Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Prognostic Hub Genes in the Immune Microenvironment of Lung Adenocarcinoma by Estimation

Author(s): Shanshan Liu, Wenjuan Tian and Burong Li*

Volume 25, Issue 1, 2022

Published on: 10 December, 2020

Page: [77 - 89] Pages: 13

DOI: 10.2174/1386207323666201211090604

Price: $65

Abstract

Background: The mortality of lung adenocarcinoma (LUAD) is high. Recent studies have found that the degree of immune infiltration and stromal cells in the tumour microenvironment or tumours makes a significant contribution to prognosis.

Methods: During the study, we screened differentially expressed genes (DEGs) of the TCGA database for prognostic genes in the LUAD immune microenvironment. Furthermore, immune and stromal cells were quantified using the ESTIMATE algorithm. To study the effects of immune and stromal cell-associated genes on the prognosis of LUAD, LUAD patients were divided into high and low groups according to their immune/stromal scores. The obtained scores were found to be related to the phenotype and survival rate of LUAD patients. By selecting DEGs with high expression in immune and stromal cells, we performed functional enrichment analysis and found that most genes are associated with pathways of cancer, stimulus response and MAPK signaling. The functions and enriched pathways of LUAD prognostic genes were shown by a protein-protein interaction (PPI) network. Nonetheless, an external database was used to validate the prognostic genes from the TCGA.

Results: Prognostic genes were listed according to their expression position and protein function.

Conclusion: We provided new targets for immunotherapy of LUAD, which further provide basic knowledge for future clinical research.

Keywords: LUAD, ESTIMATE, immune microenvironment, prognostic, seed, oil.

Graphical Abstract

[1]
Hart, I.R.; Fidler, I.J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res., 1980, 40(7), 2281-2287.
[PMID: 7388794]
[2]
Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev., 1989, 8(2), 98-101.
[PMID: 2673568]
[3]
Headley, M.B.; Bins, A.; Nip, A.; Roberts, E.W.; Looney, M.R.; Gerard, A.; Krummel, M.F. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature, 2016, 531(7595), 513-517.
[http://dx.doi.org/10.1038/nature16985] [PMID: 26982733]
[4]
Balza, E.; Carnemolla, B.; Orecchia, P.; Rubartelli, A.; Poggi, A.; Mortara, L. Tumor vasculature targeted TNFα therapy: reversion of microenvironment anergy and enhancement of the anti-tumor efficiency. Curr. Med. Chem., 2020, 27(25), 4233-4248.
[http://dx.doi.org/10.2174/0929867325666180904121118] [PMID: 30182839]
[5]
He, P.; Zhou, W.; Liu, M.; Chen, Y. Recent advances of small molecular regulators targeting g protein- coupled receptors family for oncology immunotherapy. Curr. Top. Med. Chem., 2019, 19(16), 1464-1483.
[http://dx.doi.org/10.2174/1568026619666190628115644] [PMID: 31264549]
[6]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[7]
McGranahan, N.; Furness, A.J.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; Watkins, T.B.; Shafi, S.; Murugaesu, N.; Mitter, R.; Akarca, A.U.; Linares, J.; Marafioti, T.; Henry, J.Y.; Van Allen, E.M.; Miao, D.; Schilling, B.; Schadendorf, D.; Garraway, L.A.; Makarov, V.; Rizvi, N.A.; Snyder, A.; Hellmann, M.D.; Merghoub, T.; Wolchok, J.D.; Shukla, S.A.; Wu, C.J.; Peggs, K.S.; Chan, T.A.; Hadrup, S.R.; Quezada, S.A.; Swanton, C. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 2016, 351(6280), 1463-1469.
[http://dx.doi.org/10.1126/science.aaf1490] [PMID: 26940869]
[8]
Ovarian Tumor Tissue Analysis, C.; Goode, E.L.; Block, M.S.; Kalli, K.R.; Vierkant, R, .A.; Chen, W.; Fogarty, Z.C; GentryMaharaj,, A.; oloczko, A.; Hein, A.; Bouligny, A.L.; Jensen A. Osorio, A.; Hartkopf, A.; Ryan, A.; Chudecka-Glaz, A.; Magliocco, A.M.; Hartmann, A.; Jung A, .Y.; Gao, B.; Hernandez B, .Y.; Fridley, B.L.; McCauley B, .M.; Kennedy C, .J.; Wang, C.; Karpinskyj, C.; de Sousa, C.B.; Tiezzi D, .G.; Wachter D, .L.; Herpel, E.; Taran, F.A.; Modugno, F.; Nelson, G.; Lubinski, J.; Menkiszak, J.; Alsop, J.; Lester, J.; Garcia-Donas, J.; Nation, J.; Hung, J.; Palacios, J.; Rothstein J, .H.; Kelley J, .L.; de Andrade J, .M.; Robles-Diaz, L.; Intermaggio M, .P.; Widschwendter, M.; Beckmann, M.W.; Ruebner, M.; Jimenez-Linan, M.; Singh, N.; Oszurek, O.; Harnett P, .R.; Rambau P, .F.; Sinn, P.; Wagner, P.; Ghatage, P.; Sharma, R.; Edwards, R.P.; Ness, R.B.; Orsulic, S.; Brucker, S.Y.; Johnatty S, .E.; Longacre T, .A.; Ursula, E.; McGuire, V.; Sieh, W.; Natanzon, Y.; Li, Z.; Whittemore, A.S.; Anna, A.; Staebler, A.; Karlan B, .Y.; Gilks, B.; Bowtell, D.D.; Hogdall, E.; Candido dos Reis, F.J.; Steed, H.; Campbell I, .G.; Gronwald, J.; Benitez, J.; Koziak, J.M.; Chang-Claude, J.; Moysich K, .B.; Kelemen L, .E.; Cook, L.S.; Goodman M, .T.; Garcia M, .J.; Fasching P, .A.; Kommoss, S.; Deen, S.; Kjaer S, .K.; Menon, U.; Brenton J, .D.; Pharoah P.D, .P.; ChenevixTrench, G.; Huntsman D, .G.; Winham S, .J.; Kobel, M.; Ramus, S.J Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol, 2017, 3e173290
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[9]
Jia, D.; Li, S.; Li, D.; Xue, H.; Yang, D.; Liu, Y. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging (Albany NY), 2018, 10(4), 592-605.
[PMID: 29676997]
[10]
Mu, L.; Yang, C.; Gao, Q.; Long, Y.; Ge, H.; DeLeon, G.; Jin, L.; Chang, Y.E.; Sayour, E.J.; Ji, J.; Jiang, J.; Kubilis, P.S.; Qi, J.; Gu, Y.; Wang, J.; Song, Y.; Mitchell, D.A.; Lin, Z.; Huang, J. CD4+ and Perivascular Foxp3+ T cells in glioma correlate with angiogenesis and tumor progression. Front. Immunol., 2017, 8, 1451.
[PMID: 29163521]
[11]
Rohban, R.; Prietl, B.; Pieber, T.R. Crosstalk between stem and progenitor cellular mediators with special emphasis on vasculogenesis. Transfus. Med. Hemother., 2017, 44(3), 174-182.
[PMID: 28626368]
[12]
Carter, B.W.; Halpenny, D.F.; Ginsberg, M.S.; Papadimitrakopoulou, V.A.; de Groot, P.M. Immunotherapy in non-small cell lung cancer treatment: current status and the role of imaging. J. Thorac. Imaging, 2017, 32(5), 300-312.
[http://dx.doi.org/10.1097/RTI.0000000000000291] [PMID: 28786858]
[13]
Cukier, P.; Santini, F.C.; Scaranti, M.; Hoff, A.O. Endocrine side effects of cancer immunotherapy. Endocr. Relat. Cancer, 2017, 24(12), T331-T347.
[http://dx.doi.org/10.1530/ERC-17-0358] [PMID: 29025857]
[14]
Larsen, T.V.; Hussmann, D.; Nielsen, A.L. PD-L1 and PD-L2 expression correlated genes in non-small-cell lung cancer. Cancer Commun. (Lond), 2019, 39(1), 30.
[http://dx.doi.org/10.1186/s40880-019-0376-6] [PMID: 31159869]
[15]
Iscaro, A.; Howard, N.F.; Muthana, M. nanoparticles: properties and applications in cancer immunotherapy. Curr. Pharm. Des., 2019, 25(17), 1962-1979.
[http://dx.doi.org/10.2174/1381612825666190708214240] [PMID: 31566122]
[16]
Sholl, L.M. Biomarkers in lung adenocarcinoma: a decade of progress. Arch. Pathol. Lab. Med., 2015, 139(4), 469-480.
[http://dx.doi.org/10.5858/arpa.2014-0128-RA] [PMID: 25255293]
[17]
Dianat-Moghadam, H.; Teimoori-Toolabi, L. Implications of fibroblast growth factors (fgfs) in cancer: from prognostic to therapeutic applications. Curr. Drug Targets, 2019, 20(8), 852-870.
[http://dx.doi.org/10.2174/1389450120666190112145409] [PMID: 30648505]
[18]
Bonanno, L.; Zulato, E.; Pavan, A.; Attili, I.; Pasello, G.; Conte, P.; Indraccolo, S. LKB1 and tumor metabolism: the interplay of immune and angiogenic microenvironment in lung cancer. Int. J. Mol. Sci., 2019, 20(8), 20.
[http://dx.doi.org/10.3390/ijms20081874] [PMID: 30995715]
[19]
Kleczko, E.K.; Kwak, J.W.; Schenk, E.L.; Nemenoff, R.A. Targeting the complement pathway as a therapeutic strategy in lung cancer. Front. Immunol., 2019, 10, 954.
[http://dx.doi.org/10.3389/fimmu.2019.00954] [PMID: 31134065]
[20]
Curry, J.M.; Sprandio, J.; Cognetti, D.; Luginbuhl, A.; Bar-ad, V.; Pribitkin, E.; Tuluc, M. Tumor microenvironment in head and neck squamous cell carcinoma. Semin. Oncol., 2014, 41(2), 217-234.
[http://dx.doi.org/10.1053/j.seminoncol.2014.03.003] [PMID: 24787294]
[21]
Şenbabaoğlu, Y.; Gejman, R.S.; Winer, A.G.; Liu, M.; Van Allen, E.M.; de Velasco, G.; Miao, D.; Ostrovnaya, I.; Drill, E.; Luna, A.; Weinhold, N.; Lee, W.; Manley, B.J.; Khalil, D.N.; Kaffenberger, S.D.; Chen, Y.; Danilova, L.; Voss, M.H.; Coleman, J.A.; Russo, P.; Reuter, V.E.; Chan, T.A.; Cheng, E.H.; Scheinberg, D.A.; Li, M.O.; Choueiri, T.K.; Hsieh, J.J.; Sander, C.; Hakimi, A.A. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol., 2016, 17(1), 231.
[http://dx.doi.org/10.1186/s13059-016-1092-z] [PMID: 27855702]
[22]
Winslow, S.; Lindquist, K.E.; Edsjö, A.; Larsson, C. The expression pattern of matrix-producing tumor stroma is of prognostic importance in breast cancer. BMC Cancer, 2016, 16(1), 841.
[http://dx.doi.org/10.1186/s12885-016-2864-2] [PMID: 27809802]
[23]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4, 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[24]
Shah, N.; Wang, P.; Wongvipat, J.; Karthaus, W.R.; Abida, W.; Armenia, J.; Rockowitz, S.; Drier, Y.; Bernstein, B.E.; Long, H.W.; Freedman, M.L.; Arora, V.K.; Zheng, D.; Sawyers, C.L. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. eLife, 2017, 6, 6.
[http://dx.doi.org/10.7554/eLife.27861] [PMID: 28891793]
[25]
Priedigkeit, N.; Watters, R.J.; Lucas, P.C.; Basudan, A.; Bhargava, R.; Horne, W.; Kolls, J.K.; Fang, Z.; Rosenzweig, M.Q.; Brufsky, A.M.; Weiss, K.R.; Oesterreich, S.; Lee, A.V. Exome-capture RNA sequencing of decade-old breast cancers and matched decalcified bone metastases. JCI Insight, 2017, 2(17), 2.
[PMID: 28878133]
[26]
Alonso, M.H.; Aussó, S.; Lopez-Doriga, A.; Cordero, D.; Guinó, E.; Solé, X.; Barenys, M.; de Oca, J.; Capella, G.; Salazar, R.; Sanz-Pamplona, R.; Moreno, V. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component. Br. J. Cancer, 2017, 117(3), 421-431.
[http://dx.doi.org/10.1038/bjc.2017.208] [PMID: 28683472]
[27]
Varn, F.S.; Tafe, L.J.; Amos, C.I.; Cheng, C. Computational immune profiling in lung adenocarcinoma reveals reproducible prognostic associations with implications for immunotherapy. OncoImmunology, 2018, 7(6)
[http://dx.doi.org/10.1080/2162402X.2018.1431084] [PMID: 29872556]
[28]
Seo, J.S.; Kim, A.; Shin, J.Y.; Kim, Y.T. Comprehensive analysis of the tumor immune micro-environment in non-small cell lung cancer for efficacy of checkpoint inhibitor. Sci. Rep., 2018, 8(1), 14576.
[http://dx.doi.org/10.1038/s41598-018-32855-8] [PMID: 30275546]
[29]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[30]
Pathan, M.; Keerthikumar, S.; Ang, C.S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; Bacic, A.; Hill, A.F.; Stroud, D.A.; Ryan, M.T.; Agbinya, J.I.; Mariadason, J.M.; Burgess, A.W.; Mathivanan, S. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics, 2015, 15(15), 2597-2601.
[http://dx.doi.org/10.1002/pmic.201400515] [PMID: 25921073]
[31]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[32]
Kanehisa, M.; Sato, Y.; Furumichi, M.; Morishima, K.; Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res., 2019, 47(D1), D590-D595.
[http://dx.doi.org/10.1093/nar/gky962] [PMID: 30321428]
[33]
Kanehisa, M.A-O.h.o.o.X. Toward understanding the origin and evolution of cellular organisms. Protein Sci., 2019, 28(11), 1947-1951.
[http://dx.doi.org/10.1002/pro.3715]
[34]
Liu, H.; Xu, Y.; Wang, M.; Hu, K.; Ma, M.; Zhong, W.; Zhang, L.; Zhao, J.; Li, L.; Wang, H. Postoperative survival of patients with stage IIIa non-small cell lung cancer. Zhongguo Fei Ai Za Zhi, 2013, 16(11), 596-602.
[PMID: 24229626]
[35]
Sonoda, D.; Mikubo, M.; Shiomi, K.; Satoh, Y. Complete resection of oligorecurrence of stage i lung adenocarcinoma 19 years after operation. Ann. Thorac. Surg., 2017, 103(2), e119-e120.
[http://dx.doi.org/10.1016/j.athoracsur.2016.07.023] [PMID: 28109367]
[36]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[37]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[38]
Mi, H. Muruganujan, A Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc., 2013, 8(8), 1551-1566.
[http://dx.doi.org/10.1038/nprot.2013.092]
[39]
Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res., 2017, 45(D1), D183-D189.
[http://dx.doi.org/10.1093/nar/gkw1138] [PMID: 27899595]
[40]
Gao, Y.; Kitagawa, K.; Hiramatsu, Y.; Kikuchi, H.; Isobe, T.; Shimada, M.; Uchida, C.; Hattori, T.; Oda, T.; Nakayama, K.; Nakayama, K.I.; Tanaka, T.; Konno, H.; Kitagawa, M. Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis. Cancer Res., 2006, 66(24), 11623-11631.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2629] [PMID: 17178856]
[41]
Bossé, Y.; Sazonova, O.; Gaudreault, N.; Bastien, N.; Conti, M.; Pagé, S.; Trahan, S.; Couture, C.; Joubert, P. Transcriptomic microenvironment of lung adenocarcinoma. Cancer Epidemiol. Biomarkers Prev., 2017, 26(3), 389-396.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0604] [PMID: 27956437]
[42]
Wu, J.; Xie, N.; Xie, K.; Zeng, J.; Cheng, L.; Lei, Y.; Liu, Y.; Song, L.; Dong, D.; Chen, Y.; Zeng, R.; Nice, E.C.; Huang, C.; Wei, Y. GPR48, a poor prognostic factor, promotes tumor metastasis and activates β-catenin/TCF signaling in colorectal cancer. Carcinogenesis, 2013, 34(12), 2861-2869.
[http://dx.doi.org/10.1093/carcin/bgt229] [PMID: 23803691]
[43]
Wang, X.M.; Li, J.; Yan, M.X.; Liu, L.; Jia, D.S.; Geng, Q.; Lin, H.C.; He, X.H.; Li, J.J.; Yao, M. Integrative analyses identify osteopontin, LAMB3 and ITGB1 as critical pro-metastatic genes for lung cancer. PLoS One, 2013, 8(2)e55714
[http://dx.doi.org/10.1371/journal.pone.0055714] [PMID: 23441154]
[44]
Fanjul-Fernandez, M. Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses. J. Biol. Chem., 2018, 293(30), 11970.
[http://dx.doi.org/10.1074/jbc.AAC118.004704] [PMID: 23548910]
[45]
Martin, M.D. Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res., 2008, 68(15), 6251-6259.
[46]
Qu, P.; Du, H.; Wang, X.; Yan, C. Matrix metalloproteinase 12 overexpression in lung epithelial cells plays a key role in emphysema to lung bronchioalveolar adenocarcinoma transition. Cancer Res., 2009, 69(18), 7252-7261.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0577] [PMID: 19706765]
[47]
Zhao, J.; Shi, L.; Zeng, S.; Ma, C.; Xu, W.; Zhang, Z.; Liu, Q.; Zhang, P.; Sun, Y.; Xu, C. Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1. Urol. Oncol., 2018, 36(311), e1-e13.
[http://dx.doi.org/10.1016/j.urolonc.2018.03.001]
[48]
Fang, M.; Li, Y.; Huang, K.; Qi, S.; Zhang, J.; Zgodzinski, W.; Majewski, M.; Wallner, G.; Gozdz, S.; Macek, P.; Kowalik, A.; Pasiarski, M.; Grywalska, E.; Vatan, L.; Nagarsheth, N.; Li, W.; Zhao, L.; Kryczek, I.; Wang, G.; Wang, Z.; Zou, W.; Wang, L. IL33 promotes colon cancer cell stemness via JNK activation and macrophage recruitment. Cancer Res., 2017, 77(10), 2735-2745.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1602] [PMID: 28249897]
[49]
Li, Y.; Xiao, F.; Li, W.; Hu, P.; Xu, R.; Li, J.; Li, G.; Zhu, C. Overexpression of Opa interacting protein 5 increases the progression of liver cancer via BMPR2/JUN/CHEK1/RAC1 dysregulation. Oncol. Rep., 2019, 41(4), 2075-2088.
[http://dx.doi.org/10.3892/or.2019.7006] [PMID: 30816485]
[50]
Yang, X.; Yu, X.; Wei, Y. Lentiviral delivery of novel fusion protein IL12/FasTI for cancer immune/gene therapy. PLoS One, 2018, 13(7)e0201100
[http://dx.doi.org/10.1371/journal.pone.0201100] [PMID: 30044833]
[51]
Singh, S.; Chakrabarti, R. Consequences of EMT-driven changes in the immune microenvironment of breast cancer and therapeutic response of cancer cells. J. Clin. Med., 2019, 8(5), 642.
[http://dx.doi.org/10.3390/jcm8050642] [PMID: 31075939]
[52]
Atanasov, G.; Dino, K.; Schierle, K.; Dietel, C.; Aust, G.; Pratschke, J.; Seehofer, D.; Schmelzle, M.; Hau, H.M. Immunologic cellular characteristics of the tumour microenvironment of hepatocellular carcinoma drive patient outcomes. World J. Surg. Oncol., 2019, 17(1), 97.
[http://dx.doi.org/10.1186/s12957-019-1635-3] [PMID: 31170995]
[53]
Patras, L.; Banciu, M. Intercellular crosstalk via extracellular vesicles in tumor milieu as emerging therapies for cancer progression. Curr. Pharm. Des., 2019, 25(17), 1980-2006.
[http://dx.doi.org/10.2174/1381612825666190701143845] [PMID: 31267855]
[54]
Lambrechts, D.; Wauters, E.; Boeckx, B.; Aibar, S.; Nittner, D.; Burton, O.; Bassez, A.; Decaluwé, H.; Pircher, A.; Van den Eynde, K.; Weynand, B.; Verbeken, E.; De Leyn, P.; Liston, A.; Vansteenkiste, J.; Carmeliet, P.; Aerts, S.; Thienpont, B. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med., 2018, 24(8), 1277-1289.
[http://dx.doi.org/10.1038/s41591-018-0096-5] [PMID: 29988129]
[55]
Mollaoglu, G.; Jones, A.; Wait, S.J.; Mukhopadhyay, A.; Jeong, S.; Arya, R.; Camolotto, S.A.; Mosbruger, T.L.; Stubben, C.J.; Conley, C.J.; Bhutkar, A.; Vahrenkamp, J.M.; Berrett, K.C.; Cessna, M.H.; Lane, T.E.; Witt, B.L.; Salama, M.E.; Gertz, J.; Jones, K.B.; Snyder, E.L.; Oliver, T.G. The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment. Immunity, 2018, 49(4), 764-779.e9.
[http://dx.doi.org/10.1016/j.immuni.2018.09.020] [PMID: 30332632]
[56]
Silver, D.J.; Sinyuk, M.; Vogelbaum, M.A.; Ahluwalia, M.S.; Lathia, J.D. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro-oncol., 2016, 18(2), 153-159.
[http://dx.doi.org/10.1093/neuonc/nov157] [PMID: 26264894]
[57]
Rowe, J.H.; Delmonte, O.M.; Keles, S.; Stadinski, B.D.; Dobbs, A.K.; Henderson, L.A.; Yamazaki, Y.; Allende, L.M.; Bonilla, F.A.; Gonzalez-Granado, L.I.; Celikbilek Celik, S.; Guner, S.N.; Kapakli, H.; Yee, C.; Pai, S.Y.; Huseby, E.S.; Reisli, I.; Regueiro, J.R.; Notarangelo, L.D. Patients with CD3G mutations reveal a role for human CD3γ in Treg diversity and suppressive function. Blood, 2018, 131(21), 2335-2344.
[http://dx.doi.org/10.1182/blood-2018-02-835561] [PMID: 29653965]
[58]
Xu, J.; Li, J.; Xiao, K.; Zou, S.; Yan, P.; Xie, X.; Xie, L. Dynamic changes in human HLA-DRA gene expression and Th cell subsets in sepsis: Indications of immunosuppression and associated outcomes. Scand. J. Immunol., 2019.
[PMID: 31386235]
[59]
Bogen, B.; Fauskanger, M.; Haabeth, O.A.; Tveita, A. CD4+ T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol. Immunother., 2019, 68(11), 1865-1873.
[http://dx.doi.org/10.1007/s00262-019-02374-0] [PMID: 31448380]
[60]
Fugger, L.; Michie, S.A.; Rulifson, I.; Lock, C.B.; McDevitt, G.S. Expression of HLA-DR4 and human CD4 transgenes in mice determines the variable region beta-chain T-cell repertoire and mediates an HLA-DR-restricted immune response. Proc. Natl. Acad. Sci. USA, 1994, 91(13), 6151-6155.
[http://dx.doi.org/10.1073/pnas.91.13.6151] [PMID: 8016129]
[61]
Qian, Q.; Shi, X.; Lei, Z.; Zhan, L.; Liu, R.Y.; Zhao, J.; Yang, B.; Liu, Z.; Zhang, H.T. Methylated +58CpG site decreases DCN mRNA expression and enhances TGF-β/Smad signaling in NSCLC cells with high metastatic potential. Int. J. Oncol., 2014, 44(3), 874-882.
[http://dx.doi.org/10.3892/ijo.2014.2255] [PMID: 24424784]
[62]
Hu, Q.; Myers, M.; Fang, W.; Yao, M.; Brummer, G.; Hawj, J.; Smart, C.; Berkland, C.; Cheng, N. Role of ALDH1A1 and HTRA2 expression in CCL2/CCR2-mediated breast cancer cell growth and invasion. Biol. Open, 2019, 8(7), 8.
[http://dx.doi.org/10.1242/bio.040873] [PMID: 31208996]
[63]
Ashiru, O.; Esteso, G.; García-Cuesta, E.M.; Castellano, E.; Samba, C.; Escudero-López, E.; López-Cobo, S.; Álvarez-Maestro, M.; Linares, A.; Ho, M.M.; Leibar, A.; Martínez-Piñeiro, L.; Valés-Gómez, M. BCG Therapy of bladder cancer stimulates a prolonged release of the chemoattractant CXCL10 (IP10) in patient urine. Cancers (Basel), 2019, 11(7), 11.
[http://dx.doi.org/10.3390/cancers11070940] [PMID: 31277459]
[64]
Zhou, W.; Guo, S.; Liu, M.; Burow, M.E.; Wang, G. Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr. Med. Chem., 2019, 26(17), 3026-3041.
[http://dx.doi.org/10.2174/0929867324666170830111531] [PMID: 28875842]
[65]
Kim, M.J.; Choi, S.K.; Hong, S.H.; Eun, J.W.; Nam, S.W.; Han, J.W.; You, J.S. Oncogenic IL7R is downregulated by histone deacetylase inhibitor in esophageal squamous cell carcinoma via modulation of acetylated FOXO1. Int. J. Oncol., 2018, 53(1), 395-403.
[http://dx.doi.org/10.3892/ijo.2018.4392] [PMID: 29749437]
[66]
Spranger, S.; Sivan, A.; Corrales, L.; Gajewski, T.F. Chapter three - tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv. Immunol., 2016, 75-93.
[67]
Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; Piha-Paul, S.A.; Yearley, J.; Seiwert, T.Y.; Ribas, A.; McClanahan, T.K. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest., 2017, 127(8), 2930-2940.
[http://dx.doi.org/10.1172/JCI91190] [PMID: 28650338]
[68]
Corrales, L.; Matson, V.; Flood, B.; Spranger, S.; Gajewski, T.F. Innate immune signaling and regulation in cancer immunotherapy. Cell Res., 2017, 27(1), 96-108.
[http://dx.doi.org/10.1038/cr.2016.149] [PMID: 27981969]
[69]
Danilova, L.; Wang, H.; Sunshine, J.; Kaunitz, G.J.; Cottrell, T.R.; Xu, H.; Esandrio, J.; Anders, R.A.; Cope, L.; Pardoll, D.M.; Drake, C.G.; Taube, J.M. Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors. Proc. Natl. Acad. Sci. USA, 2016, 113(48), E7769-E7777.
[http://dx.doi.org/10.1073/pnas.1607836113] [PMID: 27837027]
[70]
Ji, R.R.; Chasalow, S.D.; Wang, L.; Hamid, O.; Schmidt, H.; Cogswell, J.; Alaparthy, S.; Berman, D.; Jure-Kunkel, M.; Siemers, N.O.; Jackson, J.R.; Shahabi, V. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother., 2012, 61(7), 1019-1031.
[http://dx.doi.org/10.1007/s00262-011-1172-6] [PMID: 22146893]
[71]
Ngiow, S.F.; Young, A.; Jacquelot, N.; Yamazaki, T.; Enot, D.; Zitvogel, L.; Smyth, M.J. A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res., 2015, 75(18), 3800-3811.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1082] [PMID: 26208901]
[72]
Najar, M.; Fayyad-Kazan, M.; Merimi, M.; Burny, A.; Bron, D.; Fayyad-Kazan, H.; Meuleman, N.; Lagneaux, L. Mesenchymal stromal cells and natural killer cells: a complex story of love and hate. Curr. Stem Cell Res. Ther., 2019, 14(1), 14-21.
[http://dx.doi.org/10.2174/1574888X13666180912125736] [PMID: 30207245]
[73]
Poggi, A.; Zocchi, M.R. Immunomodulatory properties of mesenchymal stromal cells: still unresolved “yin and yang”. Curr. Stem Cell Res. Ther., 2019, 14(4), 344-350.
[http://dx.doi.org/10.2174/1574888X14666181205115452] [PMID: 30516112]
[74]
Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L.; Investigators, K. KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028.
[http://dx.doi.org/10.1056/NEJMoa1501824] [PMID: 25891174]
[75]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[76]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[77]
Qian, J.W.; Wang, C.; Wang, B.; Yang, J.; Wang, Y.D.; Luo, F.F.; Xu, J.Y.; Zhao, C.J.; Liu, R.H.; Chu, Y.W. The IFN-gamma/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J. Neuroinflammation, 2018, 15(1), 290.
[http://dx.doi.org/10.1186/s12974-018-1330-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy