Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

The Impacts of Non-coding RNAs and N6-Methyladenosine on Cancer: Past, Present and Future

Author(s): Zhaoyuan Xu, Guohua Ji, Ying Cui and Xiaobo Cui*

Volume 21, Issue 5, 2021

Published on: 20 January, 2021

Page: [375 - 385] Pages: 11

DOI: 10.2174/1568009621999210120193636

Price: $65

Abstract

N6-methyladenosine (m6A) modifications control multifaceted RNA metabolism and are one of the most extensively distributed modifications on the human transcriptome, including non-coding RNAs (ncRNAs). Previous concepts of ncRNAs as “junk” transcriptional products have evolved to the concept that ncRNAs are functional regulatory molecules that determine specific biological processes and cell fates. The dysregulation of m6A modifications and ncRNAs have been implicated in the development of human carcinogenesis. Certain types of ncRNAs have been reported to exert regulatory effects on m6A machinery. However, a better understanding of the relationship between m6A modifications and ncRNAs in cancer is still needed. This review discusses mutual interactions between m6A modifications and ncRNAs and their impacts on the development of human cancer. We summarize the clinical significance of m6A-ncRNA networks for cancer diagnosis and treatment, and we ask challenging questions that remain unanswered in this field of research. Understanding the complex coordination between m6A modifications and ncRNAs will be useful for guiding the development of therapeutic interventions.

Keywords: N6-methyladenosine, miRNA, LncRNA, CircRNA, PiRNA, non-coding RNA, cancer.

Next »
Graphical Abstract

[1]
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 2015; 12(8): 767-72.
[http://dx.doi.org/10.1038/nmeth.3453] [PMID: 26121403]
[2]
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485(7397): 201-6.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[3]
Meyer KD, Jaffrey SR. Rethinking m6A Readers, Writers, and Erasers. Annu Rev Cell Dev Biol 2017; 33: 319-42.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060758] [PMID: 28759256]
[4]
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24(2): 177-89.
[http://dx.doi.org/10.1038/cr.2014.3] [PMID: 24407421]
[5]
Rottman FM, Bokar JA, Narayan P, Shambaugh ME, Ludwiczak R. N6-adenosine methylation in mRNA: substrate specificity and enzyme complexity. Biochimie 1994; 76(12): 1109-14.
[http://dx.doi.org/10.1016/0300-9084(94)90038-8] [PMID: 7748945]
[6]
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 1997; 3(11): 1233-47.
[PMID: 9409616]
[7]
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16(2): 191-8.
[http://dx.doi.org/10.1038/ncb2902] [PMID: 24394384]
[8]
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014; 10(2): 93-5.
[http://dx.doi.org/10.1038/nchembio.1432] [PMID: 24316715]
[9]
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016; 537(7620): 369-73.
[http://dx.doi.org/10.1038/nature19342] [PMID: 27602518]
[10]
Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev 2018; 32(5-6): 415-29.
[http://dx.doi.org/10.1101/gad.309146.117] [PMID: 29535189]
[11]
Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 2018; 4: 10.
[http://dx.doi.org/10.1038/s41421-018-0019-0] [PMID: 29507755]
[12]
Wen J, Lv R, Ma H, Shen H, He C, Wang J, et al. Zc3h13 Regulates Nuclear RNA m(6)A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol Cell 2018; 69(6): 1028-38.
[13]
An S, Huang W, Huang X, et al. Integrative network analysis identifies cell-specific trans regulators of m6A. Nucleic Acids Res 2020; 48(4): 1715-29.
[http://dx.doi.org/10.1093/nar/gkz1206] [PMID: 31912146]
[14]
Wang X, Feng J, Xue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 2016; 534(7608): 575-8.
[http://dx.doi.org/10.1038/nature18298] [PMID: 27281194]
[15]
Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol Cell 2016; 63(2): 306-17.
[http://dx.doi.org/10.1016/j.molcel.2016.05.041] [PMID: 27373337]
[16]
Śledź P, Jinek M. Structural insights into the molecular mechanism of the m(6)A writer complex. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.18434] [PMID: 27627798]
[17]
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, et al. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell 2017; 169(5): 824-35.
[18]
Warda AS, Kretschmer J, Hackert P, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 2017; 18(11): 2004-14.
[http://dx.doi.org/10.15252/embr.201744940] [PMID: 29051200]
[19]
Ma H, Wang X, Cai J, et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol 2019; 15(1): 88-94.
[http://dx.doi.org/10.1038/s41589-018-0184-3] [PMID: 30531910]
[20]
van Tran N, Ernst FGM, Hawley BR, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res 2019; 47(15): 7719-33.
[http://dx.doi.org/10.1093/nar/gkz619] [PMID: 31328227]
[21]
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7(12): 885-7.
[http://dx.doi.org/10.1038/nchembio.687] [PMID: 22002720]
[22]
Tong J, Flavell RA, Li HB. RNA m6A modification and its function in diseases. Front Med 2018; 12(4): 481-9.
[http://dx.doi.org/10.1007/s11684-018-0654-8] [PMID: 30097961]
[23]
Zhao W, Qi X, Liu L, Ma S, Liu J, Wu J. Epigenetic Regulation of m6A Modifications in Human Cancer. Mol Ther Nucleic Acids 2020; 19: 405-12.
[http://dx.doi.org/10.1016/j.omtn.2019.11.022] [PMID: 31887551]
[24]
Wu R, Li A, Sun B, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 2019; 29(1): 23-41.
[http://dx.doi.org/10.1038/s41422-018-0113-8] [PMID: 30514900]
[25]
Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 2019; 15(8): 1419-37.
[http://dx.doi.org/10.1080/15548627.2019.1586246] [PMID: 30870073]
[26]
Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Z, Pan JN, et al. Regulation of Co-transcriptional Pre-mRNA Splicing by m(6)A through the Low-Complexity Protein hnRNPG. Mol Cell 2019; 76(1): 70-81.
[27]
Huang H, Weng H, Zhou K, et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 2019; 567(7748): 414-9.
[http://dx.doi.org/10.1038/s41586-019-1016-7] [PMID: 30867593]
[28]
Louloupi A, Ntini E, Conrad T, Ørom UAV. Transient N-6-Methyladenosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. Cell Rep 2018; 23(12): 3429-37.
[http://dx.doi.org/10.1016/j.celrep.2018.05.077] [PMID: 29924987]
[29]
Bertero A, Brown S, Madrigal P, et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 2018; 555(7695): 256-9.
[http://dx.doi.org/10.1038/nature25784] [PMID: 29489750]
[30]
Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 2017; 552(7683): 126-31.
[http://dx.doi.org/10.1038/nature24678] [PMID: 29186125]
[31]
Cui Q, Shi H, Ye P, et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep 2017; 18(11): 2622-34.
[http://dx.doi.org/10.1016/j.celrep.2017.02.059] [PMID: 28297667]
[32]
Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell 2016; 62(3): 335-45.
[http://dx.doi.org/10.1016/j.molcel.2016.03.021] [PMID: 27117702]
[33]
Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase- like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018; 67(6): 2254-70.
[http://dx.doi.org/10.1002/hep.29683] [PMID: 29171881]
[34]
Jia R, Chai P, Wang S, et al. m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Mol Cancer 2019; 18(1): 161.
[http://dx.doi.org/10.1186/s12943-019-1088-x] [PMID: 31722709]
[35]
Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res 2020; 48(7): 3816-31.
[http://dx.doi.org/10.1093/nar/gkaa048] [PMID: 31996915]
[36]
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining foxm1 expression and cell proliferation program. Cancer Cell 2017; 31(4): 591-606.
[37]
Li Z, Weng H, Su R, et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase. Cancer Cell 2017; 31(1): 127-41.
[http://dx.doi.org/10.1016/j.ccell.2016.11.017] [PMID: 28017614]
[38]
Zhou S, Bai ZL, Xia D, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol Carcinog 2018; 57(5): 590-7.
[http://dx.doi.org/10.1002/mc.22782] [PMID: 29315835]
[39]
Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science 2004; 304(5675): 1321-5.
[http://dx.doi.org/10.1126/science.1098119] [PMID: 15131266]
[40]
Johnsson P, Lipovich L, Grandér D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 2014; 1840(3): 1063-71.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.035] [PMID: 24184936]
[41]
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature 2012; 489(7414): 101-8.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[42]
Zhang X, Xie K, Zhou H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020; 19(1): 47.
[http://dx.doi.org/10.1186/s12943-020-01171-z] [PMID: 32122355]
[43]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[44]
Chen T, Hao YJ, Zhang Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015; 16(3): 289-301.
[http://dx.doi.org/10.1016/j.stem.2015.01.016] [PMID: 25683224]
[45]
Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519(7544): 482-5.
[http://dx.doi.org/10.1038/nature14281] [PMID: 25799998]
[46]
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9(1): 9430.
[http://dx.doi.org/10.1038/s41598-019-45636-8] [PMID: 31263129]
[47]
Du M, Zhang Y, Mao Y, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochem Biophys Res Commun 2017; 482(4): 582-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.077] [PMID: 27856248]
[48]
Yang Z, Li J, Feng G, et al. MicroRNA-145 Modulates N6-Methyladenosine Levels by Targeting the 3′-Untranslated mRNA Region of the N6-Methyladenosine Binding YTH Domain Family 2 Protein. J Biol Chem 2017; 292(9): 3614-23.
[http://dx.doi.org/10.1074/jbc.M116.749689] [PMID: 28104805]
[49]
Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun 2019; 10(1): 1858.
[http://dx.doi.org/10.1038/s41467-019-09712-x] [PMID: 31015415]
[50]
Han J, Wang JZ, Yang X, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 2019; 18(1): 110.
[http://dx.doi.org/10.1186/s12943-019-1036-9] [PMID: 31228940]
[51]
Xia T, Wu X, Cao M, et al. The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol Res Pract 2019; 215(11): 152666.
[http://dx.doi.org/10.1016/j.prp.2019.152666] [PMID: 31606241]
[52]
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6 -methyladenosine-dependent primary MicroRNA processing. Hepatology 2017; 65(2): 529-43.
[http://dx.doi.org/10.1002/hep.28885] [PMID: 27774652]
[53]
Fish L, Navickas A, Culbertson B, Xu Y, Nguyen HCB, Zhang S, et al. Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay. Mol Cell 2019; 75(5): 967-81.
[http://dx.doi.org/10.1016/j.molcel.2019.06.001]
[54]
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10(3): 155-9.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[55]
Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006; 29: 77-103.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112839] [PMID: 16776580]
[56]
Wu Y, Yang X, Chen Z, et al. m6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 2019; 18(1): 87.
[http://dx.doi.org/10.1186/s12943-019-1014-2] [PMID: 30979372]
[57]
Zheng ZQ, Li ZX, Zhou GQ, et al. Long Noncoding RNA FAM225A Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Acting as ceRNA to Sponge miR-590-3p/miR-1275 and Upregulate ITGB3. Cancer Res 2019; 79(18): 4612-26.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0799] [PMID: 31331909]
[58]
Wang X, Zhang J, Wang Y. Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability. Am J Transl Res 2019; 11(8): 4909-21.
[PMID: 31497208]
[59]
Zhu L, Zhu Y, Han S, et al. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis 2019; 10(6): 383.
[http://dx.doi.org/10.1038/s41419-019-1585-2] [PMID: 31097692]
[60]
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32(5): 453-61.
[http://dx.doi.org/10.1038/nbt.2890] [PMID: 24811520]
[61]
Qu S, Zhong Y, Shang R, et al. The emerging landscape of circular RNA in life processes. RNA Biol 2017; 14(8): 992-9.
[http://dx.doi.org/10.1080/15476286.2016.1220473] [PMID: 27617908]
[62]
Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K. Emerging roles and context of circular RNAs. Wiley Interdiscip Rev RNA 2017; 8(2)
[http://dx.doi.org/10.1002/wrna.1386] [PMID: 27612318]
[63]
Sun J, Li B, Shu C, Ma Q, Wang J. Functions and clinical significance of circular RNAs in glioma. Mol Cancer 2020; 19(1): 34.
[http://dx.doi.org/10.1186/s12943-019-1121-0] [PMID: 32061256]
[64]
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[65]
Chen RX, Chen X, Xia LP, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun 2019; 10(1): 4695.
[http://dx.doi.org/10.1038/s41467-019-12651-2] [PMID: 31619685]
[66]
Zhao J, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019; 10(1): 2300.
[http://dx.doi.org/10.1038/s41467-019-10246-5] [PMID: 31127091]
[67]
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, et al. N6-Methyladenosine Modification Controls Circular RNA Immunity. Mol Cell 2019; 76(1): 96-109.
[http://dx.doi.org/10.1016/j.molcel.2019.07.016]
[68]
Zhang X, Xu Y, Qian Z, et al. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death Dis 2018; 9(11): 1091.
[http://dx.doi.org/10.1038/s41419-018-1132-6] [PMID: 30361504]
[69]
Andersen PR, Tirian L, Vunjak M, Brennecke J. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 2017; 549(7670): 54-9.
[http://dx.doi.org/10.1038/nature23482] [PMID: 28847004]
[70]
Liu Y, Dou M, Song X, et al. The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 2019; 18(1): 123.
[http://dx.doi.org/10.1186/s12943-019-1052-9] [PMID: 31399034]
[71]
Bingzong L, Huiying H, Sha S, Gao F, Nengjun Y, Chen’ao Q, et al. Pirna-30473 Contributes to Tumorigenesis By Regulating RNA m6A Methylation in DLBCL. Blood 2018; 132(Suppl. 1): 2835.
[http://dx.doi.org/10.1182/blood-2018-99-114292]
[72]
Liu J, Dou X, Chen C, et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 2020; 367(6477): 580-6.
[http://dx.doi.org/10.1126/science.aay6018] [PMID: 31949099]
[73]
Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 2019; 566(7743): 270-4.
[http://dx.doi.org/10.1038/s41586-019-0916-x] [PMID: 30728504]
[74]
Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol 2018; 52(2): 621-9.
[PMID: 29345285]
[75]
Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 2012; 134(43): 17963-71.
[http://dx.doi.org/10.1021/ja3064149] [PMID: 23045983]
[76]
He W, Zhou B, Liu W, et al. Identification of A Novel Small-Molecule Binding Site of the Fat Mass and Obesity Associated Protein (FTO). J Med Chem 2015; 58(18): 7341-8.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00702] [PMID: 26314339]
[77]
Qiao Y, Zhou B, Zhang M, et al. A Novel Inhibitor of the Obesity-Related Protein FTO. Biochemistry 2016; 55(10): 1516-22.
[http://dx.doi.org/10.1021/acs.biochem.6b00023] [PMID: 26915401]
[78]
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 2015; 43(1): 373-84.
[http://dx.doi.org/10.1093/nar/gku1276] [PMID: 25452335]
[79]
Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell 2017; 172(1-2): 90-105.
[80]
Sancar A. DNA repair in humans. Annu Rev Genet 1995; 29: 69-105.
[http://dx.doi.org/10.1146/annurev.ge.29.120195.000441] [PMID: 8825469]
[81]
Islam MS, Leissing TM, Chowdhury R, Hopkinson RJ, Schofield CJ. 2-Oxoglutarate-Dependent Oxygenases. Annu Rev Biochem 2018; 87: 585-620.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044724] [PMID: 29494239]
[82]
He H, Wu W, Sun Z, Chai L. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m6A-caused stabilization of SEC62. Biochem Biophys Res Commun 2019; 517(4): 581-7.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.058] [PMID: 31395342]
[83]
Cui X, Wang Z, Li J, et al. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway. Cell Prolif 2020; 53(3): e12768.
[http://dx.doi.org/10.1111/cpr.12768] [PMID: 31967701]
[84]
Ni W, Yao S, Zhou Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer 2019; 18(1): 143.
[http://dx.doi.org/10.1186/s12943-019-1079-y] [PMID: 31619268]
[85]
Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res 2019; 38(1): 393.
[http://dx.doi.org/10.1186/s13046-019-1408-4] [PMID: 31492150]
[86]
Konno M, Koseki J, Asai A, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat Commun 2019; 10(1): 3888.
[http://dx.doi.org/10.1038/s41467-019-11826-1] [PMID: 31467274]
[87]
He Y, Hu H, Wang Y, et al. ALKBH5 Inhibits Pancreatic Cancer Motility by Decreasing Long Non-Coding RNA KCNK15-AS1 Methylation. Cell Physiol Biochem 2018; 48(2): 838-46.
[http://dx.doi.org/10.1159/000491915] [PMID: 30032148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy