Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Mini-Review Article

Dynamic Role of Macrophage Sub Types on Development of Atherosclerosis and Potential Use of Herbal Immunomodulators as Imminent Therapeutic Strategy

Author(s): Parimalanandhini Duraisamy, Sangeetha Ravi, Mahalakshmi Krishnan, Catherene M. Livya, Beulaja Manikandan, Koodalingam Arunagirinathan and Manikandan Ramar*

Volume 20, Issue 1, 2022

Published on: 17 December, 2020

Page: [2 - 12] Pages: 11

DOI: 10.2174/1871525718666201217163207

Price: $65

Abstract

Atherosclerosis, a major contributor to cardiovascular disease, is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes the recruitment of monocytes to the inflammatory sites and subsides pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 have to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of pro-inflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage have atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.

Keywords: Atherosclerosis, macrophages, Ox-LDL (oxidized low-density lipoprotein), cytokines, immunomodulators, curcumin.

Graphical Abstract

[1]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[2]
Kirichenko, T.V.; Sobenin, I.A.; Nikolic, D.; Rizzo, M.; Orekhov, A.N. Anti-cytokine therapy for prevention of atherosclerosis. Phytomedicine, 2016, 23(11), 1198-1210.
[http://dx.doi.org/10.1016/j.phymed.2015.12.002] [PMID: 26781385]
[3]
Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[4]
Krauss, R.M. Lipoprotein subfractions and cardiovascular disease risk. Curr. Opin. Lipidol., 2010, 21(4), 305-311.
[http://dx.doi.org/10.1097/MOL.0b013e32833b7756] [PMID: 20531184]
[5]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[6]
Gui, T.; Shimokado, A.; Sun, Y.; Akasaka, T.; Muragaki, Y. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm., 2012, 2012
[http://dx.doi.org/10.1155/2012/693083] [PMID: 22577254]
[7]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[8]
Sunderkötter, C.; Steinbrink, K.; Goebeler, M.; Bhardwaj, R.; Sorg, C. Macrophages and angiogenesis. J. Leukoc. Biol., 1994, 55(3), 410-422.
[http://dx.doi.org/10.1002/jlb.55.3.410] [PMID: 7509844]
[9]
Fujiwara, N.; Kobayashi, K. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy, 2005, 4(3), 281-286.
[http://dx.doi.org/10.2174/1568010054022024] [PMID: 16101534]
[10]
Davies, L.C.; Jenkins, S.J.; Allen, J.E.; Taylor, P.R. Tissue-resident macrophages. Nat. Immunol., 2013, 14(10), 986-995.
[http://dx.doi.org/10.1038/ni.2705] [PMID: 24048120]
[11]
Cline, M.J.; Lehrer, R.I.; Territo, M.C.; Golde, D.W. UCLA Conference. Monocytes and macrophages: functions and diseases. Ann. Intern. Med., 1978, 88(1), 78-88.
[http://dx.doi.org/10.7326/0003-4819-88-1-78] [PMID: 339803]
[12]
Na, Y.R.; Je, S.; Seok, S.H. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett., 2018, 413, 46-58.
[http://dx.doi.org/10.1016/j.canlet.2017.10.044] [PMID: 29100962]
[13]
Ponzoni, M.; Pastorino, F.; Di Paolo, D.; Perri, P.; Brignole, C. Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int. J. Mol. Sci., 2018, 19(7), 1953.
[http://dx.doi.org/10.3390/ijms19071953] [PMID: 29973487]
[14]
Kon, V.; Linton, M.F.; Fazio, S. Atherosclerosis in chronic kidney disease: the role of macrophages. Nat. Rev. Nephrol., 2011, 7(1), 45-54.
[http://dx.doi.org/10.1038/nrneph.2010.157] [PMID: 21102540]
[15]
Tertov, V.V.; Orekhov, A.N.; Kacharava, A.G.; Sobenin, I.A.; Perova, N.V.; Smirnov, V.N. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis. Exp. Mol. Pathol., 1990, 52(3), 300-308.
[http://dx.doi.org/10.1016/0014-4800(90)90071-K] [PMID: 2369935]
[16]
Collot-Teixeira, S.; Martin, J.; McDermott-Roe, C.; Poston, R.; McGregor, J.L. CD36 and macrophages in atherosclerosis. Cardiovasc. Res., 2007, 75(3), 468-477.
[http://dx.doi.org/10.1016/j.cardiores.2007.03.010] [PMID: 17442283]
[17]
Williams, K.J.; Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol., 1995, 15(5), 551-561.
[http://dx.doi.org/10.1161/01.ATV.15.5.551] [PMID: 7749869]
[18]
Ginhoux, F.; Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol., 2014, 14(6), 392-404.
[http://dx.doi.org/10.1038/nri3671] [PMID: 24854589]
[19]
Chávez-Sánchez, L.; Espinosa-Luna, J.E.; Chávez-Rueda, K.; Legorreta-Haquet, M.V.; Montoya-Díaz, E.; Blanco-Favela, F. Innate immune system cells in atherosclerosis. Arch. Med. Res., 2014, 45(1), 1-14.
[http://dx.doi.org/10.1016/j.arcmed.2013.11.007] [PMID: 24326322]
[20]
Tacke, F.; Alvarez, D.; Kaplan, T.J.; Jakubzick, C.; Spanbroek, R.; Llodra, J.; Garin, A.; Liu, J.; Mack, M.; van Rooijen, N.; Lira, S.A.; Habenicht, A.J.; Randolph, G.J. Monocyte subsets differentially employ CCR2, CCR5 and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest., 2007, 117(1), 185-194.
[http://dx.doi.org/10.1172/JCI28549] [PMID: 17200718]
[21]
Lehtonen, A.; Matikainen, S.; Miettinen, M.; Julkunen, I. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation. J. Leukoc. Biol., 2002, 71(3), 511-519.
[PMID: 11867689]
[22]
Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; Locati, M.; Mantovani, A.; Martinez, F.O.; Mege, J.L.; Mosser, D.M.; Natoli, G.; Saeij, J.P.; Schultze, J.L.; Shirey, K.A.; Sica, A.; Suttles, J.; Udalova, I.; van Ginderachter, J.A.; Vogel, S.N.; Wynn, T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, 41(1), 14-20.
[http://dx.doi.org/10.1016/j.immuni.2014.06.008] [PMID: 25035950]
[23]
Goerdt, S.; Politz, O.; Schledzewski, K.; Birk, R.; Gratchev, A.; Guillot, P.; Hakiy, N.; Klemke, C.D.; Dippel, E.; Kodelja, V.; Orfanos, C.E. Alternative versus classical activation of macrophages. Pathobiology, 1999, 67(5-6), 222-226.
[http://dx.doi.org/10.1159/000028096] [PMID: 10725788]
[24]
Stöger, J.L.; Gijbels, M.J.J.; van der Velden, S.; Manca, M.; van der Loos, C.M.; Biessen, E.A.L.; Daemen, M.J.A.P.; Lutgens, E.; de Winther, M.P. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 2012, 225(2), 461-468.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.09.013] [PMID: 23078881]
[25]
Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol., 2010, 11(10), 889-896.
[http://dx.doi.org/10.1038/ni.1937] [PMID: 20856220]
[26]
Leitinger, N.; Schulman, I.G. Phenotypic polarization of macrophages in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2013, 33(6), 1120-1126.
[http://dx.doi.org/10.1161/ATVBAHA.112.300173] [PMID: 23640492]
[27]
Peled, M.; Fisher, E.A. Dynamic aspects of macrophage polarization during atherosclerosis pregoression and regression. Front. Immunol., 2014, 5, 579.
[http://dx.doi.org/10.3389/fimmu.2014.00579] [PMID: 25429291]
[28]
Khallou-Laschet, J.; Varthaman, A.; Fornasa, G.; Compain, C.; Gaston, A.T.; Clement, M.; Dussiot, M.; Levillain, O.; Graff- Dubois, S.; Nicoletti, A.; Caligiuri, G. Macrophage plasticity in experimental atherosclerosis. PLoS One, 2010, 5(1)
[http://dx.doi.org/10.1371/journal.pone.0008852] [PMID: 20111605]
[29]
Martinez, F.O.; Gordon, S.; Locati, M.; Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol., 2006, 177(10), 7303-7311.
[http://dx.doi.org/10.4049/jimmunol.177.10.7303] [PMID: 17082649]
[30]
Sanson, M.; Distel, E.; Fisher, E.A. HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS One, 2013, 8(8), e74676.
[http://dx.doi.org/10.1371/journal.pone.0074676] [PMID: 23991225]
[31]
Ohashi, K.; Parker, J.L.; Ouchi, N.; Higuchi, A.; Vita, J.A.; Gokce, N.; Pedersen, A.A.; Kalthoff, C.; Tullin, S.; Sams, A.; Summer, R.; Walsh, K. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem., 2010, 285(9), 6153-6160.
[http://dx.doi.org/10.1074/jbc.M109.088708] [PMID: 20028977]
[32]
Titos, E.; Rius, B.; González-Périz, A.; López-Vicario, C.; Morán-Salvador, E.; Martínez-Clemente, M.; Arroyo, V.; Clària, J.; Clària, J. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol., 2011, 187(10), 5408-5418.
[http://dx.doi.org/10.4049/jimmunol.1100225] [PMID: 22013115]
[33]
Chinetti-Gbaguidi, G.; Baron, M.; Bouhlel, M.A.; Vanhoutte, J.; Copin, C.; Sebti, Y.; Derudas, B.; Mayi, T.; Bories, G.; Tailleux, A.; Haulon, S.; Zawadzki, C.; Jude, B.; Staels, B. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ. Res., 2011, 108(8), 985-995.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233775] [PMID: 21350215]
[34]
Anderson, E.K.; Hill, A.A.; Hasty, A.H. Stearic acid accumulation in macrophages induces toll-like receptor 4/2-independent inflammation leading to endoplasmic reticulum stress-mediated apoptosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(7), 1687-1695.
[http://dx.doi.org/10.1161/ATVBAHA.112.250142] [PMID: 22556332]
[35]
Oh, J.; Riek, A.E.; Weng, S.; Petty, M.; Kim, D.; Colonna, M.; Cella, M.; Bernal-Mizrachi, C. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J. Biol. Chem., 2012, 287(15), 11629-11641.
[http://dx.doi.org/10.1074/jbc.M111.338673] [PMID: 22356914]
[36]
Buttari, B.; Segoni, L.; Profumo, E.; D’Arcangelo, D.; Rossi, S.; Facchiano, F.; Businaro, R.; Iuliano, L.; Riganò, R. 7-Oxo-cholesterol potentiates pro-inflammatory signaling in human M1 and M2 macrophages. Biochem. Pharmacol., 2013, 86(1), 130-137.
[http://dx.doi.org/10.1016/j.bcp.2013.04.008] [PMID: 23611834]
[37]
Frömel, T.; Kohlstedt, K.; Popp, R.; Yin, X.; Awwad, K.; Barbosa-Sicard, E.; Thomas, A.C.; Lieberz, R.; Mayr, M.; Fleming, I. Cytochrome P4502S1: a novel monocyte/macrophage fatty acid epoxygenase in human atherosclerotic plaques. Basic Res. Cardiol., 2013, 108(1), 319.
[http://dx.doi.org/10.1007/s00395-012-0319-8] [PMID: 23224081]
[38]
Pajarinen, J.; Kouri, V.P.; Jämsen, E.; Li, T.F.; Mandelin, J.; Konttinen, Y.T. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater., 2013, 9(11), 9229-9240.
[http://dx.doi.org/10.1016/j.actbio.2013.06.027] [PMID: 23827094]
[39]
Satomi, T.; Ogawa, M.; Mori, I.; Ishino, S.; Kubo, K.; Magata, Y.; Nishimoto, T. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J. Nucl. Med., 2013, 54(6), 999-1004.
[http://dx.doi.org/10.2967/jnumed.112.110551] [PMID: 23670898]
[40]
Tavakoli, S.; Zamora, D.; Ullevig, S.; Asmis, R. Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J. Nucl. Med., 2013, 54(9), 1661-1667.
[http://dx.doi.org/10.2967/jnumed.112.119099] [PMID: 23886729]
[41]
Ying, W. Cheruku. P.S.; Bazer, F.W.; Safe, S.H.; Zhou B. Investigation of macrophage polarization using bone marrow derived macrophages. J. Vis. Exp., 2013, 76, 1-8.
[42]
Buttari, B.; Profumo, E. Segoni, E.L; D’Arcangelo, D.; Rossi, S.; Facchiano, F.; Saso, L.; Businaro, R.; Iuliano, L.; Riganò, R. Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis. Oxid. Med. Cell. Longev., 2014, 1-12.
[http://dx.doi.org/10.1155/2014/257543]
[43]
Qin, X.; Qiu, C.; Zhao, L. Lysophosphatidylcholine perpetuates macrophage polarization toward classically activated phenotype in inflammation. Cell. Immunol., 2014, 289(1-2), 185-190.
[http://dx.doi.org/10.1016/j.cellimm.2014.04.010] [PMID: 24841857]
[44]
Park, S.J.; Lee, K.P.; Kang, S.; Lee, J.; Sato, K.; Chung, H.Y.; Okajima, F.; Im, D.S. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell. Signal., 2014, 26(10), 2249-2258.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.009] [PMID: 25035231]
[45]
Reeves, A.R.D.; Spiller, K.L.; Freytes, D.O.; Vunjak-Novakovic, G.; Kaplan, D.L. Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials, 2015, 73, 272-283.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.027] [PMID: 26421484]
[46]
Zhou, Y.; Chen, R.; Liu, D.; Wu, C.; Guo, P.; Lin, W. Asperlin inhibits LPS-evoked foam cell formation and prevents atherosclerosis in ApoE-/- mice. Mar. Drugs, 2017, 15(11), 1-12.
[http://dx.doi.org/10.3390/md15110358] [PMID: 29135917]
[47]
Kapoor, N.; Niu, J.; Saad, Y.; Kumar, S.; Sirakova, T.; Becerra, E.; Li, X.; Kolattukudy, P.E. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J. Immunol., 2015, 194(12), 6011-6023.
[http://dx.doi.org/10.4049/jimmunol.1402797] [PMID: 25934862]
[48]
Koren-Gluzer, M.; Rosenblat, M.; Hayek, T. Paraoxonase 2 induces a phenotypic switch in macrophage polarization favoring an M2 anti-inflammatory state. Int. J. Endocrinol., 2015, 2015
[http://dx.doi.org/10.1155/2015/915243] [PMID: 26779262]
[49]
Wu, X.Q.; Yang, Y.; Li, W.X.; Cheng, Y.H.; Li, X.F.; Huang, C.; Meng, X.M.; Wu, B.M.; Liu, X.H.; Zhang, L.; Lv, X.W.; Li, J. Telomerase reverse transcriptase acts in a feedback loop with NF-κB pathway to regulate macrophage polarization in alcoholic liver disease. Sci. Rep., 2016, 6, 18685.
[http://dx.doi.org/10.1038/srep18685] [PMID: 26725521]
[50]
Liu, X.; Li, J.; Peng, X.; Lv, B.; Wang, P.; Zhao, X.; Yu, B. Geraniin Inhibits LPS-Induced THP-1 Macrophages Switching to M1 Phenotype via SOCS1/NF-κB Pathway. Inflammation, 2016, 39(4), 1421-1433.
[http://dx.doi.org/10.1007/s10753-016-0374-7] [PMID: 27290719]
[51]
da Silva, R.F.; Lappalainen, J.; Lee-Rueckert, M.; Kovanen, P.T. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation. Atherosclerosis, 2016, 248, 170-178.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.012] [PMID: 27038418]
[52]
Zhou, Y.; Zhang, T.; Wang, X.; Wei, X.; Chen, Y.; Guo, L.; Zhang, J.; Wang, C. Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cell. Physiol. Biochem., 2015, 36, 631-641.
[http://dx.doi.org/10.1159/000430126]
[53]
Zhao, X.N.; Li, Y.N.; Wang, Y.T. Interleukin-4 regulate macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis. Genet. Mol. Res., 2016, 15(1)
[http://dx.doi.org/10.4238/gmr.15017348]
[54]
Yi, W.J.; Kim, T.S. Melatonin protects mice against stress-induced inflammation through enhancement of M2 macrophage polarization. Int. Immunopharmacol., 2017, 48, 146-158.
[http://dx.doi.org/10.1016/j.intimp.2017.05.006] [PMID: 28505494]
[55]
Zhang, B.C.; Li, Z.; Xu, W.; Xiang, C.H.; Ma, Y.F. Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells. Am. J. Transl. Res., 2018, 10(1), 265-273.
[PMID: 29423011]
[56]
Matthys, K.E.; Bult, H. Nitric oxide function in atherosclerosis. Mediators Inflamm., 1997, 6(1), 3-21.
[http://dx.doi.org/10.1080/09629359791875] [PMID: 18472828]
[57]
Napoli, C.; de Nigris, F.; Williams-Ignarro, S.; Pignalosa, O.; Sica, V.; Ignarro, L.J. Nitric oxide and atherosclerosis: an update. Nitric Oxide, 2006, 15(4), 265-279.
[http://dx.doi.org/10.1016/j.niox.2006.03.011] [PMID: 16684613]
[58]
Pong, T.; Huang, P.L. Effects of nitric oxide on atherosclerosis. Atherosclerosis: Risks. Mechanisms and Therapies, Hong Wang, Cam Patterson, Ed.; Wiley-Blackwell, 2015; Vol. 28, pp. 355-364.
[59]
Li, H.; Förstermann, U. Nitric oxide in the pathogenesis of vascular disease. J. Pathol., 2000, 190(3), 244-254.
[http://dx.doi.org/10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575>3.0.CO;2-8] [PMID: 10685059]
[60]
Li, H.; Förstermann, U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr. Pharm. Des., 2009, 15(27), 3133-3145.
[http://dx.doi.org/10.2174/138161209789058002] [PMID: 19754387]
[61]
Weisser, S.B.; McLarren, K.W.; Kuroda, E.; Sly, L.M. Generation and characterization of murine alternatively activated macrophages. Methods Mol. Biol., 2013, 946, 225-239.
[http://dx.doi.org/10.1007/978-1-62703-128-8_14] [PMID: 23179835]
[62]
Palmieri, E.M.; Gonzalez-Cotto, M.; Baseler, W.A.; Davies, L.C.; Ghesquière, B.; Maio, N.; Rice, C.M.; Rouault, T.A.; Cassel, T.; Higashi, R.M.; Lane, A.N.; Fan, T.W.; Wink, D.A.; McVicar, D.W. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun., 2020, 11(1), 698.
[http://dx.doi.org/10.1038/s41467-020-14433-7] [PMID: 32019928]
[63]
Luster, A.D. Chemokines-chemotactic cytokines that mediate inflammation. N. Engl. J. Med., 1998, 338(7), 436-445.
[http://dx.doi.org/10.1056/NEJM199802123380706] [PMID: 9459648]
[64]
Dinarello, C.A.; Dinarello, M.D. Proinflammatory cytokines. Chest, 2000, 118(2), 503-508.
[http://dx.doi.org/10.1378/chest.118.2.503] [PMID: 10936147]
[65]
Boulay, J.L.; O’Shea, J.J.; Paul, W.E. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity, 2003, 19(2), 159-163.
[http://dx.doi.org/10.1016/S1074-7613(03)00211-5] [PMID: 12932349]
[66]
De Martin, R.; Hoeth, M.; Hofer-Warbinek, R.; Schmid, J.A. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler. Thromb. Vasc. Biol., 2000, 20(11), E83-E88.
[PMID: 11073859]
[67]
Bourcier, T.; Sukhova, G.; Libby, P. The nuclear factor kappa-B signaling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis. J. Biol. Chem., 1997, 272(25), 15817-15824.
[http://dx.doi.org/10.1074/jbc.272.25.15817] [PMID: 9188479]
[68]
Hsu, H.Y.; Nicholson, A.C.; Hajjar, D.P. Inhibition of macrophage scavenger receptor activity by tumor necrosis factor-alpha is transcriptionally and post-transcriptionally regulated. J. Biol. Chem., 1996, 271(13), 7767-7773.
[http://dx.doi.org/10.1074/jbc.271.13.7767] [PMID: 8631819]
[69]
van Lenten, B.J.; Fogelman, A.M. Lipopolysaccharide-induced inhibition of scavenger receptor expression in human monocyte- macrophages is mediated through tumor necrosis factor-alpha. J. Immunol., 1992, 148(1), 112-116.
[PMID: 1727858]
[70]
Kirii, H.; Niwa, T.; Yamada, Y.; Wada, H.; Saito, K.; Iwakura, Y.; Asano, M.; Moriwaki, H.; Seishima, M. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2003, 23(4), 656-660.
[http://dx.doi.org/10.1161/01.ATV.0000064374.15232.C3] [PMID: 12615675]
[71]
Schieffer, B.; Selle, T.; Hilfiker, A.; Hilfiker-Kleiner, D.; Grote, K.; Tietge, U.J.; Trautwein, C.; Luchtefeld, M.; Schmittkamp, C.; Heeneman, S.; Daemen, M.J.; Drexler, H. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation, 2004, 110(22), 3493-3500.
[http://dx.doi.org/10.1161/01.CIR.0000148135.08582.97] [PMID: 15557373]
[72]
Gupta, S.; Pablo, A.M.; Jiang, Xc.; Wang, N.; Tall, A.R.; Schindler, C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest., 1997, 99(11), 2752-2761.
[http://dx.doi.org/10.1172/JCI119465] [PMID: 9169506]
[73]
Tedgui, A.; Mallat, Z. Anti-inflammatory mechanisms in the vascular wall. Circ. Res., 2001, 88(9), 877-887.
[http://dx.doi.org/10.1161/hh0901.090440] [PMID: 11348996]
[74]
Wakkach, A.; Cottrez, F.; Groux, H. Can interleukin-10 be used as a true immunoregulatory cytokine? Eur. Cytokine Netw., 2000, 11(2), 153-160.
[PMID: 10903794]
[75]
Grainger, D.J. Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(3), 399-404.
[http://dx.doi.org/10.1161/01.ATV.0000114567.76772.33] [PMID: 14699019]
[76]
Nilsson, J.; Hansson, G.K.; Shah, P.K. Immunomodulation of atherosclerosis: implications for vaccine development. Arterioscler. Thromb. Vasc. Biol., 2005, 25(1), 18-28.
[http://dx.doi.org/10.1161/01.ATV.0000149142.42590.a2] [PMID: 15514204]
[77]
Mukhopadhyay, M.K.; Banerjee, P.; Nath, D. Phytochemicals – biomolecules for prevention and treatment of human diseases-a review. IJSER, 2012, 3(7), 1-32.
[78]
Jantan, I.; Ahmad, W.; Bukhari, S.N. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci., 2015, 6, 655.
[http://dx.doi.org/10.3389/fpls.2015.00655] [PMID: 26379683]
[79]
Enkhmaa, B.; Shiwaku, K.; Katsube, T.; Kitajima, K.; Anuurad, E.; Yamasaki, M.; Yamane, Y. Mulberry (Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J. Nutr., 2005, 135(4), 729-734.
[http://dx.doi.org/10.1093/jn/135.4.729] [PMID: 15795425]
[80]
Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem., 2003, 51(8), 2144-2155.
[http://dx.doi.org/10.1021/jf020444+] [PMID: 12670148]
[81]
Lian, T.W.; Wang, L.; Lo, Y.H.; Huang, I.J.; Wu, M.J. Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochim. Biophys. Acta, 2008, 1781(10), 601-609.
[http://dx.doi.org/10.1016/j.bbalip.2008.06.009] [PMID: 18662803]
[82]
Mulvihill, E.E.; Assini, J.M.; Sutherland, B.G.; DiMattia, A.S.; Khami, M.; Koppes, J.B.; Sawyez, C.G.; Whitman, S.C.; Huff, M.W. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 742-748.
[http://dx.doi.org/10.1161/ATVBAHA.109.201095] [PMID: 20110573]
[83]
Stangl, V.; Dreger, H.; Stangl, K.; Lorenz, M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc. Res., 2007, 73(2), 348-358.
[http://dx.doi.org/10.1016/j.cardiores.2006.08.022] [PMID: 17020753]
[84]
Lin, H.H.; Chen, J.H.; Wang, C.J. Chemopreventive properties and molecular mechanisms of the bioactive compounds in Hibiscus sabdariffa Linne. Curr. Med. Chem., 2011, 18(8), 1245-1254.
[http://dx.doi.org/10.2174/092986711795029663] [PMID: 21291361]
[85]
Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr., 2000, 130(9), 2243-2250.
[http://dx.doi.org/10.1093/jn/130.9.2243] [PMID: 10958819]
[86]
Kwon, J.Y.; Lee, K.W.; Kim, J.E.; Jung, S.K.; Kang, N.J.; Hwang, M.K.; Heo, Y.S.; Bode, A.M.; Dong, Z.; Lee, H.J. Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis, 2009, 30(11), 1932-1940.
[http://dx.doi.org/10.1093/carcin/bgp216] [PMID: 19776176]
[87]
Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J.F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol., 2000, 16(4), 357-363.
[http://dx.doi.org/10.1023/A:1007614613771] [PMID: 10959944]
[88]
Kang, N.J.; Lee, K.W.; Kwon, J.Y.; Hwang, M.K.; Rogozin, E.A.; Heo, Y.S.; Bode, A.M.; Lee, H.J.; Dong, Z. Delphinidin attenuates neoplastic transformation in JB6 Cl41 mouse epidermal cells by blocking Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling. Cancer Prev. Res. (Phila.), 2008, 1(7), 522-531.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0071] [PMID: 19139002]
[89]
Sudhakumari, K.H.; Javed, A.; Jaiswal, M.; Talkad, M.S. Cardioprotective effects in methanolic extract of Evolvulus alsinoides linn on isoproterenol-induced myocardial infarction in albino rats. IJBMSP, 2012, 2, 53-57.
[90]
Amrani, S.; Harnafi, H.; Bouanani, Nel.H.; Aziz, M.; Caid, H.S.; Manfredini, S.; Besco, E.; Napolitano, M.; Bravo, E. Hypolipidaemic activity of aqueous Ocimum basilicum extract in acute hyperlipidaemia induced by triton WR-1339 in rats and its antioxidant property. Phytother. Res., 2006, 20(12), 1040-1045.
[http://dx.doi.org/10.1002/ptr.1961] [PMID: 17006976]
[91]
Bhaumik, S.; Jyothi, M.D.; Khar, A. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett., 2000, 483(1), 78-82.
[http://dx.doi.org/10.1016/S0014-5793(00)02089-5] [PMID: 11033360]
[92]
Surh, Y.J.; Chun, K.S.; Cha, H.H.; Han, S.S.; Keum, Y.S.; Park, K.K.; Lee, S.S. Molecular mechanisms underlying chemopreventiveativities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res., 2000, 481, 243-268.
[93]
Mohammadi, A.; Blesso, C.N.; Barreto, G.E.; Banach, M.; Majeed, M.; Sahebkar, A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J. Nutr. Biochem., 2019, 66, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.12.005] [PMID: 30660832]
[94]
Hong, M.H.; Kim, M.H.; Chang, H.J.; Kim, N.H.; Shin, B.A.; Ahn, B.W.; Jung, Y.D. (-)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-kappaB signaling. Life Sci., 2007, 80(21), 1957-1965.
[http://dx.doi.org/10.1016/j.lfs.2007.02.024] [PMID: 17379255]
[95]
Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[96]
Thompson, P.L.; Nidorf, S.M. Colchicine: an affordable anti-inflammatory agent for atherosclerosis. Curr. Opin. Lipidol., 2018, 29(6), 467-473.
[http://dx.doi.org/10.1097/MOL.0000000000000552] [PMID: 30320614]
[97]
Park, J.S.; Choi, M.A.; Kim, B.S.; Han, I.S.; Kurata, T.; Yu, R. Capsaicin protects against ethanol-induced oxidative injury in the gastric mucosa of rats. Life Sci., 2000, 67(25), 3087-3093.
[http://dx.doi.org/10.1016/S0024-3205(00)00890-0] [PMID: 11125845]
[98]
Kim, C.S.; Kawada, T.; Kim, B.S.; Han, I.S.; Choe, S.Y.; Kurata, T.; Yu, R. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell. Signal., 2003, 15(3), 299-306.
[http://dx.doi.org/10.1016/S0898-6568(02)00086-4] [PMID: 12531428]
[99]
Maiti, K.; Gantait, A.; Kakali, M.; Saha, B.P.; Mukherjee, P.K. Therapeutic potentials of andrographolide from Andrographis paniculata: a review. J. Nat. Rem., 2006, 6(1), 1-13.
[100]
Corbett, J.A.; Kwon, G.; Marino, M.H.; Rodi, C.P.; Sullivan, P.M.; Turk, J.; McDaniel, M.L. Tyrosine kinase inhibitors prevent cytokine-induced expression of iNOS and COX-2 by human islets. Am. J. Physiol., 1996, 270(6 Pt 1), C1581-C1587.
[http://dx.doi.org/10.1152/ajpcell.1996.270.6.C1581] [PMID: 8764139]
[101]
Si, H.; Liu, D. Phytochemical genistein in the regulation of vascular function: new insights. Curr. Med. Chem., 2007, 14(24), 2581-2589.
[http://dx.doi.org/10.2174/092986707782023325] [PMID: 17979711]
[102]
Fatkhullina, A.R.; Peshkova, I.O.; Koltsova, E.K. The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc.), 2016, 81(11), 1358-1370.
[http://dx.doi.org/10.1134/S0006297916110134] [PMID: 27914461]
[103]
Boisvert, W.A.; Santiago, R.; Curtiss, L.K.; Terkeltaub, R.A. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest., 1998, 101(2), 353-363.
[http://dx.doi.org/10.1172/JCI1195] [PMID: 9435307]
[104]
Monaco, C.; Andreakos, E.; Kiriakidis, S.; Mauri, C.; Bicknell, C.; Foxwell, B.; Cheshire, N.; Paleolog, E.; Feldmann, M. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc. Natl. Acad. Sci. USA, 2004, 101(15), 5634-5639.
[http://dx.doi.org/10.1073/pnas.0401060101] [PMID: 15064395]
[105]
O’Farrell, A.M.; Liu, Y.; Moore, K.W.; Mui, A.L.F. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J., 1998, 17(4), 1006-1018.
[http://dx.doi.org/10.1093/emboj/17.4.1006] [PMID: 9463379]
[106]
Pinderski Oslund, L.J.; Hedrick, C.C.; Olvera, T.; Hagenbaugh, A.; Territo, M.; Berliner, J.A.; Fyfe, A.I. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol., 1999, 19(12), 2847-2853.
[http://dx.doi.org/10.1161/01.ATV.19.12.2847] [PMID: 10591660]
[107]
Tousoulis, D.; Oikonomou, E.; Economou, E.K.; Crea, F.; Kaski, J.C. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur. Heart J., 2016, 37(22), 1723-1732.
[http://dx.doi.org/10.1093/eurheartj/ehv759] [PMID: 26843277]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy