Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Concise Review; Effects of Antibiotics and Antimycotics on the Biological Properties of Human Pluripotent and Multipotent Stem Cells

Author(s): Maryam Farzaneh*

Volume 16, Issue 4, 2021

Published on: 03 December, 2020

Page: [400 - 405] Pages: 6

DOI: 10.2174/1574888X16999201203214425

Price: $65

Abstract

Human Pluripotent Stem Cells (PSCs), including Embryonic Stem Cells (ESCs) and induced Pluripotent Stem Cells (iPSCs), have the remarkable potential to self-renew and develop into various cell lineages. Human Mesenchymal Stem Cells (MSCs) or multipotent stem cells that are present in various organs can self-renew and differentiate into multiple mesenchymal lineages. Both human PSCs and MSCs hold great promise in cell-based therapies, disease modeling, drug discovery, and regenerative medicine. Human stem cells must be cultured under the optimal conditions to use them in transplantology. Therefore, researchers must ensure the sterility of human stem cell lines. Bacterial contamination is a common problem in laboratories and major precautions are required to detect the types of microorganisms, and to eliminate and prevent contamination in cell cultures. Stem cell culture media usually contain antibiotics and antimycotics such as penicillin- streptomycin (pen-strep), gentamicin, and amphotericin B (AmB) to avoid bacterial, fungal, and yeast contaminants. Numerous publications recognized the serious effect of antibiotics and antimycotics on in vitro properties of human stem cells, including proliferation, differentiation, survival, and genetic instability. This review study aimed to understand the impact of routinely used antibiotics and antimycotics such as pen-strep, gentamicin, and AmB on viability, proliferation, and functional properties (differentiation and pluripotency) of human PSCs and MSCs.

Keywords: Human pluripotent stem cells, mesenchymal stem cells, antibiotics, antimycotics, penicillin, streptomycin, gentamicin, amphotericin B.

[1]
Mahmood A, Ali S. Microbial and viral contamination of animal and stem cell cultures: common contaminants, detection and elimination. J Stem Cell Res Ther 2017; 2: 00078.
[2]
Wang M-C, Fan-Chiang M-H, Lin H-T, Lin C-Y. Methods for culturing human embryonic stem cells. Google Patents 2011. EP3196296A1
[3]
O’Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43(2): 162-80.
[http://dx.doi.org/10.1093/femsre/fuz003] [PMID: 30649285]
[4]
Harrison MA, Rae IF. General techniques of cell culture. Cambridge, UK: Cambridge University Press 1997.
[http://dx.doi.org/10.1017/CBO9780511623226]
[5]
Davis JM. Animal cell culture: essential methods. NJ. USA: John Wiley & Sons 2011.
[http://dx.doi.org/10.1002/9780470669815]
[6]
Sanders ER. Aseptic laboratory techniques: volume transfers with serological pipettes and micropipettors. J Vis Exp 2012; 63: 2754.
[http://dx.doi.org/10.3791/2754] [PMID: 22688118]
[7]
Pessina A, Bonomi A, Baglio C, et al. Microbiological risk assessment in stem cell manipulation. Crit Rev Microbiol 2008; 34(1): 1-12.
[http://dx.doi.org/10.1080/10408410701683599] [PMID: 18259977]
[8]
Varghese DS, Parween S, Ardah MT, Emerald BS, Ansari SA. Effects of aminoglycoside antibiotics on human embryonic stem cell viability during differentiation in vitro. Stem Cells Int 2017; 2017: 2451927.
[http://dx.doi.org/10.1155/2017/2451927] [PMID: 29147115]
[9]
Cobo F, Stacey GN, Hunt C, et al. Microbiological control in stem cell banks: approaches to standardisation. Appl Microbiol Biotechnol 2005; 68(4): 456-66.
[http://dx.doi.org/10.1007/s00253-005-0062-2] [PMID: 16012832]
[10]
Inamdar MS, Healy L, Sinha A, Stacey G. Global solutions to the challenges of setting up and managing a stem cell laboratory. Stem Cell Reviews and Reports 2012; 8(3): 830-43.
[http://dx.doi.org/10.1007/s12015-011-9326-7] [PMID: 22038333]
[11]
Stacey G. Banking stem cells for research and clinical applications. Prog Brain Res 2012; 200: 41-58.
[http://dx.doi.org/10.1016/B978-0-444-59575-1.00003-X]
[12]
Pamies D, Bal-Price A, Simeonov A, et al. Good Cell Culture Practice for stem cells and stem-cell-derived models. ALTEX 2017; 34(1): 95-132.
[PMID: 27554434]
[13]
Klein MA, Kadidlo D, McCullough J, McKenna DH, Burns LJ. Microbial contamination of hematopoietic stem cell products: incidence and clinical sequelae. Biol Blood Marrow Transplant 2006; 12(11): 1142-9.
[http://dx.doi.org/10.1016/j.bbmt.2006.06.011] [PMID: 17085307]
[14]
Chernov VM, Chernova OA, Sanchez-Vega JT, Kolpakov AI, Ilinskaya ON. Mycoplasma contamination of cell cultures: vesicular traffic in bacteria and control over infectious agents. Acta Naturae 2014; 6(3): 41-51.
[http://dx.doi.org/10.32607/20758251-2014-6-3-41-51] [PMID: 25349713]
[15]
Rottem S, Kosower NS, Kornspan JD. Contamination of tissue cultures by mycoplasmas Biomedical tissue culture 2012; 17: 35-8.
[16]
Patrikoski M, Rajala K, Miettinen S. Safety, efficacy, and regulation of mesenchymal stromal/stem cells. In: Seppänen-Kaijansinkko R, Ed Tissue engineering in oral and maxillofacial surgery. Heidelberg, Germany: Springer 2019; pp. 141-57.
[http://dx.doi.org/10.1007/978-3-030-24517-7_10]
[17]
Moon B-S, Choi JK. The effect of plasmocin on the pluripotency of mycoplasma-infected embryonic stem cells. J Biomater Tissue Eng 2019; 9: 562-5.
[http://dx.doi.org/10.1166/jbt.2019.2019]
[18]
Gedye C, Cardwell T, Dimopoulos N, et al. Mycoplasma infection alters cancer stem cell properties in vitro Stem cell reviews and reports 2016; 12: 156-61.
[19]
Mirjalili A, Parmoor E, Moradi Bidhendi S, Sarkari B. Microbial contamination of cell cultures: a 2 years study. Biologicals 2005; 33(2): 81-5.
[http://dx.doi.org/10.1016/j.biologicals.2005.01.004] [PMID: 15939285]
[20]
Llobet L, Montoya J, López-Gallardo E, Ruiz-Pesini E. Side effects of culture media antibiotics on cell differentiation. Tissue Eng Part C Methods 2015; 21(11): 1143-7.
[http://dx.doi.org/10.1089/ten.tec.2015.0062] [PMID: 26037505]
[21]
Vierck JL, Byrne K, Mir PS, Dodson MV. Ten commandments for preventing contamination of primary cell cultures. Methods Cell Sci 2000; 22(1): 33-41.
[http://dx.doi.org/10.1023/A:1009826012986] [PMID: 10650333]
[22]
Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 2009; 4(1): 102-6.
[http://dx.doi.org/10.1038/nprot.2008.221] [PMID: 19131962]
[23]
Lemeire K, Van Merris V, Cortvrindt R. The antibiotic streptomycin assessed in a battery of in vitro tests for reproductive toxicology.Toxicol In Vitro 2007; 21(7): 1348-53.
[http://dx.doi.org/10.1016/j.tiv.2007.05.004] [PMID: 17596909]
[24]
Zhu Z, Schnell L, Müller B, Müller M, Papatheodorou P, Barth H. The antibiotic bacitracin protects human intestinal epithelial cells and stem cell-derived intestinal organoids from Clostridium difficile toxin TcdB. Stem Cells Int 2019; 2019: 4149762.
[http://dx.doi.org/10.1155/2019/4149762] [PMID: 31467562]
[25]
Betancourt A. Induction medium and methods for stem cell culture and therapy. World Patent WO2016053758, 2019.
[26]
Cohen S, Samadikuchaksaraei A, Polak JM, Bishop AE. Antibiotics reduce the growth rate and differentiation of embryonic stem cell cultures. Tissue Eng 2006; 12(7): 2025-30.
[http://dx.doi.org/10.1089/ten.2006.12.2025] [PMID: 16889530]
[27]
Moghadasali R, Mutsaers HA, Azarnia M, et al. Mesenchymal stem cell-conditioned medium accelerates regeneration of human renal proximal tubule epithelial cells after gentamicin toxicity. Exp Toxicol Pathol 2013; 65(5): 595-600.
[http://dx.doi.org/10.1016/j.etp.2012.06.002] [PMID: 22727565]
[28]
Schwarze PE, Seglen PO. Effects of antibiotics on protein synthesis and degradation in primary cultures of rat hepatocytes. In Vitro 1981; 17(1): 71-6.
[http://dx.doi.org/10.1007/BF02618033] [PMID: 7216241]
[29]
Goldstein AL, Johnson PR. Primary culture of adipoblasts from obese and lean Zucker rat adipose tissue. Metabolism 1982; 31(6): 601-7.
[http://dx.doi.org/10.1016/0026-0495(82)90099-3] [PMID: 7078434]
[30]
Martínez-Liarte JH, Solano F, Lozano JA. Effect of penicillin-streptomycin and other antibiotics on melanogenic parameters in cultured B16/F10 melanoma cells. Pigment Cell Res 1995; 8(2): 83-8.
[http://dx.doi.org/10.1111/j.1600-0749.1995.tb00646.x] [PMID: 7659681]
[31]
Skubis A, Gola J, Sikora B, et al. Impact of antibiotics on the proliferation and differentiation of human adipose-derived mesenchymal stem cells. Int J Mol Sci 2017; 18(12): 2522.
[http://dx.doi.org/10.3390/ijms18122522] [PMID: 29186789]
[32]
Ryu AH, Eckalbar WL, Kreimer A, Yosef N, Ahituv N. Use antibiotics in cell culture with caution: genome-wide identification of antibiotic-induced changes in gene expression and regulation. Sci Rep 2017; 7(1): 7533-3.
[http://dx.doi.org/10.1038/s41598-017-07757-w] [PMID: 28790348]
[33]
Lotfi R, Rojewski MT, Zeplin PH, et al. Validation of microbiological testing of cellular medicinal products containing antibiotics. Transfus Med Hemother 2020; 47(2): 144-51.
[http://dx.doi.org/10.1159/000501284] [PMID: 32355474]
[34]
Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Curr Stem Cell Res Ther 2019; 14(3): 278-89.
[http://dx.doi.org/10.2174/1574888X14666190123162402] [PMID: 30674265]
[35]
Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK signaling pathways as a new strategy to provide rodent and non-rodent pluripotent stem cells. Curr Stem Cell Res Ther 2019; 14(6): 466-73.
[http://dx.doi.org/10.2174/1871527318666190314110529] [PMID: 30868962]
[36]
Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Curr Stem Cell Res Ther 2020; 15(2): 102-10.
[http://dx.doi.org/10.2174/1574888X14666190823142911] [PMID: 31441732]
[37]
Shi J, Farzaneh M, Khoshnam SE. Yes-associated protein and PDZ binding motif: a critical signaling pathway in the control of human pluripotent stem cells self-renewal and differentiation. Cell Reprogram 2020; 22(2): 55-61.
[http://dx.doi.org/10.1089/cell.2019.0084] [PMID: 32125897]
[38]
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human mesenchymal stem cells for spinal cord injury. Curr Stem Cell Res Ther 2020; 15(4): 340-8.
[http://dx.doi.org/10.2174/1574888X15666200316164051] [PMID: 32178619]
[39]
Wang G, Farzaneh M. Mini review; differentiation of human pluripotent stem cells into oocytes. Curr Stem Cell Res Ther 2020; 15(4): 301-7.
[http://dx.doi.org/10.2174/1574888X15666200116100121] [PMID: 31951188]
[40]
Zhao Y, Liu H, Zhao C, Dang P, Li H, Farzaneh M. Paracrine interactions involved in human induced pluripotent stem cells differentiation into chondrocytes. Curr Stem Cell Res Ther 2020; 15(3): 233-42.
[http://dx.doi.org/10.2174/1574888X15666191224122058] [PMID: 31889496]
[41]
Farzaneh M, Anbiyaiee A, Khoshnam SE. Human pluripotent stem cells for spinal cord injury. Curr Stem Cell Res Ther 2020; 15(2): 135-43.
[http://dx.doi.org/10.2174/1574362414666191018121658] [PMID: 31656156]
[42]
Plusa B, Hadjantonakis A-K. Embryonic stem cell identity grounded in the embryo. Nat Cell Biol 2014; 16(6): 502-4.
[http://dx.doi.org/10.1038/ncb2984] [PMID: 24875737]
[43]
Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 2014; 16(6): 516-28.
[http://dx.doi.org/10.1038/ncb2965] [PMID: 24859004]
[44]
Kim JS, Choi HW, Choi S, Do JT. Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 2011; 4(1): 1-8.
[http://dx.doi.org/10.15283/ijsc.2011.4.1.1] [PMID: 24298328]
[45]
Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10(1): 341.
[http://dx.doi.org/10.1186/s13287-019-1455-y] [PMID: 31753034]
[46]
Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther 2019; 14(1): 9-13.
[http://dx.doi.org/10.2174/1574888X13666180821160421] [PMID: 30152289]
[47]
Steens J, Klein D. Current strategies to generate human mesenchymal stem cells in vitro. Stem Cells Int 2018; 2018: 6726185.
[http://dx.doi.org/10.1155/2018/6726185] [PMID: 30224922]
[48]
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 2017; 6(12): 2173-85.
[http://dx.doi.org/10.1002/sctm.17-0129] [PMID: 29076267]
[49]
Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem 2017; 59: 244-54.
[http://dx.doi.org/10.1016/j.procbio.2016.09.032]
[50]
Zhou W, Nelson ED, Abu Rmilah AA, Amiot BP, Nyberg SL. Stem Cell-Related Studies and Stem Cell-Based Therapies in Liver Diseases. Cell Transplant 2019; 28(9-10): 1116-22.
[http://dx.doi.org/10.1177/0963689719859262] [PMID: 31240944]
[51]
Miranda CC, Cabral JM. Organoids for cell therapy and drug discovery.Precision Medicine for Investigators, Practitioners and Providers. Elsevier 2020; pp. 461-71.
[http://dx.doi.org/10.1016/B978-0-12-819178-1.00045-9]
[52]
Pan B, Fan G. Stem cell-based treatment of kidney diseases. Exp Biol Med (Maywood) 2020; 245(10): 902-10.
[http://dx.doi.org/10.1177/1535370220915901] [PMID: 32281411]
[53]
Nikfarjam L, Farzaneh P. Prevention and detection of Mycoplasma contamination in cell culture. Cell J 2012; 13(4): 203-12.
[PMID: 23508237]
[54]
Wang Y, Han ZB, Song YP, Han ZC. Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012; 2012: 652034.
[http://dx.doi.org/10.1155/2012/652034] [PMID: 22685475]
[55]
Goralczyk A, van Vijven M, Koch M, et al. TRP channels in brown and white adipogenesis from human progenitors: new therapeutic targets and the caveats associated with the common antibiotic, streptomycin. FASEB J 2017; 31(8): 3251-66.
[http://dx.doi.org/10.1096/fj.201601081RR] [PMID: 28416581]
[56]
Kagiwada H, Fukuchi T, Machida H, Yamashita K, Ohgushi H. Effect of gentamicin on growth and differentiation of human mesenchymal stem cells. J Toxicol Pathol 2008; 21: 61-7.
[http://dx.doi.org/10.1293/tox.21.61]
[57]
Lam RS, Töpfer FM, Wood PG, Busskamp V, Bamberg E. Functional maturation of human stem cell-derived neurons in long-term cultures. PLoS One 2017; 12(1): e0169506.
[http://dx.doi.org/10.1371/journal.pone.0169506] [PMID: 28052116]
[58]
Balsalobre L, Blanco A, Alarcón T. Lactams, Antibiotic Drug Resistance 2019; pp. 57-72.
[59]
Hermann T. Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci 2007; 64(14): 1841-52.
[http://dx.doi.org/10.1007/s00018-007-7034-x] [PMID: 17447006]
[60]
Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med 2016; 6(6): a027029.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[61]
Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 2013; 73(9): 919-34.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[62]
Hyun S-W, Kim B-R, Lin D, Hyun S-A, Yoon SS, Seo J-W. The effects of gentamicin and penicillin/streptomycin on the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes in manual patch clamp and multi-electrode array system. J Pharmacol Toxicol Methods 2018; 91: 1-6.
[http://dx.doi.org/10.1016/j.vascn.2017.12.002] [PMID: 29288713]
[63]
Li H, Yue B. Effects of various antimicrobial agents on multi-directional differentiation potential of bone marrow-derived mesenchymal stem cells. World J Stem Cells 2019; 11(6): 322-36.
[http://dx.doi.org/10.4252/wjsc.v11.i6.322] [PMID: 31293715]
[64]
Chang Y, Goldberg VM, Caplan AI. Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells. Clin Orthop Relat Res 2006; 452: 242-9.
[http://dx.doi.org/10.1097/01.blo.0000229324.75911.c7] [PMID: 16906089]
[65]
Pountos I, Georgouli T, Henshaw K, Howard B, Giannoudis PV. Mesenchymal stem cell physiology can be affected by antibiotics: an in vitro study. Cell Mol Biol 2014; 60(4): 1-7.
[PMID: 25350512]
[66]
Safdar A, Ma J, Saliba F, et al. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine (Baltimore) 2010; 89(4): 236-44.
[http://dx.doi.org/10.1097/MD.0b013e3181e9441b] [PMID: 20616663]
[67]
Huang W-J, Liu J-J, Zhou J-Y, Hong J-X, Li Q, Han J-L. Cultivation and differentiation of human umbilical cord-derived mesenchymal stem cells treated with amphotericin B Symbol. Zhongguo Zu Zhi Gong Cheng Yan Jiu Yu Lin Chuang Kang Fu 2014; 18: 4479-84.
[68]
Nikfarjam L, Farzaneh P. Prevention and detection of Mycoplasma contamination in cell culture. Cell Journal (Yakhteh) 2012; 13(4): 203-12.
[PMID: 23508237]
[69]
van der Valk J, Brunner D, De Smet K, et al. Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 2010; 24(4): 1053-63.
[http://dx.doi.org/10.1016/j.tiv.2010.03.016] [PMID: 20362047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy