Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Assessment of Anti-inflammatory Activity of 3-Acetylmyricadiol in LPSStimulated Raw 264.7 Macrophages

Author(s): Gazanfar Ahmad, Reyaz Hassan, Neerupma Dhiman* and Asif Ali*

Volume 25, Issue 1, 2022

Published on: 19 March, 2021

Page: [204 - 210] Pages: 7

DOI: 10.2174/1386207324666210319122650

Price: $65

Abstract

Background: Pentacyclic triterpenoids are a biologically active class of phytoconstituents with diverse pharmacological activities, including anti-inflammatory action.

Objective: In the current study, we isolated 3-Acetylmyricadiol, a pentacyclic triterpenoid, from the ethyl acetate bark extract of Myrica esculenta and evaluated it for anti-inflammatory potential.

Methods: The ethyl acetate bark extract of the M. esculenta was subjected to column chromatography to isolate 3-Acetylmyricadiol. MTT assay was performed to check cell viability. The production of proinflammatory mediators like nitric oxide, IL-6, TNF-α were observed after the administration of 5, 10, 20 μM of 3-Acetylmyricadiol in LPS-activated raw 246.7 macrophages by the reported methods.

Results: MTT assay indicated more than 90% cell viability up to 20 μM of 3-Acetylmyricadiol. The administration of 3-Acetylmyricadiol inhibited the production of nitric oxide, IL-6, TNF-α in a dose-dependent manner significantly in comparison to LPS treated cells. The maximum effect was observed at 20 μM of 3-Acetylmyricadiol which resulted in 52.37, 63.10, and 55.37 % inhibition of nitric oxide, IL-6, and TNF-α, respectively.

Conclusion: Our study demonstrated the anti-inflammatory action of 3-Acetylmyricadiol and can serve as a potential candidate in the development of the clinically efficient anti-inflammatory molecule.

Keywords: 3-Acetylmyricadiol, inflammation, nitric oxide, IL-6, TNF-α, raw 264.7 macrophages.

Graphical Abstract

[1]
Kumar, D. Molecular biology of acute and chronic inflammation. Clinical Molecular Medicine; Elsevier, 2020, pp. 389-402.
[http://dx.doi.org/10.1016/B978-0-12-809356-6.00022-8]
[2]
Chazaud, B. Inflammation and skeletal muscle regeneration: leave it to the macrophages! Trends Immunol., 2020, 41(6), 481-492.
[http://dx.doi.org/10.1016/j.it.2020.04.006] [PMID: 32362490]
[3]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[4]
Janssen, W.J.; Henson, P.M. Cellular regulation of the inflammatory response. Toxicol. Pathol., 2012, 40(2), 166-173.
[http://dx.doi.org/10.1177/0192623311428477] [PMID: 22089838]
[5]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[6]
Tsuchida, Y.; Fujio, K. Cytokines and chemokines. Mosaic of Autoimmunity; Elsevier, 2019, pp. 127-141.
[http://dx.doi.org/10.1016/B978-0-12-814307-0.00015-3]
[7]
Zhang, J-M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[8]
Shachar, I.; Karin, N. The dual roles of inflammatory cytokines and chemokines in the regulation of autoimmune diseases and their clinical implications. J. Leukoc. Biol., 2013, 93(1), 51-61.
[http://dx.doi.org/10.1189/jlb.0612293] [PMID: 22949334]
[9]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[10]
Hunter, L.J.; Wood, D.M.; Dargan, P.I. The patterns of toxicity and management of acute nonsteroidal anti-inflammatory drug (NSAID) overdose. Open Access Emerg. Med., 2011, 3, 39-48.
[http://dx.doi.org/10.2147/OAEM.S22795] [PMID: 27147851]
[11]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24(2), 121-132.
[http://dx.doi.org/10.1016/j.bpg.2009.11.005] [PMID: 20227026]
[12]
White, W.B. Cardiovascular risk, hypertension, and NSAIDs. Curr. Rheumatol. Rep., 2007, 9(1), 36-43.
[http://dx.doi.org/10.1007/s11926-007-0020-3] [PMID: 17437665]
[13]
Varga, Z.S.; Sabzwari, A.; Vargova, V. Cardiovascular risk of nonsteroidal anti-inflammatory drugs: an under-recognized public health issue. Cureus, 2017, 9(4), e1144.
[14]
Bello, A.E.; Holt, R.J. Cardiovascular risk with non-steroidal anti-inflammatory drugs: clinical implications. Drug Saf., 2014, 37(11), 897-902.
[http://dx.doi.org/10.1007/s40264-014-0207-2] [PMID: 25079141]
[15]
Barnes, P.J. Corticosteroids: The drugs to beat. Eur. J. Pharmacol., 2006, 533(1-3), 2-14.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.052] [PMID: 16436275]
[16]
Yasir, M.; Sonthalia, S. Corticosteroid adverse effects., 2019.
[17]
Calixto, J.B.; Campos, M.M.; Otuki, M.F.; Santos, A.R.S. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med., 2004, 70(2), 93-103.
[http://dx.doi.org/10.1055/s-2004-815483] [PMID: 14994184]
[18]
Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res., 2018, 67(1), 67-75.
[http://dx.doi.org/10.1007/s00011-017-1096-5] [PMID: 28956064]
[19]
Kabra, A.; Martins, N.; Sharma, R.; Kabra, R.; Baghel, U.S. Myrica esculenta Buch.-Ham. ex D. Don: A natural source for health promotion and disease prevention. Plants (Basel), 2019, 8(6), 149.
[http://dx.doi.org/10.3390/plants8060149] [PMID: 31159283]
[20]
Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel), 2010, 2(10), 2428-2466.
[http://dx.doi.org/10.3390/toxins2102428] [PMID: 22069560]
[21]
Safayhi, H.; Sailer, E-R. Anti-inflammatory actions of pentacyclic triterpenes. Planta Med., 1997, 63(6), 487-493.
[http://dx.doi.org/10.1055/s-2006-957748] [PMID: 9434597]
[22]
Banerjee, S. Pharmacological property of pentacyclic triterpenoids. Egypt. J. Chem., 2019, 62(1), 13-35.
[http://dx.doi.org/10.21608/ejchem.2019.16055.1975]
[23]
Khajuria, V.; Gupta, S.; Sharma, N.; Kumar, A.; Lone, N.A.; Khullar, M.; Dutt, P.; Sharma, P.R.; Bhagat, A.; Ahmed, Z. Anti-inflammatory potential of hentriacontane in LPS stimulated RAW 264.7 cells and mice model. Biomed. Pharmacother., 2017, 92, 175-186.
[http://dx.doi.org/10.1016/j.biopha.2017.05.063] [PMID: 28549290]
[24]
Khajuria, V.; Gupta, S.; Bhagat, A.; Ahmed, Z. In-vitro assessment of cytotoxicity, antioxidant and anti-inflammatory activities of Ficus palmata. J. Herb. Med., 2018, 13, 71-75.
[http://dx.doi.org/10.1016/j.hermed.2017.12.001]
[25]
Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol., 2001, 1(8), 1397-1406.
[http://dx.doi.org/10.1016/S1567-5769(01)00086-8] [PMID: 11515807]
[26]
Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 2007, 15(6), 252-259.
[http://dx.doi.org/10.1007/s10787-007-0013-x] [PMID: 18236016]
[27]
Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014
[28]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[29]
Luo, Y.; Zheng, S.G. Hall of fame among pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. Front. Immunol., 2016, 7, 604.
[http://dx.doi.org/10.3389/fimmu.2016.00604] [PMID: 28066415]
[30]
Bradley, J.R. TNF-mediated inflammatory disease. J. Pathol., 2008, 214(2), 149-160.
[http://dx.doi.org/10.1002/path.2287] [PMID: 18161752]
[31]
Zelová, H.; Hošek, J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm. Res., 2013, 62(7), 641-651.
[http://dx.doi.org/10.1007/s00011-013-0633-0] [PMID: 23685857]
[32]
Middha, S.K.; Usha, T.; Babu, D.; Misra, A.K.; Lokesh, P.; Goyal, A.K. Evaluation of antioxidative, analgesic and anti-inflammatory activities of methanolic extract of Myrica nagi leaves-an animal model approach. Symbiosis, 2016, 70(1–3), 179-184.
[http://dx.doi.org/10.1007/s13199-016-0422-y]
[33]
Patel, T.; Dudhpejiya, A.; Sheath, N. Anti inflammatory activity of Myrica nagi Linn. Bark. Anc. Sci. Life, 2011, 30(4), 100-103.
[PMID: 22557437]
[34]
Patel, M.K.; Shah, A.; Patel, M.M. Analgesic and anti-inflammatory activity of ethanolic extract of stem bark of Myrica nagi (T.). World J. Pharm. Res., 2017, 6(4), 844-857.
[http://dx.doi.org/10.20959/wjpr20174-7734]
[35]
Agnihotri, S.; Wakode, S.; Ali, M. Essential oil of Myrica esculenta Buch. Ham.: composition, antimicrobial and topical anti-inflammatory activities. Nat. Prod. Res., 2012, 26(23), 2266-2269.
[http://dx.doi.org/10.1080/14786419.2011.652959] [PMID: 22260222]
[36]
Wang, J.; Dong, S.; Wang, Y.; Lu, Q.; Zhong, H.; Du, G.; Zhang, L.; Cheng, Y. Cyclic diarylheptanoids from Myrica nana inhibiting nitric oxide release. Bioorg. Med. Chem., 2008, 16(18), 8510-8515.
[http://dx.doi.org/10.1016/j.bmc.2008.08.020] [PMID: 18723353]
[37]
Middha, S.K. In silico exploration of cyclooxygenase inhibitory activity of natural compounds found in Myrica nagi using LC-MS. Symbiosis, 2016, 70(1–3), 169-178.
[http://dx.doi.org/10.1007/s13199-016-0417-8]
[38]
Li, F.; Cao, Y.; Luo, Y.; Liu, T.; Yan, G.; Chen, L.; Ji, L.; Wang, L.; Chen, B.; Yaseen, A.; Khan, A.A.; Zhang, G.; Jiang, Y.; Liu, J.; Wang, G.; Wang, M.K.; Hu, W. Two new triterpenoid saponins derived from the leaves of Panax ginseng and their antiinflammatory activity. J. Ginseng Res., 2019, 43(4), 600-605.
[http://dx.doi.org/10.1016/j.jgr.2018.09.004] [PMID: 31695566]
[39]
Khajuria, V.; Gupta, S.; Sharma, N.; Tiwari, H.; Bhardwaj, S.; Dutt, P.; Satti, N.; Nargotra, A.; Bhagat, A.; Ahmed, Z. Kaempferol-3-o-β-d-glucuronate exhibit potential anti-inflammatory effect in LPS stimulated RAW 264.7 cells and mice model. Int. Immunopharmacol., 2018, 57, 62-71.
[http://dx.doi.org/10.1016/j.intimp.2018.01.041] [PMID: 29475097]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy