Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

XIST: A Meaningful Long Noncoding RNA in NSCLC Process

Author(s): Yujie Shen, Yexiang Lin, Kai Liu, Jinlan Chen, Juanjuan Zhong, Yisong Gao and Chengfu Yuan*

Volume 27, Issue 11, 2021

Published on: 02 December, 2020

Page: [1407 - 1417] Pages: 11

DOI: 10.2174/1381612826999201202102413

Price: $65

Abstract

Background: A number of studies have proposed that lncRNA XIST plays a role in the development and chemosensitivity of NSCLC. Besides, XIST may become a potential therapeutic target for NSCLC patients. The aim of this review is to reveal the biological functions and exact mechanisms of XIST in NSCLC.

Methods: In this review, relevant researches involving the relationship between XIST and NSCLC are collected through systematic retrieval of PubMed.

Results: XIST is an oncogene in NSCLC and is abnormally upregulated in NSCLC tissues. Considerable evidence has shown that XIST plays a critical role in the proliferation, invasion, migration, apoptosis and chemosensitivity of NSCLC cells. XIST mainly functions as a ceRNA in the NSCLC process, while XIST also functions at transcriptional levels.

Conclusion: LncRNA XIST has the potential to become a novel biomolecular marker of NSCLC and a therapeutic target for NSCLC.

Keywords: XIST, NSCLC, therapeutic target, biomolecular marker, noncoding, RNA.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Rong H, Chen B, Wei X, et al. Long non-coding RNA XIST expedites lung adenocarcinoma progression through upregulating MDM2 expression via binding to miR-363-3p. Thorac Cancer 2020; 11(3): 659-71.
[http://dx.doi.org/10.1111/1759-7714.13310]
[3]
Hirsch FR, Suda K, Wiens J, Bunn PA Jr. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 2016; 388(10048): 1012-24.
[http://dx.doi.org/10.1016/S0140-6736(16)31473-8] [PMID: 27598681]
[4]
Yang L, Froberg JE, Lee JT. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 2014; 39(1): 35-43.
[http://dx.doi.org/10.1016/j.tibs.2013.10.002] [PMID: 24290031]
[5]
Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol 2013; 6(1): 37.
[http://dx.doi.org/10.1186/1756-8722-6-37] [PMID: 23725405]
[6]
van Bemmel JG, Galupa R, Gard C, et al. The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat Genet 2019; 51(6): 1024-34.
[http://dx.doi.org/10.1038/s41588-019-0412-0] [PMID: 31133748]
[7]
Gendrel AV, Heard E. Fifty years of X-inactivation research. Development 2011; 138(23): 5049-55.
[http://dx.doi.org/10.1242/dev.068320] [PMID: 22069183]
[8]
Loda A, Heard E. Xist RNA in action: Past, present, and future. PLoS Genet 2019; 15(9)
[http://dx.doi.org/10.1371/journal.pgen.1008333] [PMID: 31537017]
[9]
Wang H, Shen Q, Zhang X, et al. The long non-coding RNA XIST controls non-small cell lung cancer proliferation and invasion by modulating miR-186-5p. Cell Physiol Biochem 2017; 41(6): 2221-9.
[http://dx.doi.org/10.1159/000475637] [PMID: 28448993]
[10]
Wang J, Cai H, Dai Z, Wang G. Down-regulation of lncRNA XIST inhibits cell proliferation via regulating miR-744/RING1 axis in non-small cell lung cancer. Clin Sci (Lond) 2019; 133(14): 1567-79.
[http://dx.doi.org/10.1042/CS20190519] [PMID: 31292221]
[11]
Zhou X, Xu X, Gao C, Cui Y. XIST promote the proliferation and migration of non-small cell lung cancer cells via sponging miR-16 and regulating CDK8 expression. Am J Transl Res 2019; 11(9): 6196-206.
[PMID: 31632587]
[12]
Xu Z, Xu J, Lu H, et al. LARP1 is regulated by the XIST/miR-374a axis and functions as an oncogene in non-small cell lung carcinoma. Oncol Rep 2017; 38(6): 3659-67.
[http://dx.doi.org/10.3892/or.2017.6040] [PMID: 29039571]
[13]
Rong H, Chen B, Wei X, et al. Long non-coding RNA XIST expedites lung adenocarcinoma progression through upregulating MDM2 expression via binding to miR-363-3p. Thorac Cancer 2020; 11(3): 659-71.
[http://dx.doi.org/10.1111/1759-7714.13310] [PMID: 31968395]
[14]
Qiu HB, Yang K, Yu HY, Liu M. Downregulation of long non-coding RNA XIST inhibits cell proliferation, migration, invasion and EMT by regulating miR-212-3p/CBLL1 axis in non-small cell lung cancer cells. Eur Rev Med Pharmacol Sci 2019; 23(19): 8391-402.
[PMID: 31646569]
[15]
Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY) 2019; 11(18): 7830-46.
[http://dx.doi.org/10.18632/aging.102291] [PMID: 31553952]
[16]
Wang X, Zhang G, Cheng Z, et al. Knockdown of LncRNA-XIST suppresses proliferation and TGF-β1-induced EMT in NSCLC through the notch-1 pathway by regulation of miR-137. Genet Test Mol Biomarkers 2018; 22(6): 333-42.
[http://dx.doi.org/10.1089/gtmb.2018.0026] [PMID: 29812958]
[17]
Zhang YL, Li XB, Hou YX, Fang NZ, You JC, Zhou QH. The lncRNA XIST exhibits oncogenic properties via regulation of miR-449a and Bcl-2 in human non-small cell lung cancer. Acta Pharmacol Sin 2017; 38(3): 371-81.
[http://dx.doi.org/10.1038/aps.2016.133] [PMID: 28248928]
[18]
Tang Y, He R, An J, Deng P, Huang L, Yang W. lncRNA XIST interacts with miR-140 to modulate lung cancer growth by targeting iASPP. Oncol Rep 2017; 38(2): 941-8.
[http://dx.doi.org/10.3892/or.2017.5751] [PMID: 28656261]
[19]
Jiang H, Zhang H, Hu X, Li W. Knockdown of long non-coding RNA XIST inhibits cell viability and invasion by regulating miR-137/PXN axis in non-small cell lung cancer. Int J Biol Macromol 2018; 111: 623-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.022] [PMID: 29337100]
[20]
Nitu R, Rogobete AF, Gundogdu F, et al. microRNAs expression as novel genetic biomarker for early prediction and continuous monitoring in pulmonary cancer. Biochem Genet 2017; 55(4): 281-90.
[http://dx.doi.org/10.1007/s10528-016-9789-y] [PMID: 28070693]
[21]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[22]
You J, Zhang Y, Liu B, et al. MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer 2014; 51(Suppl. 3): e77-81.
[http://dx.doi.org/10.4103/0019-509X.154055] [PMID: 25818739]
[23]
You J, Zhang Y, Li Y, et al. MiR-449a suppresses cell invasion by inhibiting MAP2K1 in non-small cell lung cancer. Am J Cancer Res 2015; 5(9): 2730-44.
[PMID: 26609480]
[24]
Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 2007; 19(5): 488-96.
[http://dx.doi.org/10.1016/j.coi.2007.05.004] [PMID: 17629468]
[25]
Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9(1): 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[26]
Choi J, Choi K, Benveniste EN, et al. Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res 2005; 65(13): 5554-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4570] [PMID: 15994927]
[27]
Chen J, Zhou J, Chen X, et al. miRNA-449a is downregulated in osteosarcoma and promotes cell apoptosis by targeting BCL2. Tumour Biol 2015; 36(10): 8221-9.
[http://dx.doi.org/10.1007/s13277-015-3568-y] [PMID: 26002578]
[28]
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005; 123(4): 631-40.
[http://dx.doi.org/10.1016/j.cell.2005.10.022] [PMID: 16271387]
[29]
Karginov FV, Conaco C, Xuan Z, et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 2007; 104(49): 19291-6.
[http://dx.doi.org/10.1073/pnas.0709971104] [PMID: 18042700]
[30]
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9(2): 102-14.
[http://dx.doi.org/10.1038/nrg2290] [PMID: 18197166]
[31]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[32]
Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027): 769-73.
[http://dx.doi.org/10.1038/nature03315] [PMID: 15685193]
[33]
Green D, Dalmay T, Fraser WD. Role of miR-140 in embryonic bone development and cancer. Clin Sci (Lond) 2015; 129(10): 863-73.
[http://dx.doi.org/10.1042/CS20150230] [PMID: 26318829]
[34]
Yuan Y, Shen Y, Xue L, Fan H. miR-140 suppresses tumor growth and metastasis of non-small cell lung cancer by targeting insulin-like growth factor 1 receptor. PLoS One 2013; 8(9)
[http://dx.doi.org/10.1371/journal.pone.0073604] [PMID: 24039995]
[35]
Chen J, Xie F, Zhang L, Jiang WG. iASPP is over-expressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells through a p53 associated pathway. BMC Cancer 2010; 10: 694.
[http://dx.doi.org/10.1186/1471-2407-10-694] [PMID: 21192816]
[36]
Cao L, Huang Q, He J, Lu J, Xiong Y. Elevated expression of iASPP correlates with poor prognosis and chemoresistance/radioresistance in FIGO Ib1-IIa squamous cell cervical cancer. Cell Tissue Res 2013; 352(2): 361-9.
[http://dx.doi.org/10.1007/s00441-013-1569-y] [PMID: 23420450]
[37]
Lu B, Guo H, Zhao J, et al. Increased expression of iASPP, regulated by hepatitis B virus X protein-mediated NF-κB activation, in hepatocellular carcinoma. Gastroenterology 2010; 139(6): 2183-2194.e5.
[http://dx.doi.org/10.1053/j.gastro.2010.06.049] [PMID: 20600029]
[38]
Ge W, Zhao K, Wang X, et al. iASPP is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for keap1 binding. Cancer Cell 2017; 32(5): 561-573.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.09.008] [PMID: 29033244]
[39]
Wu H, Liu Y, Shu XO, Cai Q. MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion by targeting TGFA gene expression. Carcinogenesis 2016; 37(6): 567-75.
[http://dx.doi.org/10.1093/carcin/bgw038] [PMID: 27207663]
[40]
Stavraka C, Blagden S. The La-related proteins, a family with connections to cancer. Biomolecules 2015; 5(4): 2701-22.
[http://dx.doi.org/10.3390/biom5042701] [PMID: 26501340]
[41]
Burrows C, Abd Latip N, Lam SJ, et al. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Res 2010; 38(16): 5542-53.
[http://dx.doi.org/10.1093/nar/gkq294] [PMID: 20430826]
[42]
Chauvet S, Maurel-Zaffran C, Miassod R, Jullien N, Pradel J, Aragnol D. dlarp, a new candidate Hox target in Drosophila whose orthologue in mouse is expressed at sites of epithelium/mesenchymal interactions. Dev Dyn 2000; 218(3): 401-13.
[http://dx.doi.org/10.1002/1097-0177(200007)218:3<401:AID-DVDY1009>3.0.CO;2-6] [PMID: 10878606]
[43]
Ichihara K, Shimizu H, Taguchi O, Yamaguchi M, Inoue YH. A Drosophila orthologue of larp protein family is required for multiple processes in male meiosis. Cell Struct Funct 2007; 32(2): 89-100.
[http://dx.doi.org/10.1247/csf.07027] [PMID: 17951964]
[44]
Blagden SP, Gatt MK, Archambault V, et al. Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev Biol 2009; 334(1): 186-97.
[http://dx.doi.org/10.1016/j.ydbio.2009.07.016] [PMID: 19631203]
[45]
Xie C, Huang L, Xie S, et al. LARP1 predict the prognosis for early-stage and AFP-normal hepatocellular carcinoma. J Transl Med 2013; 11: 272.
[http://dx.doi.org/10.1186/1479-5876-11-272] [PMID: 24159927]
[46]
Bi Y, Han Y, Bi H, Gao F, Wang X. miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin. Hum Cell 2014; 27(3): 95-102.
[http://dx.doi.org/10.1007/s13577-013-0085-4] [PMID: 24243432]
[47]
Turner CE. Paxillin and focal adhesion signalling. Nat Cell Biol 2000; 2(12): E231-6.
[http://dx.doi.org/10.1038/35046659] [PMID: 11146675]
[48]
Wu DW, Cheng YW, Wang J, Chen CY, Lee H. Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res 2010; 70(24): 10392-401.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2341] [PMID: 21159652]
[49]
Kawada I, Hasina R, Lennon FE, et al. Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics: relevance to lung cancer. Cancer Biol Ther 2013; 14(7): 679-91.
[http://dx.doi.org/10.4161/cbt.25091] [PMID: 23792636]
[50]
Rui X, Xu Y, Jiang X, Ye W, Huang Y, Jiang J. Long non-coding RNA C5orf66-AS1 promotes cell proliferation in cervical cancer by targeting miR-637/RING1 axis. Cell Death Dis 2018; 9(12): 1175.
[http://dx.doi.org/10.1038/s41419-018-1228-z] [PMID: 30518760]
[51]
Bai X-Y, Ma Y, Ding R, Fu B, Shi S, Chen XM. miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 2011; 22(7): 1252-61.
[http://dx.doi.org/10.1681/ASN.2010040367] [PMID: 21719785]
[52]
Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY. Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. J Biol Chem 2003; 278(15): 13294-301.
[http://dx.doi.org/10.1074/jbc.M208670200] [PMID: 12551919]
[53]
Becuwe P, Ennen M, Klotz R, Barbieux C, Grandemange S. Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance. Free Radic Biol Med 2014; 77: 139-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.026] [PMID: 25224035]
[54]
Liu J, Bian T, Feng J, et al. miR-335 inhibited cell proliferation of lung cancer cells by target Tra2β. Cancer Sci 2018; 109(2): 289-96.
[http://dx.doi.org/10.1111/cas.13452] [PMID: 29161765]
[55]
Tang H, Zhu J, Du W, et al. CPNE1 is a target of miR-335-5p and plays an important role in the pathogenesis of non-small cell lung cancer. J Exp Clin Cancer Res 2018; 37(1): 131.
[http://dx.doi.org/10.1186/s13046-018-0811-6] [PMID: 29970127]
[56]
Wang H, Li M, Zhang R, et al. Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299. Tumour Biol 2013; 34(5): 3101-9.
[http://dx.doi.org/10.1007/s13277-013-0878-9] [PMID: 23740614]
[57]
Xi M, Chen T, Wu C, et al. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur J Med Chem 2019; 164: 77-91.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.076] [PMID: 30594029]
[58]
Philip S, Kumarasiri M, Teo T, Yu M, Wang S. Cyclin-dependent kinase 8: a new hope in targeted cancer therapy? J Med Chem 2018; 61(12): 5073-92.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00901] [PMID: 29266937]
[59]
Brägelmann J, Klümper N, Offermann A, et al. Pan-cancer analysis of the Mediator complex transcriptome identifies CDK19 and CDK8 as therapeutic targets in advanced prostate cancer. Clin Cancer Res 2017; 23(7): 1829-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0094] [PMID: 27678455]
[60]
Broude EV, Győrffy B, Chumanevich AA, et al. Expression of CDK8 and CDK8-interacting genes as potential biomarkers in breast cancer. Curr Cancer Drug Targets 2015; 15(8): 739-49.
[http://dx.doi.org/10.2174/156800961508151001105814] [PMID: 26452386]
[61]
Firestein R, Bass AJ, Kim SY, et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 2008; 455(7212): 547-51.
[http://dx.doi.org/10.1038/nature07179] [PMID: 18794900]
[62]
Bian WG, Zhou XN, Song S, Chen HT, Shen Y, Chen P. Reduced miR-363-3p expression in non-small cell lung cancer is associated with gemcitabine resistance via targeting of CUL4A. Eur Rev Med Pharmacol Sci 2019; 23(2): 649-59.
[PMID: 30720173]
[63]
Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res 2014; 74(24): 7161-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1446] [PMID: 25477334]
[64]
Tang Y, Xuan Y, Qiao G, et al. MDM2 promotes epithelial-mesenchymal transition through activation of Smad2/3 signaling pathway in lung adenocarcinoma. OncoTargets Ther 2019; 12: 2247-58.
[http://dx.doi.org/10.2147/OTT.S185076] [PMID: 30988629]
[65]
Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell 2006; 127(4): 679-95.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[66]
Sun J, Pan LM, Chen LB, Wang Y. LncRNA XIST promotes human lung adenocarcinoma cells to cisplatin resistance via let-7i/BAG-1 axis. Cell Cycle 2017; 16(21): 2100-7.
[http://dx.doi.org/10.1080/15384101.2017.1361071] [PMID: 28961027]
[67]
Bassez G, Camand OJ, Cacheux V, et al. Pleiotropic and diverse expression of ZFHX1B gene transcripts during mouse and human development supports the various clinical manifestations of the “Mowat-Wilson” syndrome. Neurobiol Dis 2004; 15(2): 240-50.
[http://dx.doi.org/10.1016/j.nbd.2003.10.004] [PMID: 15006694]
[68]
Li C, Wan L, Liu Z, et al. Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett 2018; 418: 185-95.
[http://dx.doi.org/10.1016/j.canlet.2018.01.036] [PMID: 29339211]
[69]
Yu H, Xue Y, Wang P, et al. Knockdown of long non-coding RNA XIST increases blood-tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137. Oncogenesis 2017; 6(3): e303-.
[http://dx.doi.org/10.1038/oncsis.2017.7] [PMID: 28287613]
[70]
Shen H, Wang L, Ge X, et al. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget 2016; 7(15): 20728-42.
[http://dx.doi.org/10.18632/oncotarget.8011] [PMID: 26989074]
[71]
Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol 2013; 13(6): 427-37.
[http://dx.doi.org/10.1038/nri3445] [PMID: 23665520]
[72]
Leong KG, Gao WQ. The Notch pathway in prostate development and cancer. Differentiation 2008; 76(6): 699-716.
[http://dx.doi.org/10.1111/j.1432-0436.2008.00288.x] [PMID: 18565101]
[73]
Yuan X, Wu H, Han N, et al. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol 2014; 7: 87.
[http://dx.doi.org/10.1186/s13045-014-0087-z] [PMID: 25477004]
[74]
Kunnimalaiyaan S, Sokolowski KM, Balamurugan M, Gamblin TC, Kunnimalaiyaan M. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma. PLoS One 2015; 10(5)
[http://dx.doi.org/10.1371/journal.pone.0127464] [PMID: 26011160]
[75]
Ju C, Zhou R, Sun J, et al. LncRNA SNHG5 promotes the progression of osteosarcoma by sponging the miR-212-3p/SGK3 axis. Cancer Cell Int 2018; 18: 141.
[http://dx.doi.org/10.1186/s12935-018-0641-9] [PMID: 30250399]
[76]
Liu H, Li C, Shen C, et al. MiR-212-3p inhibits glioblastoma cell proliferation by targeting SGK3. J Neurooncol 2015; 122(3): 431-9.
[http://dx.doi.org/10.1007/s11060-015-1736-y] [PMID: 25720694]
[77]
Hui L, Zhang S, Wudu M, et al. CBLL1 is highly expressed in non-small cell lung cancer and promotes cell proliferation and invasion. Thorac Cancer 2019; 10(6): 1479-88.
[http://dx.doi.org/10.1111/1759-7714.13097] [PMID: 31124298]
[78]
Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22(47): 7265-79.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[79]
Takayama S, Sato T, Krajewski S, et al. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 1995; 80(2): 279-84.
[http://dx.doi.org/10.1016/0092-8674(95)90410-7] [PMID: 7834747]
[80]
Yang L, McBurney D, Tang SC, Carlson SG, Horton WE Jr. A novel role for Bcl-2 associated-athanogene-1 (Bag-1) in regulation of the endoplasmic reticulum stress response in mammalian chondrocytes. J Cell Biochem 2007; 102(3): 786-800.
[http://dx.doi.org/10.1002/jcb.21328] [PMID: 17546604]
[81]
Yamaguchi M, Satoo K, Suzuki H, et al. Atg7 activates an autophagy-essential ubiquitin-like protein Atg8 through multi-step recognition. J Mol Biol 2018; 430(3): 249-57.
[http://dx.doi.org/10.1016/j.jmb.2017.12.002] [PMID: 29237558]
[82]
Mandelbaum J, Rollins N, Shah P, et al. Identification of a lung cancer cell line deficient in atg7-dependent autophagy. Autophagy 2015.
[http://dx.doi.org/10.1080/15548627.2015.1056966]
[83]
Jing Z, Han W, Sui X, Xie J, Pan H. Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 2015; 356(2 Pt B): 332-8.
[http://dx.doi.org/10.1016/j.canlet.2014.09.039] [PMID: 25304373]
[84]
Liu JJ, Lin M, Yu JY, Liu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 2011; 300(2): 105-14.
[http://dx.doi.org/10.1016/j.canlet.2010.10.001] [PMID: 21036469]
[85]
Sun W, Zu Y, Fu X, Deng Y. Knockdown of lncRNA-XIST enhances the chemosensitivity of NSCLC cells via suppression of autophagy. Oncol Rep 2017; 38(6): 3347-54.
[http://dx.doi.org/10.3892/or.2017.6056] [PMID: 29130102]
[86]
Chen G, Ma Y, Jiang Z, et al. Lico A causes ER stress and apoptosis via up-regulating miR-144-3p in human lung cancer cell line H292. Front Pharmacol 2018; 9: 837.
[http://dx.doi.org/10.3389/fphar.2018.00837] [PMID: 30108506]
[87]
Fang Z, Chen W, Yuan Z, Liu X, Jiang H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother 2018; 101: 536-42.
[http://dx.doi.org/10.1016/j.biopha.2018.02.130] [PMID: 29505924]
[88]
Tian L-J, Wu YP, Wang D, et al. Upregulation of Long Noncoding RNA (lncRNA) X-Inactive Specific Transcript (XIST) is associated with cisplatin resistance in Non-Small Cell Lung Cancer (NSCLC) by downregulating microRNA-144-3p. Med Sci Monit 2019; 25: 8095-104.
[http://dx.doi.org/10.12659/MSM.916075] [PMID: 31659146]
[89]
Zhou Y, Chen Q, Qin R, Zhang K, Li H. MicroRNA-449a reduces cell survival and enhances cisplatin-induced cytotoxicity via downregulation of NOTCH1 in ovarian cancer cells. Tumour Biol 2014; 35(12): 12369-78.
[http://dx.doi.org/10.1007/s13277-014-2551-3] [PMID: 25179844]
[90]
An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017; 7(1): 38-51.
[http://dx.doi.org/10.1016/j.apsb.2016.09.002] [PMID: 28119807]
[91]
Sun W, Ma M, Yu H, Yu H. Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Nav 1.7. J Cell Biochem 2018; 119(12): 9888-98.
[http://dx.doi.org/10.1002/jcb.27310] [PMID: 30129228]
[92]
Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 2007; 1773(8): 1341-8.
[http://dx.doi.org/10.1016/j.bbamcr.2006.12.009] [PMID: 17306896]
[93]
Dhanasekaran DN, Johnson GL. MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 2007; 26(22): 3097-9.
[http://dx.doi.org/10.1038/sj.onc.1210395] [PMID: 17496908]
[94]
Cuevas BD, Abell AN, Johnson GL. Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 2007; 26(22): 3159-71.
[http://dx.doi.org/10.1038/sj.onc.1210409] [PMID: 17496913]
[95]
Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol 2014; 171(1): 24-37.
[http://dx.doi.org/10.1111/bph.12432] [PMID: 24117156]
[96]
Pang L, Lu J, Huang J, et al. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2. Oncol Lett 2017; 14(6): 7745-52.
[http://dx.doi.org/10.3892/ol.2017.7242] [PMID: 29344219]
[97]
Gu S, Xie R, Liu X, Shou J, Gu W, Che X. Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury. Int J Mol Sci 2017; 18(4)
[http://dx.doi.org/10.3390/ijms18040732] [PMID: 28368292]
[98]
Chen Z, Hu X, Wu Y, et al. Long non-coding RNA XIST promotes the development of esophageal cancer by sponging miR-494 to regulate CDK6 expression. Biomed Pharmacother 2019; 109: 2228-36.
[http://dx.doi.org/10.1016/j.biopha.2018.11.049] [PMID: 30551480]
[99]
Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5(2): 157-63.
[http://dx.doi.org/10.1038/5517] [PMID: 9930862]
[100]
Akiyama T, Dass CR, Choong PF. Bim-targeted cancer therapy: a link between drug action and underlying molecular changes. Mol Cancer Ther 2009; 8(12): 3173-80.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0685] [PMID: 19934277]
[101]
Li R, Moudgil T, Ross HJ, Hu HM. Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ 2005; 12(3): 292-303.
[http://dx.doi.org/10.1038/sj.cdd.4401554] [PMID: 15711598]
[102]
Wu J, Lingrel JB. KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene 2004; 23(49): 8088-96.
[http://dx.doi.org/10.1038/sj.onc.1207996] [PMID: 15361832]
[103]
Zhang W, Levi L, Banerjee P, Jain M, Noy N. Kruppel-like factor 2 suppresses mammary carcinoma growth by regulating retinoic acid signaling. Oncotarget 2015; 6(34): 35830-42.
[http://dx.doi.org/10.18632/oncotarget.5767] [PMID: 26416422]
[104]
Nie F, Yu X, Huang M, et al. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget 2017; 8(24): 38227-38.
[http://dx.doi.org/10.18632/oncotarget.9611] [PMID: 27246976]
[105]
Fang J, Sun C-C, Gong C. Long noncoding RNA XIST acts as an oncogene in non-small cell lung cancer by epigenetically repressing KLF2 expression. Biochem Biophys Res Commun 2016; 478(2): 811-7.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.030] [PMID: 27501756]
[106]
Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014; 6(3): 1670-90.
[http://dx.doi.org/10.3390/cancers6031670] [PMID: 25125485]
[107]
Rhee I. Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res 2016; 39(11): 1588-96.
[http://dx.doi.org/10.1007/s12272-016-0820-y] [PMID: 27562774]
[108]
Sun Y, Xu J. TCF-4 Regulated lncRNA-XIST promotes M2 polarization of macrophages and is associated with lung cancer. OncoTargets Ther 2019; 12: 8055-62.
[http://dx.doi.org/10.2147/OTT.S210952] [PMID: 31632059]
[109]
Tantai J, Hu D, Yang Y, Geng J. Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer. Int J Clin Exp Pathol 2015; 8(7): 7887-95.
[PMID: 26339353]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy