[1]
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Me 2020; 328(8): 727-33.
[2]
Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research 2020; 7(1): 1-10.
[3]
Yin Y, Wunderink RGJR. MERS, SARS and other coronaviruses as causes of pneumonia. 2018; 23(2): 130-7.
[5]
Golchin A, Seyedjafari E, Ardeshirylajimi AJSCR. Reports. Mesenchymal stem cell therapy for Covid-19: Present or future. Stem Cell Rev Rep 2020; 16(3): 427-33.
[6]
Kaye RJJPP. Overview of stem cell therapy for acute respiratory distress syndrome with focus on covid 19. Pain Physician 2020; 23(4S): S421-32.
[7]
Shetty AKJA. Mesenchymal stem cell infusion shows promise for combating Coronavirus (COVID-19)-induced pneumonia. Aging Dis 2020; 11(2): 462-64.
[8]
Basiri A, Pazhouhnia Z, Beheshtizadeh N, Hoseinpour M, Saghazadeh A, et al. Regenerative medicine in COVID-19 treatment: Real opportunities and range of promises 2020. Stem Cell Rev Rep 2021; 17(1): 163-75.
[9]
Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[10]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China 2020; 395(10223): 495-506.
[13]
Zou X, Chen K, Zou J, Han P, Hao J. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14(2): 185-92.
[14]
Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. biorxiv 2020.
[15]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.
[16]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020; 71(15): 762-8.
[17]
Shi Y, Tan M, Chen X, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou. Immunology 2020; 160(3): 261-8.
[19]
Abbaspanah B, Momeni M, Ebrahimi M. Advances in perinatal stem cells research: A precious cell source for clinical applications. Regen Med 2018; 13(5): 595-610.
[20]
Wang M, Yuan Q. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 3057624.
[21]
Caplan AI. Mesenchymal stem cells: Time to change the name! Stem Cells Transl Med 2017; 6(6): 1445-51.
[24]
Mancuso P, Raman S, Glynn A, Barry F. Mesenchymal stem cell therapy for osteoarthritis: The critical role of the cell secretome 2. Front Bioeng Biotechnol 2019; 7: 9.
[31]
Xiang J-F. Effect of human umbilical cord mesenchymal stem cells on immune reconstruction of acute lymphoblastic leukemia children undergoing allogeneic hematopoietic stem cell transplantation. Chinese J Tissue Eng Res 2017; 21(29): 4679-84.
[32]
Reyhani S, Abbaspanah B, Mousavi SHJRM. Umbilical cord-derived mesenchymal stem cells in neurodegenerative disorders: From literature to clinical practice. Regen Med 2020; 15(4): 1561-78.
[33]
Prockop DJJSc. Concise review: Two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. 2013; 31(10): 2042-6.
[34]
Wang Y, Chen X, Cao W. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 2014; 15(11): 1009-16.
[35]
Kean TJ, Lin P, Caplan AI. Dennis JEJSci. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013; 2013: 732742.
[37]
Bernardo ME. Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell 2013; 13(4): 392-402.
[39]
Zhu Y, Chen X, Yang X. Stem cells in lung repair and regeneration: Current applications and future promise J Cell Physiol 2018; 233(10): 6414-24.
[40]
Bari E, Ferrarotti I, Torre ML, Corsico AG. Mesenchymal stem/stromal cell secretome for lung regeneration: The long way through “pharmaceuticalization” for the best
formulation J Control Release 2019; 309: 11-24.
[41]
Ayala-Cuellar AP, Kang J-H, Jeung E-B, Choi K-CJB. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation Biomol Ther (Seoul) 2019; 27(1): 25.
[42]
Zanoni M, Cortesi M, Zamagni A. The role of mesenchymal stem cells in radiation-induced lung fibrosis 2019; 20(16): 3876.
[43]
Savukinas UB, Enes SR, Sjöland AA. Concise review: The Bystander Effect: Mesenchymal stem cell-mediated lung repair. Stem Cells 2016; 34(6): 1437-44.
[45]
Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria Am J Respir Crit Care Med 2013; 187(7): 751-60.
[46]
Nagamura-Inoue T. He HJWjosc. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility World J Stem Cells 2014; 6(2): 195.
[48]
Meng F, Xu R, Wang S, Xu Z, Zhang C, Li Y. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial Signal Transduct Target Ther 2020; 5(1): 1-7.
[49]
Tian X, Woll PS, Morris JK, Linehan JL, Kaufman DS. Hematopoietic engraftment of human embryonic stem cell‐derived cells is regulated by recipient innate immunity Stem Cells 2006; 24(5): 1370-80.
[51]
Hess DC, Sila CA, Furlan AJ, Wechsler LR, Switzer JA. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke Int J Stroke 2014; 9(3): 381-6.
[52]
Mousavi SH, Zarrabi M, Abroun S, Ahmadipanah M. Umbilical cord blood quality and quantity: Collection up to transplantation. Asian J Transfus Sci 2019; 13(2): 79.
[53]
Copelan EAJNEJoM. Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354(17): 1813-26.
[54]
Zhao YJCdr. Stem cell educator therapy and induction of immune balance. Curr Diab Rep 2012; 12(5): 517-23.
[55]
Hinrichs CS. Restifo NP. Reassessing target antigens for adoptive T-cell therapy. Nat Biotechnol 2013; 31(11): 999-1008.
[58]
Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F. Treatment with convalescent plasma for COVID‐19 patients in Wuhan. J Med Virol 2020; 10: 1890-901.
[59]
Abolghasemi H, Eshghi P, Cheraghali AM, Fooladi AAI, Moghaddam FB, Imanizadeh S. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apher Sci 2020; 102875.
[60]
Casadevall A, Joyner MJ. SARS-CoV-2 viral load and antibody responses: The case for convalescent plasma therapy. J Clin Invest 2020; 130(10): 5112-4.
[61]
Hu Y, Yin ETS, Yang Y, Wu H, Wei G, Su J. CAR T-cell treatment during the COVID-19, pandemic: management strategies and challenges. Curr Res Transl Med 2020; 68(3): 111-8.
[62]
Miliotou AN. Papadopoulou LCJCpb. CAR T-cell therapy: A new era in cancer immunotherapy. Curr Pharm Biotechnol 19(1): 5-18.
[63]
Zhang J, Basher F. Wu. NKG2D ligands in tumor immunity: Two sides of a coin. Front Immunol 2015; 6: 97.
[65]
Andoniou C, Coudert JD, Degli-Esposti MJ. Cross talk between NK cells and adaptive immune cells. 2008;38(11):2938-42. Eur J Immunol 2008; 38(11): 2938-42.
[66]
Schuster IS, Coudert JD, Andoniou CE. Natural regulators”: NK cells as modulators of T cell immunity Front Immunol 2016; 235.
[68]
Haanen JB, Cerundolo VJC. NKG2A, a new kid on the immune checkpoint block Cell 2018; 175(7): 1720-2.
[69]
Chen X, Ling J, Mo P, Zhang Y, Jiang Q, Ma Z, et al. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients. MedRxiv 2020.
[70]
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D. Exhaustion of antiviral lymphocytes in COVID-19 patients 10. Cellular Mol Immunol 2020; 17(5): 533-5.