheng X, Wu X, Li X, Gu J. AB0147 Faecal microbiota study identifies dysbiosis in ankylosing spondylitis patients. Ann Rheum Dis 2018; 77: 1264-5.
[56]
Costello M-E, Ciccia F, Willner D, et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol 2015; 67(3): 686-91.
[http://dx.doi.org/10.1002/art.38967] [PMID: 25417597]
[57]
Tito RY, Cypers H, Joossens M, et al. Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol 2017; 69(1): 114-21.
[http://dx.doi.org/10.1002/art.39802] [PMID: 27390077]
[58]
Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis 2017; 76(9): 1614-22.
[http://dx.doi.org/10.1136/annrheumdis-2016-211064] [PMID: 28606969]
[59]
Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature 2019; 568(7753): 505-10.
[http://dx.doi.org/10.1038/s41586-019-1058-x] [PMID: 30867587]
[60]
Rashid T, Ebringer A. Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis 2012; 2012539282
[http://dx.doi.org/10.1155/2012/539282] [PMID: 22454761]
[61]
Yin J, Sternes PR, Wang M, et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy and the host’s genotype upon microbiome composition. 79(1): 132-140. .
[http://dx.doi.org/10.1136/annrheumdis-2019-215763]
[62]
Asquith M, Sternes PR, Costello ME, et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol 2019; 71(10): 1642-50.
[http://dx.doi.org/10.1002/art.40917] [PMID: 31038287]
[63]
Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC. A fungal world: could the gut mycobiome be involved in neurological disease? Front Microbiol 2019; 9: 3249.
[http://dx.doi.org/10.3389/fmicb.2018.03249] [PMID: 30687254]
[64]
Pan L, Han P, Ma S, et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B 2020; 10(2): 249-61.
[http://dx.doi.org/10.1016/j.apsb.2019.10.007] [PMID: 32082971]
[65]
Yu Y, Liu Q, Li H, Wen C, He Z. Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats. Front Microbiol 2018; 9: 2233.
[http://dx.doi.org/10.3389/fmicb.2018.02233] [PMID: 30283432]
[66]
Mu Q, Tavella VJ, Kirby JL, et al. Antibiotics ameliorate lupus-like symptoms in mice. Sci Rep 2017; 7(1): 13675.
[http://dx.doi.org/10.1038/s41598-017-14223-0] [PMID: 29057975]
[67]
Luo XM, Edwards MR, Mu Q, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol 2018; 84(4): e02288-17.
[http://dx.doi.org/10.1128/AEM.02288-17] [PMID: 29196292]
[68]
Hevia A, Milani C, López P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 2014; 5(5): e01548-14.
[http://dx.doi.org/10.1128/mBio.01548-14] [PMID: 25271284]
[69]
Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol 2014; 80(24): 7551-60.
[http://dx.doi.org/10.1128/AEM.02676-14] [PMID: 25261516]
[70]
Ma Y, Xu X, Li M, Cai J, Wei Q, Niu H. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus. Mol Med 2019; 25(1): 35.
[http://dx.doi.org/10.1186/s10020-019-0102-5] [PMID: 31370803]
[71]
López P, de Paz B, Rodríguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 2016; 6: 24072.
[http://dx.doi.org/10.1038/srep24072] [PMID: 27044888]
[72]
Belkaid Y, Harrison OJ. Homeostatic Immunity and the microbiota. Immunity 2017; 46(4): 562-76.
[http://dx.doi.org/10.1016/j.immuni.2017.04.008] [PMID: 28423337]
[73]
Sommer F, Bäckhed F. The gut microbiota--masters of host development and physiology. Nat Rev Microbiol 2013; 11(4): 227-38.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[74]
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165(6): 1332-45.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[75]
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 2016; 16(6): 341-52.
[http://dx.doi.org/10.1038/nri.2016.42] [PMID: 27231050]
[76]
Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 2014; 40(6): 833-42.
[http://dx.doi.org/10.1016/j.immuni.2014.05.014] [PMID: 24950203]
[77]
Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 2015; 6: 6734.
[http://dx.doi.org/10.1038/ncomms7734] [PMID: 25828455]
[78]
Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145(5): 745-57.
[http://dx.doi.org/10.1016/j.cell.2011.04.022] [PMID: 21565393]
[79]
Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol 2018; 11(3): 752-62.
[http://dx.doi.org/10.1038/mi.2017.118] [PMID: 29411774]
[80]
Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469(7331): 543-7.
[http://dx.doi.org/10.1038/nature09646] [PMID: 21270894]
[81]
Usami M, Kishimoto K, Ohata A, et al. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res 2008; 28(5): 321-8.
[http://dx.doi.org/10.1016/j.nutres.2008.02.012] [PMID: 19083427]
[82]
Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 2011; 22(9): 849-55.
[http://dx.doi.org/10.1016/j.jnutbio.2010.07.009] [PMID: 21167700]
[83]
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014; 111(6): 2247-52.
[http://dx.doi.org/10.1073/pnas.1322269111] [PMID: 24390544]
[84]
Qin J, Li R, Raes J, et al. MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[85]
Shao T, Shao L, Li H, Xie Z, He Z, Wen C. Combined signature of the fecal microbiome and metabolome in patients with gout. Front Microbiol 2017; 8: 268.
[http://dx.doi.org/10.3389/fmicb.2017.00268] [PMID: 28270806]
[86]
Mu Q, Zhang H, Luo XM. SLE: Another autoimmune disorder influenced by microbes and diet? Front Immunol 2015; 6: 608.
[http://dx.doi.org/10.3389/fimmu.2015.00608] [PMID: 26648937]
[87]
He Z, Shao T, Li H, Xie Z, Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog 2016; 8: 64.
[http://dx.doi.org/10.1186/s13099-016-0146-9] [PMID: 27980687]
[88]
Yang L, Liu B, Zheng J, et al. Rifaximin alters intestinal microbiota and prevents progression of ankylosing spondylitis in mice. Front Cell Infect Microbiol 2019; 9: 44.
[http://dx.doi.org/10.3389/fcimb.2019.00044] [PMID: 30886835]
[89]
Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol 2012; 8(10): 610-21.
[http://dx.doi.org/10.1038/nrrheum.2012.144] [PMID: 22945592]
[90]
Tilleman JA, DeSimone II EM, McAuliffe R. Urate-lowering therapy for the prevention and treatment of gout flare Available from: https://www.uspharmacist.com/article/uratelowering-therapy-for-the-prevention-and-treatment-of-gout-flare
[91]
The effect of uric acid lowering treatment on the microbiome in gout patients - ACR Meeting Abstracts ACR Meeting Abstracts. Available from:. https://acrabstracts.org/abstract/the-effect-of-uric-acid-lowering-treatment-on-the-microbiome-in-gout-patients/
[92]
Luo XM, Edwards MR, Reilly CM, Mu Q, Ahmed SA. Diet and microbes in the pathogenesis of lupus. Lupus. InTech 2017.
[http://dx.doi.org/10.5772/68110]
[93]
Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol 2017; 8: 598.
[http://dx.doi.org/10.3389/fimmu.2017.00598] [PMID: 28588585]
[94]
Karki R, Man SM, Kanneganti T-D. Inflammasomes and. Cancer Immunol Res 2017; 5(2): 94-9.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0269] [PMID: 28093447]
[95]
Nickerson KM, Christensen SR, Shupe J, et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J Immunol 2010; 184(4): 1840-8.
[http://dx.doi.org/10.4049/jimmunol.0902592] [PMID: 20089701]
[96]
Wu Y-W, Tang W, Zuo J-P. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol Sin 2015; 36(12): 1395-407.
[http://dx.doi.org/10.1038/aps.2015.91] [PMID: 26592511]
[97]
Li Y, Wang H-F, Li X, et al. Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus. Clin Sci (Lond) 2019; 133(7): 821-38.
[http://dx.doi.org/10.1042/CS20180841] [PMID: 30872359]
[98]
van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368(5): 407-15.
[http://dx.doi.org/10.1056/NEJMoa1205037] [PMID: 23323867]
[99]
Stone MA, Payne U, Schentag C, Rahman P, Pacheco-Tena C, Inman RD. Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumonia in the pathogenesis of familial ankylosing spondylitis. Rheumatology (Oxford) 2004; 43(2): 148-55.
[http://dx.doi.org/10.1093/rheumatology/keg482] [PMID: 12949256]
[100]
Ebringer A. The relationship between Klebsiella infection and ankylosing spondylitis. Baillieres Clin Rheumatol 1989; 3(2): 321-38.
[http://dx.doi.org/10.1016/S0950-3579(89)80024-X] [PMID: 2670258]
[101]
Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014; 15(3): 382-92.
[http://dx.doi.org/10.1016/j.chom.2014.02.005] [PMID: 24629344]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy