Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Autism - A Comprehensive Array of Prominent Signs and Symptoms

Author(s): Muhammad Shahid Nadeem, Bibi Nazia Murtaza*, Maryam A. Al-Ghamdi, Akbar Ali, Mazin A. Zamzami, Jalaluddin A. Khan, Aftab Ahmad, Mujaddad Ur Rehman and Imran Kazmi*

Volume 27, Issue 11, 2021

Published on: 20 January, 2021

Page: [1418 - 1433] Pages: 16

DOI: 10.2174/1381612827666210120095829

Price: $65

Abstract

Background: Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental condition characterized by multiple psychological and physiological impairments in young children. According to the recent reports, 1 out of every 58 newly-born children is suffering from autism. The aetiology of the disorder is complex and poorly understood, hindering the adaptation of targeted and effective therapies. There are no well- established diagnostic biomarkers for autism. Hence the analysis of symptoms by the pediatricians plays a critical role in the early intervention.

Methods: In the present report, we have emphasized 24 behavioral, psychological and clinical symptoms of autism.

Results: Impaired social interaction, restrictive and narrow interests, anxiety, depression; aggressive, repetitive, rigid and self-injurious behavior, lack of consistency, short attention span, fear, shyness and phobias, hypersensitivity and rapid mood alterations, high level of food and toy selectivity; inability to establish friendships or follow the instructions; fascination by round spinning objects and eating non-food materials are common psychological characteristics of autism. Speech or hearing impairments, poor cognitive function, gastrointestinal problems, weak immunity, disturbed sleep and circadian rhythms, weak motor neuromuscular interaction, lower level of serotonin and neurotransmitters, headache and body pain are common physiological symptoms.

Conclusion: A variable qualitative and quantitative impact of this wide range of symptoms is perceived in each autistic individual, making him/her distinct, incomparable and exceptional. Selection and application of highly personalized medical and psychological therapies are therefore recommended for the management and treatment of autism.

Keywords: Children, autism, symptoms, psychology, physiology, gastrointestinal.

« Previous
[1]
Narzisi A, Posada M, Barbieri F, et al. Prevalence of Autism Spectrum Disorder in a large Italian catchment area: a school-based population study within the ASDEU project. Epidemiol Psychiatr Sci 2018; 29: e5.
[http://dx.doi.org/10.1017/S2045796018000483] [PMID: 30187843]
[2]
Hoang VM, Le TV, Chu TTQ, et al. Prevalence of autism spectrum disorders and their relation to selected socio-demographic factors among children aged 18-30 months in northern Vietnam, 2017. Int J Ment Health Syst 2019; 13: 29.
[http://dx.doi.org/10.1186/s13033-019-0285-8] [PMID: 31168317]
[3]
Sun X, Allison C, Wei L, et al. Autism prevalence in China is comparable to Western prevalence. Mol Autism 2019; 10(1): 7.
[http://dx.doi.org/10.1186/s13229-018-0246-0] [PMID: 30858963]
[4]
Baio J, Wiggins L, Christensen DL, et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 2018; 67(6): 1-23.
[http://dx.doi.org/10.15585/mmwr.ss6706a1] [PMID: 29701730]
[5]
Kim YS, Leventhal BL, Koh YJ, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 2011; 168(9): 904-12.
[http://dx.doi.org/10.1176/appi.ajp.2011.10101532] [PMID: 21558103]
[6]
Hastings RP, Robertson J, Yasamy MT. Interventions for children with pervasive developmental disorders in low and middle income countries. J Appl Res Intellect Disabil 2012; 25(2): 119-34.
[http://dx.doi.org/10.1111/j.1468-3148.2011.00680.x] [PMID: 22473964]
[7]
Zuckerman KE, Lindly OJ, Reyes NM, et al. Disparities in diagnosis and treatment of autism in Latino and non-Latino white families. Pediatrics 2017; 139(5): e20163010.
[http://dx.doi.org/10.1542/peds.2016-3010] [PMID: 28557734]
[8]
Leigh JP, Du J. Brief report: Forecasting the economic burden of autism in 2015 and 2025 in the United States. J Autism Dev Disord 2015; 45(12): 4135-9.
[http://dx.doi.org/10.1007/s10803-015-2521-7] [PMID: 26183723]
[9]
Pierce K, Gazestani VH, Bacon E, et al. Evaluation of the diagnostic stability of the early autism spectrum disorder phenotype in the general population starting at 12 months. JAMA Pediatr 2019; 173(6): 578-87.
[http://dx.doi.org/10.1001/jamapediatrics.2019.0624] [PMID: 31034004]
[10]
Mazefsky CA, Schreiber DR, Olino TM, Minshew NJ. The association between emotional and behavioral problems and gastrointestinal symptoms among children with high-functioning autism. Autism 2014; 18(5): 493-501.
[http://dx.doi.org/10.1177/1362361313485164] [PMID: 24104507]
[11]
Penzol MJ, Salazar de Pablo G, Llorente C, et al. Functional gastrointestinal disease in autism spectrum disorder: a retrospective descriptive study in a clinical sample. Front Psychiatry 2019; 10: 179.
[http://dx.doi.org/10.3389/fpsyt.2019.00179] [PMID: 31024351]
[12]
Ferguson BJ, Dovgan K, Takahashi N, Beversdorf DQ. The relationship among gastrointestinal symptoms, problem behaviors, and internalizing symptoms in children and adolescents with autism spectrum disorder. Front Psychiatry 2019; 10: 194.
[http://dx.doi.org/10.3389/fpsyt.2019.00194] [PMID: 31024357]
[13]
Precenzano F, Ruberto M, Parisi L, et al. Sleep habits in children affected by autism spectrum disorders: a preliminary case-control study. Acta Med Mediter 2017; 33: 405-9.
[14]
Bujnakova I, Ondrejka I, Mestanik M, et al. Autism spectrum disorder is associated with autonomic underarousal. Physiol Res 2016; 65(Suppl. 5): S673-82.
[http://dx.doi.org/10.33549/physiolres.933528] [PMID: 28006949]
[15]
Marchezan J, Winkler Dos Santos EGA, Deckmann I, Riesgo RDS. Immunological dysfunction in autism spectrum disorder: a potential target for therapy. Neuroimmunomodulation 2018; 25(5-6): 300-19.
[http://dx.doi.org/10.1159/000492225] [PMID: 30184549]
[16]
van Sadelhoff JHJ, Perez Pardo P, Wu J, et al. The gut-immune-brain axis in autism spectrum disorders; a focus on amino acids. Front Endocrinol (Lausanne) 2019; 10: 247.
[http://dx.doi.org/10.3389/fendo.2019.00247] [PMID: 31057483]
[17]
Hollocks MJ, Lerh JW, Magiati I, Meiser-Stedman R, Brugha TS. Anxiety and depression in adults with autism spectrum disorder: a systematic review and meta-analysis. Psychol Med 2019; 49(4): 559-72.
[http://dx.doi.org/10.1017/S0033291718002283] [PMID: 30178724]
[18]
Nimmo-Smith V, Heuvelman H, Dalman C, et al. Anxiety disorders in Adults with Autism Spectrum Disorder: A Population-Based Study. J Autism Dev Disord 2020; 50(1): 308-18.
[http://dx.doi.org/10.1007/s10803-019-04234-3] [PMID: 31621020]
[19]
Reindal L, Naerland T, Weidle B, et al. Age of first walking and associations with symptom severity in children with suspected or diagnosed autism spectrum disorder. J Autism Dev Disord 2019; 1-7.
[PMID: 31278523]
[20]
Battle DE. Diagnostic and Statistical Manual of Mental disorders (DSM). CoDAS 2013; 25(2): 191-2.
[PMID: 24413388]
[21]
Fernandes FDM, Amato CAH, Molini-Avejonas DR. Language assessment in Autism. A Comprehensive Book on Autism Spectrum Disorders. Rijeka, Croatia: InTech 2011; pp. 3-22.
[22]
Topal Z, Demir Samurcu N, Taskiran S, Tufan AE, Semerci B. Social communication disorder: a narrative review on current insights. Neuropsychiatr Dis Treat 2018; 14: 2039-46.
[http://dx.doi.org/10.2147/NDT.S121124] [PMID: 30147317]
[23]
Patel S, Masi A, Dale RC, et al. Social impairments in autism spectrum disorder are related to maternal immune history profile. Mol Psychiatry 2018; 23(8): 1794-7.
[http://dx.doi.org/10.1038/mp.2017.201] [PMID: 28993711]
[24]
Esbensen AJ, Seltzer MM, Lam KS, Bodfish JW. Age-related differences in restricted repetitive behaviors in autism spectrum disorders. J Autism Dev Disord 2009; 39(1): 57-66.
[http://dx.doi.org/10.1007/s10803-008-0599-x] [PMID: 18566881]
[25]
Barrett SL, Uljarević M, Baker EK, Richdale AL, Jones CR, Leekam SR. The Adult Repetitive Behaviours Questionnaire-2 (RBQ-2A): a self-report measure of restricted and repetitive behaviours. J Autism Dev Disord 2015; 45(11): 3680-92.
[http://dx.doi.org/10.1007/s10803-015-2514-6] [PMID: 26155763]
[26]
Seltzer MM, Shattuck P, Abbeduto L, Greenberg JS. Trajectory of development in adolescents and adults with autism. Ment Retard Dev Disabil Res Rev 2004; 10(4): 234-47.
[http://dx.doi.org/10.1002/mrdd.20038] [PMID: 15666341]
[27]
Knutsen J, Crossman M, Perrin J, Shui A, Kuhlthau K. Sex differences in restricted repetitive behaviors and interests in children with autism spectrum disorder: An Autism Treatment Network study. Autism 2019; 23(4): 858-68.
[http://dx.doi.org/10.1177/1362361318786490] [PMID: 30047281]
[28]
Cuccaro ML, Shao Y, Grubber J, et al. Factor analysis of restricted and repetitive behaviors in autism using the Autism Diagnostic Interview-R. Child Psychiatry Hum Dev 2003; 34(1): 3-17.
[http://dx.doi.org/10.1023/A:1025321707947] [PMID: 14518620]
[29]
Papageorgiou V, Georgiades S, Mavreas V. Brief report: cross-cultural evidence for the heterogeneity of the restricted, repetitive behaviours and interests domain of autism: a Greek study. J Autism Dev Disord 2008; 38(3): 558-61.
[http://dx.doi.org/10.1007/s10803-007-0409-x] [PMID: 17647098]
[30]
Barrett SL, Uljarević M, Jones CRG, Leekam SR. Assessing subtypes of restricted and repetitive behaviour using the Adult Repetitive Behaviour Questionnaire-2 in autistic adults. Mol Autism 2018; 9(1): 58.
[http://dx.doi.org/10.1186/s13229-018-0242-4] [PMID: 30505424]
[31]
Jeste SS, Frohlich J, Loo SK. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr Opin Neurol 2015; 28(2): 110-6.
[http://dx.doi.org/10.1097/WCO.0000000000000181] [PMID: 25710286]
[32]
Haartsen R, Jones EJH, Orekhova EV, Charman T, Johnson MH. BASIS team. Functional EEG connectivity in infants associates with later restricted and repetitive behaviours in autism; a replication study. Transl Psychiatry 2019; 9(1): 66.
[http://dx.doi.org/10.1038/s41398-019-0380-2] [PMID: 30718487]
[33]
McVey AJ. The neurobiological presentation of anxiety in autism spectrum disorder: A systematic review. Autism Res 2019; 12(3): 346-69.
[http://dx.doi.org/10.1002/aur.2063] [PMID: 30629807]
[34]
White SW, Oswald D, Ollendick T, Scahill L. Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev 2009; 29(3): 216-29.
[http://dx.doi.org/10.1016/j.cpr.2009.01.003] [PMID: 19223098]
[35]
van Steensel FJ, Bögels SM, Perrin S. Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clin Child Fam Psychol Rev 2011; 14(3): 302-17.
[http://dx.doi.org/10.1007/s10567-011-0097-0] [PMID: 21735077]
[36]
Kerns CM, Kendall PC, Zickgraf H, Franklin ME, Miller J, Herrington J. Not to be overshadowed or overlooked: functional impairments associated with comorbid anxiety disorders in youth with ASD. Behav Ther 2015; 46(1): 29-39.
[http://dx.doi.org/10.1016/j.beth.2014.03.005] [PMID: 25526833]
[37]
Tillmann J, Ashwood K, Absoud M, et al. Evaluating sex and age differences in ADI-R and ados scores in a large european multi-site sample of individuals with autism spectrum disorder. J Autism Dev Disord 2018; 48(7): 2490-505.
[http://dx.doi.org/10.1007/s10803-018-3510-4] [PMID: 29468576]
[38]
Kerns CM, Kendall PC. The presentation and classification of anxiety in autism spectrum disorder. Clin Psychol (New York) 2012; 19(4): 323-47.
[http://dx.doi.org/10.1111/cpsp.12009]
[39]
Cervantes P, Matson JL, Tureck K, et al. The relationship of comorbid anxiety symptom severity and challenging behaviors in infants and toddlers with autism spectrum disorder. Res Autism Spectr Disord 2013; 0(7): 1528-34.
[http://dx.doi.org/10.1016/j.rasd.2013.09.005]
[40]
Vasa RA, Carroll LM, Nozzolillo AA, et al. A systematic review of treatments for anxiety in youth with autism spectrum disorders. J Autism Dev Disord 2014; 44(12): 3215-29.
[http://dx.doi.org/10.1007/s10803-014-2184-9] [PMID: 25070468]
[41]
Davis TE III, Hess JA, Moree BN, et al. Anxiety symptoms across the lifespan in people diagnosed with autistic disorder. Res Autism Spectr Disord 2011; 5(1): 112-8.
[http://dx.doi.org/10.1016/j.rasd.2010.02.006]
[42]
Mayes SD, Calhoun SL, Murray MJ, et al. Variables associated with anxiety and depression in children with autism. J Dev Phys Disabil 2011; 23(4): 325-37.
[http://dx.doi.org/10.1007/s10882-011-9231-7]
[43]
Gadow KD, Devincent CJ, Pomeroy J, Azizian A. Comparison of DSM-IV symptoms in elementary school-age children with PDD versus clinic and community samples. Autism 2005; 9(4): 392-415.
[http://dx.doi.org/10.1177/1362361305056079] [PMID: 16155056]
[44]
Dubin AH, Lieberman-Betz R, Michele Lease A. Investigation of individual factors associated with anxiety in youth with autism spectrum disorders. J Autism Dev Disord 2015; 45(9): 2947-60.
[http://dx.doi.org/10.1007/s10803-015-2458-x] [PMID: 25917383]
[45]
Sukhodolsky DG, Scahill L, Gadow KD, et al. Parent-rated anxiety symptoms in children with pervasive developmental disorders: frequency and association with core autism symptoms and cognitive functioning. J Abnorm Child Psychol 2008; 36(1): 117-28.
[http://dx.doi.org/10.1007/s10802-007-9165-9] [PMID: 17674186]
[46]
Worley JA, Matson JL, Sipes M, et al. Prevalence of autism spectrum disorders in toddlers receiving early intervention services. Res Autism Spectr Disord 5(2): 920-5.
[http://dx.doi.org/10.1016/j.rasd.2010.10.007]
[47]
MacNeil BM, Lopes VA, Minnes PM. Anxiety in children and adolescents with autism spectrum disorders. Res Autism Spectr Disord 2009; 3(1): 1-21.
[http://dx.doi.org/10.1016/j.rasd.2008.06.001]
[48]
Salazar F, Baird G, Chandler S, et al. Co-occurring psychiatric disorders in preschool and elementary school-aged children with autism spectrum disorder. J Autism Dev Disord 2015; 45(8): 2283-94.
[http://dx.doi.org/10.1007/s10803-015-2361-5] [PMID: 25737019]
[49]
Tsakanikos E, Costello H, Holt G, Sturmey P, Bouras N. Behaviour management problems as predictors of psychotropic medication and use of psychiatric services in adults with autism. J Autism Dev Disord 2007; 37(6): 1080-5.
[http://dx.doi.org/10.1007/s10803-006-0248-1] [PMID: 17053989]
[50]
Fitzpatrick SE, Srivorakiat L, Wink LK, Pedapati EV, Erickson CA. Aggression in autism spectrum disorder: presentation and treatment options. Neuropsychiatr Dis Treat 2016; 12: 1525-38.
[PMID: 27382295]
[51]
Kanne SM, Mazurek MO. Aggression in children and adolescents with ASD: prevalence and risk factors. J Autism Dev Disord 2011; 41(7): 926-37.
[http://dx.doi.org/10.1007/s10803-010-1118-4] [PMID: 20960041]
[52]
Mazurek MO, Kanne SM, Wodka EL. Physical aggression in children and adolescents with autism spectrum disorders. Res Autism Spectr Disord 2013; 7(3): 455-65.
[http://dx.doi.org/10.1016/j.rasd.2012.11.004]
[53]
NICHD Early Child Care Research Network. Arsenio WF. Trajectories of physical aggression from toddlerhood to middle childhood: Predictors, correlates, and outcomes. Monogr Soc Res Child Dev 2004; i-143.
[54]
Hartley SL, Sikora DM, McCoy R. Prevalence and risk factors of maladaptive behaviour in young children with Autistic Disorder. J Intellect Disabil Res 2008; 52(10): 819-29.
[http://dx.doi.org/10.1111/j.1365-2788.2008.01065.x] [PMID: 18444989]
[55]
Farmer C, Butter E, Mazurek MO, et al. Aggression in children with autism spectrum disorders and a clinic-referred comparison group. Autism 2015; 19(3): 281-91.
[http://dx.doi.org/10.1177/1362361313518995] [PMID: 24497627]
[56]
Pugliese CE, White BA, White SW, Ollendick TH. Social anxiety predicts aggression in children with ASD: clinical comparisons with socially anxious and oppositional youth. J Autism Dev Disord 2013; 43(5): 1205-13.
[http://dx.doi.org/10.1007/s10803-012-1666-x] [PMID: 23008059]
[57]
Pugliese CE, Fritz MS, White SW. The role of anger rumination and autism spectrum disorder-linked perseveration in the experience of aggression in the general population. Autism 2015; 19(6): 704-12.
[http://dx.doi.org/10.1177/1362361314548731] [PMID: 25212211]
[58]
Oubrahim L, Combalbert N. Frequency and origin (reactive/proactive) of aggressive behavior in young people with intellectual disability and autism spectrum disorder. Int J Dev Disabil 2019; 1-8.
[http://dx.doi.org/10.1080/20473869.2019.1640972]
[59]
Duvall SW, Lindly O, Zuckerman K, Msall ME, Weddle M. Ethical implications for providers regarding cannabis use in children with autism spectrum disorders. Pediatrics 2019; 143(2): e20180558.
[http://dx.doi.org/10.1542/peds.2018-0558] [PMID: 30610100]
[60]
Dimian AF, Botteron KN, Dager SR, et al. IBIS Network. Potential risk factors for the development of self-injurious behavior among infants at risk for autism spectrum disorder. J Autism Dev Disord 2017; 47(5): 1403-15.
[http://dx.doi.org/10.1007/s10803-017-3057-9] [PMID: 28220358]
[61]
Rojahn J, Schroeder SR, Hoch TA. Self-injurious behavior in intellectual disabilities. Z Kinder Jugendpsychiatr Psychother 2007; 35(6): 411-22.
[http://dx.doi.org/10.1024/1422-4917.35.6.411] [PMID: 18357971]
[62]
Pickard KE, Ingersoll BR. Brief report: High and low level initiations of joint attention, and response to joint attention: differential relationships with language and imitation. J Autism Dev Disord 2015; 45(1): 262-8.
[http://dx.doi.org/10.1007/s10803-014-2193-8] [PMID: 25035090]
[63]
Chita-Tegmark M. Social attention in ASD: A review and meta-analysis of eye-tracking studies. Res Dev Disabil 2016; 48: 79-93.
[http://dx.doi.org/10.1016/j.ridd.2015.10.011] [PMID: 26547134]
[64]
Jones W, Carr K, Klin A. Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Arch Gen Psychiatry 2008; 65(8): 946-54.
[http://dx.doi.org/10.1001/archpsyc.65.8.946] [PMID: 18678799]
[65]
Chawarska K, Macari S, Shic F. Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biol Psychiatry 2013; 74(3): 195-203.
[http://dx.doi.org/10.1016/j.biopsych.2012.11.022] [PMID: 23313640]
[66]
Riby DM, Doherty-Sneddon G, Whittle L. Face-to-face interference in typical and atypical development. Dev Sci 2012; 15(2): 281-91.
[http://dx.doi.org/10.1111/j.1467-7687.2011.01125.x] [PMID: 22356183]
[67]
Sasson NJ, Touchstone EW. Visual attention to competing social and object images by preschool children with autism spectrum disorder. J Autism Dev Disord 2014; 44(3): 584-92.
[http://dx.doi.org/10.1007/s10803-013-1910-z] [PMID: 23918441]
[68]
Unruh KE, Sasson NJ, Shafer RL, et al. Social orienting and attention is influenced by the presence of competing nonsocial information in adolescents with autism. Front Neurosci 2016; 10: 586.
[http://dx.doi.org/10.3389/fnins.2016.00586] [PMID: 28066169]
[69]
Harrop C, Jones D, Zheng S, Nowell S, Schultz R, Parish-Morris J. Visual attention to faces in children with autism spectrum disorder: are there sex differences? Mol Autism 2019; 10(1): 28.
[http://dx.doi.org/10.1186/s13229-019-0276-2] [PMID: 31297179]
[70]
Schafer G, Plunkett K. Rapid word learning by fifteen-month-olds under tightly controlled conditions. Child Dev 1998; 69(2): 309-20.
[http://dx.doi.org/10.1111/j.1467-8624.1998.tb06190.x] [PMID: 9586207]
[71]
Houston-Price C, Plunkett K, Duffy H. The use of social and salience cues in early word learning. J Exp Child Psychol 2006; 95(1): 27-55.
[http://dx.doi.org/10.1016/j.jecp.2006.03.006] [PMID: 16677668]
[72]
Charman T, Drew A, Baird C, Baird G. Measuring early language development in preschool children with autism spectrum disorder using the MacArthur Communicative Development Inventory (Infant Form). J Child Lang 2003; 30(1): 213-36.
[http://dx.doi.org/10.1017/S0305000902005482] [PMID: 12718299]
[73]
Charman T, Pickles A, Simonoff E, et al. IQ in children with autism spectrum disorders: data from the Special Needs and Autism Project (SNAP). Psychol Med 41(3)2011; 41(3): 619-27.
[74]
Marks IM. Fears, phobias, and rituals: Panic, anxiety, and their disorders. Oxford University Press on Demand 1987.
[75]
Turner LB, Romanczyk RG. Assessment of fear in children with an autism spectrum disorder. Res Autism Spectr Disord 2012; 6(3): 1203-10.
[http://dx.doi.org/10.1016/j.rasd.2012.03.010]
[76]
LeBeau RT, Glenn D, Liao B, et al. Specific phobia: a review of DSM-IV specific phobia and preliminary recommendations for DSM-V. Depress Anxiety 2010; 27(2): 148-67.
[http://dx.doi.org/10.1002/da.20655] [PMID: 20099272]
[77]
Van Houtem CMHH, Laine ML, Boomsma DI, Ligthart L, van Wijk AJ, De Jongh A. A review and meta-analysis of the heritability of specific phobia subtypes and corresponding fears. J Anxiety Disord 2013; 27(4): 379-88.
[http://dx.doi.org/10.1016/j.janxdis.2013.04.007] [PMID: 23774007]
[78]
Leyfer OT, Folstein SE, Bacalman S, et al. Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord 2006; 36(7): 849-61.
[http://dx.doi.org/10.1007/s10803-006-0123-0] [PMID: 16845581]
[79]
Muris P, Merckelbach H, Mayer B, Prins E. How serious are common childhood fears? Behav Res Ther 2000; 38(3): 217-28.
[http://dx.doi.org/10.1016/S0005-7967(98)00204-6] [PMID: 10665156]
[80]
Ollendick TH, King NJ, Muris P. Fears and phobias in children: phenomenology, epidemiology and aetiology. Child Adolesc Ment Health 2002; 7: 98-106.
[http://dx.doi.org/10.1111/1475-3588.00019]
[81]
Evans DW, Canavera K, Kleinpeter FL, Maccubbin E, Taga K. The fears, phobias and anxieties of children with autism spectrum disorders and Down syndrome: comparisons with developmentally and chronologically age matched children. Child Psychiatry Hum Dev 2005; 36(1): 3-26.
[http://dx.doi.org/10.1007/s10578-004-3619-x] [PMID: 16049642]
[82]
Mayes SD, Calhoun SL, Mayes RD, et al. Autism and ADHD: overlapping and discriminating symptoms. Res Autism Spectr Disord 2012; 6: 277-85.
[http://dx.doi.org/10.1016/j.rasd.2011.05.009]
[83]
Mayes SD, Calhoun SL, Aggarwal R, et al. Unusual fears in children with autism. Res Autism Spectr Disord 2013; 7: 151-8.
[http://dx.doi.org/10.1016/j.rasd.2012.08.002]
[84]
White SW, Schry AR, Maddox BB. Brief report: The assessment of anxiety in high-functioning adolescents with autism spectrum disorder. J Autism Dev Disord 2012; 42(6): 1138-45.
[http://dx.doi.org/10.1007/s10803-011-1353-3] [PMID: 21874396]
[85]
Schulz SE, Stevenson RA. Sensory hypersensitivity predicts repetitive behaviours in autistic and typically-developing children. Autism 2019; 23(4): 1028-41.
[http://dx.doi.org/10.1177/1362361318774559] [PMID: 30244585]
[86]
Schauder KB, Bennetto L. Toward an interdisciplinary understanding of sensory dysfunction in autism spectrum disorder: an integration of the neural and symptom literatures. Front Neurosci 2016; 10: 268.
[http://dx.doi.org/10.3389/fnins.2016.00268] [PMID: 27378838]
[87]
Deschrijver E, Wiersema JR, Brass M. Action-based touch observation in adults with high functioning autism: Can compromised self-other distinction abilities link social and sensory everyday problems? Soc Cogn Affect Neurosci 2017; 12(2): 273-82.
[http://dx.doi.org/10.1093/scan/nsw126] [PMID: 27613781]
[88]
Jiujias M, Kelley E, Hall L. Restricted, repetitive behaviors in autism spectrum disorder and obsessive-compulsive disorder: A comparative review. Child Psychiatry Hum Dev 2017; 48(6): 944-59.
[http://dx.doi.org/10.1007/s10578-017-0717-0] [PMID: 28281020]
[89]
Haesen B, Boets B, Wagemans J. A review of behavioural and electrophysiological studies on auditory processing and speech perception in autism spectrum disorders. Res Autism Spectr Disord 2011; 5(2): 701-14.
[http://dx.doi.org/10.1016/j.rasd.2010.11.006]
[90]
Robertson AE, David R Simmons R. The sensory experiences of adults with autism spectrum disorder: A qualitative analysis. Perception 2015; 44(5): 569-86.
[http://dx.doi.org/10.1068/p7833] [PMID: 26422904]
[91]
McDiarmid TA, Bernardos AC, Rankin CH. Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev 2017; 80: 286-305.
[http://dx.doi.org/10.1016/j.neubiorev.2017.05.028] [PMID: 28579490]
[92]
Dell’Osso L, Carpita B, Muti D, et al. Mood symptoms and suicidality across the autism spectrum. Compr Psychiatry 2019; 91: 34-8.
[http://dx.doi.org/10.1016/j.comppsych.2019.03.004] [PMID: 31003723]
[93]
Ayano G, Maravilla JC, Alati R. Risk of autistic spectrum disorder in offspring with parental mood disorders: A systematic review and meta-analysis. J Affect Disord 2019; 248: 185-97.
[http://dx.doi.org/10.1016/j.jad.2019.01.038] [PMID: 30739049]
[94]
Marí-Bauset S, Zazpe I, Mari-Sanchis A, Llopis-González A, Morales-Suárez-Varela M. Evidence of the gluten-free and casein-free diet in autism spectrum disorders: a systematic review. J Child Neurol 2014; 29(12): 1718-27.
[http://dx.doi.org/10.1177/0883073814531330] [PMID: 24789114]
[95]
Bandini LG, Curtin C, Eliasziw M, et al. Food selectivity in a diverse sample of young children with and without intellectual disabilities. Appetite 2019; 133: 433-40.
[http://dx.doi.org/10.1016/j.appet.2018.11.016] [PMID: 30468805]
[96]
Accardo J. Food selectivity in autism: Expanding the palate (and palette). J Pediatr 2019; 211: 1-3.
[http://dx.doi.org/10.1016/j.jpeds.2019.06.007] [PMID: 31349908]
[97]
Bicer AH, Alsaffar AA. Body mass index, dietary intake and feeding problems of Turkish children with autism spectrum disorder (ASD). Res Dev Disabil 2013; 34(11): 3978-87.
[http://dx.doi.org/10.1016/j.ridd.2013.08.024] [PMID: 24029808]
[98]
Miyajima A, Tateyama K, Hirao K, et al. An exploratory study on the factors of food preferences and approaches for selective eating in children with Autism Spectrum Disorder (ASD). Japanese Occupational Therapy Research 2014; 33(2): 124-36.
[99]
Miyajima A, Tateyama K, Fuji S, Nakaoka K, Hirao K, Higaki K. Development of an intervention programme for selective eating in children with autism spectrum disorder. Hong Kong J Occup Ther 2017; 30(1): 22-32.
[http://dx.doi.org/10.1016/j.hkjot.2017.10.001] [PMID: 30186077]
[100]
Johnson CR, Turner K, Stewart PA, et al. Relationships between feeding problems, behavioral characteristics and nutritional quality in children with ASD. J Autism Dev Disord 2014; 44(9): 2175-84.
[http://dx.doi.org/10.1007/s10803-014-2095-9] [PMID: 24664635]
[101]
Suarez MA, Nelson NW, Curtis AB. Longitudinal follow-up of factors associated with food selectivity in children with autism spectrum disorders. Autism 2014; 18(8): 924-32.
[http://dx.doi.org/10.1177/1362361313499457] [PMID: 24121181]
[102]
Kuschner ES, Eisenberg IW, Orionzi B, et al. A preliminary study of self-reported food selectivity in adolescents and young adults with autism spectrum disorder. Res Autism Spectr Disord 2015; 15-16: 53-9.
[http://dx.doi.org/10.1016/j.rasd.2015.04.005] [PMID: 26309446]
[103]
Herndon AC, DiGuiseppi C, Johnson SL, Leiferman J, Reynolds A. Does nutritional intake differ between children with autism spectrum disorders and children with typical development? J Autism Dev Disord 2009; 39(2): 212-22.
[http://dx.doi.org/10.1007/s10803-008-0606-2] [PMID: 18600441]
[104]
Bandini LG, Anderson SE, Curtin C, et al. Food selectivity in children with autism spectrum disorders and typically developing children. J Pediatr 2010; 157(2): 259-64.
[http://dx.doi.org/10.1016/j.jpeds.2010.02.013] [PMID: 20362301]
[105]
Bölte S, Hubl D, Feineis-Matthews S, Prvulovic D, Dierks T, Poustka F. Facial affect recognition training in autism: can we animate the fusiform gyrus? Behav Neurosci 2006; 120(1): 211-6.
[http://dx.doi.org/10.1037/0735-7044.120.1.211] [PMID: 16492133]
[106]
Brewer R, Biotti F, Catmur C, et al. |Can neurotypical individuals read autistic facial expressions? Atypical production of emotional facial expressions in autism spectrum disorders. Autism Res 2016; 9(2): 262-71.
[http://dx.doi.org/10.1002/aur.1508] [PMID: 26053037]
[107]
Samad MD, Bobzien JL, Harrington JW, et al. Non-intrusive optical imaging of face to probe physiological traits in Autism Spectrum Disorder. Opt Laser Technol 2016; 77: 221-8.
[http://dx.doi.org/10.1016/j.optlastec.2015.09.030]
[108]
Egger HL, Dawson G, Hashemi J, et al. Autism and beyond: lessons from an iphone study of young children. J Am Acad Child Adolesc Psychiatry 2018; 57: S33-4.
[http://dx.doi.org/10.1016/j.jaac.2018.07.145]
[109]
Kowallik AE, Schweinberger SR. Sensor-based technology for social information processing in autism: a review. Sensors (Basel) 2019; 19(21): 4787.
[http://dx.doi.org/10.3390/s19214787] [PMID: 31689906]
[110]
Jaswal VK, Akhtar N. Being versus appearing socially uninterested: Challenging assumptions about social motivation in autism. Behav Brain Sci 2019; 42: e82.
[http://dx.doi.org/10.1017/S0140525X18001826]
[111]
Ninci J, Lang R, Davenport K, et al. An analysis of the generalization and maintenance of eye contact taught during play. Dev Neurorehabil 2013; 16(5): 301-7.
[http://dx.doi.org/10.3109/17518423.2012.730557] [PMID: 24020876]
[112]
Carbone VJ, O’Brien L, Sweeney-Kerwin EJ, et al. Teaching eye contact to children with autism: A conceptual analysis and single case study. Educ Treat Child 2013; 36(2): 139-59.
[http://dx.doi.org/10.1353/etc.2013.0013]
[113]
Fonger AM, Malott RW. Using shaping to Teach Eye Contact to Children with Autism Spectrum Disorder. Behav Anal Pract 2018; 12(1): 216-21.
[http://dx.doi.org/10.1007/s40617-018-0245-9] [PMID: 30918788]
[114]
Yoshikawa Y, Kumazaki H, Matsumoto Y, Miyao M, Kikuchi M, Ishiguro H. Relaxing gaze aversion of adolescents with autism spectrum disorder in consecutive conversations with human and android robot-a preliminary study. Front Psychiatry 2019; 10: 370.
[http://dx.doi.org/10.3389/fpsyt.2019.00370] [PMID: 31258488]
[115]
Meiran N, Pereg M, Kessler Y, Cole MW, Braver TS. The power of instructions: Proactive configuration of stimulus-response translation. J Exp Psychol Learn Mem Cogn 2015; 41(3): 768-86.
[http://dx.doi.org/10.1037/xlm0000063] [PMID: 25329082]
[116]
Dennis JP, Vander Wal JS. The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cognit Ther Res 2010; 34(3): 241-53.
[http://dx.doi.org/10.1007/s10608-009-9276-4]
[117]
Geurts HM, Corbett B, Solomon M. The paradox of cognitive flexibility in autism. Trends Cogn Sci 2009; 13(2): 74-82.
[http://dx.doi.org/10.1016/j.tics.2008.11.006] [PMID: 19138551]
[118]
Ladouceur CD, Peper JS, Crone EA, Dahl RE. White matter development in adolescence: the influence of puberty and implications for affective disorders. Dev Cogn Neurosci 2012; 2(1): 36-54.
[http://dx.doi.org/10.1016/j.dcn.2011.06.002] [PMID: 22247751]
[119]
Brosnan M, Lewton M, Ashwin C. Reasoning on the autism spectrum: a dual process theory account. J Autism Dev Disord 2016; 46(6): 2115-25.
[http://dx.doi.org/10.1007/s10803-016-2742-4] [PMID: 26960339]
[120]
Tei S, Fujino J, Hashimoto RI, et al. Inflexible daily behaviour is associated with the ability to control an automatic reaction in autism spectrum disorder. Sci Rep 2018; 8(1): 8082.
[http://dx.doi.org/10.1038/s41598-018-26465-7] [PMID: 29795394]
[121]
Fujino J, Tei S, Itahashi T, et al. Need for closure and cognitive flexibility in individuals with autism spectrum disorder: A preliminary study. Psychiatry Res 2019; 271: 247-52.
[http://dx.doi.org/10.1016/j.psychres.2018.11.057] [PMID: 30504060]
[122]
Pelligra V, Isoni A, Fadda R, et al. Theory of mind, perceived intentions and reciprocal behaviour: Evidence from individuals with Autism Spectrum Disorder. J Econ Psychol 2015; 49: 95-107.
[http://dx.doi.org/10.1016/j.joep.2015.05.001]
[123]
O’Hagan S, Hebron J. Perceptions of friendship among adolescents with autism spectrum conditions in a mainstream high school resource provision. Eur J Spec Needs Educ 2017; 32(3): 314-28.
[http://dx.doi.org/10.1080/08856257.2016.1223441]
[124]
Sosnowy C, Silverman C, Shattuck P, et al. Setbacks and successes: how young adults on the autism spectrum seek friendship. Autism in Adulthood 2018; 1(1): 44-51.
[http://dx.doi.org/10.1089/aut.2018.0009]
[125]
Sumiya M, Igarashi K, Miyahara M. Emotions surrounding friendships of adolescents with autism spectrum disorder in Japan: A qualitative interview study. PLoS One 2018; 13(2): e0191538.
[http://dx.doi.org/10.1371/journal.pone.0191538] [PMID: 29408894]
[126]
Cook A, Ogden J, Winstone N. Friendship motivations, challenges and the role of masking for girls with autism in contrasting school settings. Eur J Spec Needs Educ 2018; 33(3): 302-15.
[http://dx.doi.org/10.1080/08856257.2017.1312797]
[127]
Volkmar FR, Paul R, Pelphrey KA, et al. Assessment, Interventions, and Policy. 4th ed. Handbook of Autism and Pervasive Developmental Disorders. Hoboken, New Jersey: John Wiley & Sons 2014; 2: p. 301.
[128]
Sigman M, Dijamco A, Gratier M, Rozga A. Early detection of core deficits in autism. Ment Retard Dev Disabil Res Rev 2004; 10(4): 221-33.
[http://dx.doi.org/10.1002/mrdd.20046] [PMID: 15666338]
[129]
Patten E, Ausderau KK, Watson LR, Baranek GT. Sensory response patterns in nonverbal children with ASD. Autism Res Treat 2013; 2013: 436286.
[http://dx.doi.org/10.1155/2013/436286] [PMID: 23956859]
[130]
Klin A. Autism and Asperger syndrome: an overview. Br J Psychiatry 2006; 28(Suppl. 1): S3-11.
[http://dx.doi.org/10.1590/S1516-44462006000500002] [PMID: 16791390]
[131]
Lam KS, Aman MG. The Repetitive Behavior Scale-Revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord 2007; 37(5): 855-66.
[http://dx.doi.org/10.1007/s10803-006-0213-z] [PMID: 17048092]
[132]
Suarez MA. Sensory processing in children with autism spectrum disorders and impact on functioning. Pediatr Clin North Am 2012; 59(1): 203-214, xii-xiii.
[http://dx.doi.org/10.1016/j.pcl.2011.10.012] [PMID: 22284803]
[133]
Pellicano E. Sensory symptoms in autism: a blooming, buzzing confusion? Child Dev Perspect 2013; 7(3): 143-8.
[http://dx.doi.org/10.1111/cdep.12031]
[134]
Tsang LPM, How CH, Yeleswarapu SP, Wong CM. Autism spectrum disorder: early identification and management in primary care. Singapore Med J 2019; 60(7): 324-8.
[http://dx.doi.org/10.11622/smedj.2019070] [PMID: 31378825]
[135]
Kapp SK, Steward R, Crane L, et al. ‘People should be allowed to do what they like’: Autistic adults’ views and experiences of stimming. Autism 2019; 23(7): 1782-92.
[http://dx.doi.org/10.1177/1362361319829628] [PMID: 30818970]
[136]
Hubbard KL, Anderson SE, Curtin C, Must A, Bandini LG. A comparison of food refusal related to characteristics of food in children with autism spectrum disorder and typically developing children. J Acad Nutr Diet 2014; 114(12): 1981-7.
[http://dx.doi.org/10.1016/j.jand.2014.04.017] [PMID: 24928779]
[137]
Uyemura MC. Foreign body ingestion in children. Am Fam Physician 2005; 72(2): 287-91.
[PMID: 16050452]
[138]
Kramer RE, Lerner DG, Lin T, et al. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Endoscopy Committee. Management of ingested foreign bodies in children: a clinical report of the NASPGHAN Endoscopy Committee. J Pediatr Gastroenterol Nutr 2015; 60(4): 562-74.
[http://dx.doi.org/10.1097/MPG.0000000000000729] [PMID: 25611037]
[139]
Gummin DD, Mowry JB, Spyker DA, Brooks DE, Fraser MO, Banner W. 2016 annual report of the american association of poison control centers’ national poison data system (NPDS): 34th annual report. Clin Toxicol (Phila) 2017; 55(10): 1072-252.
[http://dx.doi.org/10.1080/15563650.2017.1388087] [PMID: 29185815]
[140]
Fujisawa J, Mutoh T, Kawamura K, et al. Age-specific differences in foreign bodies ingested by children: a cohort study of 252 Japanese cases. Medicina (B Aires) 2020; 56(1): 39.
[http://dx.doi.org/10.3390/medicina56010039] [PMID: 32044740]
[141]
Parry-Jones B, Parry-Jones WL. Pica: symptom or eating disorder? A historical assessment. Br J Psychiatry 1992; 160: 341-54.
[http://dx.doi.org/10.1192/bjp.160.3.341] [PMID: 1562860]
[142]
Patel S, Day TN, Jones N, Mazefsky CA. Association between anger rumination and autism symptom severity, depression symptoms, aggression, and general dysregulation in adolescents with autism spectrum disorder. Autism 2017; 21(2): 181-9.
[http://dx.doi.org/10.1177/1362361316633566] [PMID: 27095831]
[143]
Poudel R, Shrestha S. Small bowel obstruction due to foreign body ingestion in an autistic child. J Uni Coll Med Sci 2019; 7(2): 82-4.
[http://dx.doi.org/10.3126/jucms.v7i2.27146]
[144]
Stiegler LN. Understanding pica behavior: A review for clinical and education professionals. Focus Autism Other Dev Disabl 2005; 20(1): 27-38.
[http://dx.doi.org/10.1177/10883576050200010301]
[145]
Ashworth M, Martin L, Hirdes JP. Prevalence and correlates of pica among adults with intellectual disability in institutions. J Ment Health Res Intellect Disabil 2008; 1(3): 176-90.
[http://dx.doi.org/10.1080/19315860802029154]
[146]
Thurm A, Farmer C, Salzman E, Lord C, Bishop S. State of the field: differentiating intellectual disability from autism spectrum disorder. Front Psychiatry 2019; 10: 526.
[http://dx.doi.org/10.3389/fpsyt.2019.00526] [PMID: 31417436]
[147]
Castillo MA, Urdaneta KE, Semprún-Hernández N, et al. Speech-stimulating substances in autism spectrum disorders. Behav Sci (Basel) 2019; 9(6): 60.
[http://dx.doi.org/10.3390/bs9060060] [PMID: 31212856]
[148]
Tager-Flusberg H, Kasari C. Minimally verbal school-aged children with autism spectrum disorder: the neglected end of the spectrum. Autism Res 2013; 6(6): 468-78.
[http://dx.doi.org/10.1002/aur.1329] [PMID: 24124067]
[149]
Kasari C, Brady N, Lord C, Tager-Flusberg H. Assessing the minimally verbal school-aged child with autism spectrum disorder. Autism Res 2013; 6(6): 479-93.
[http://dx.doi.org/10.1002/aur.1334] [PMID: 24353165]
[150]
Nyrenius J, Billstedt E. The functional impact of cognition in adults with autism spectrum disorders. Nord J Psychiatry 2019; 1-6.
[PMID: 31762354]
[151]
Anderson DK, Liang JW, Lord C. Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disorders. J Child Psychol Psychiatry 2014; 55(5): 485-94.
[http://dx.doi.org/10.1111/jcpp.12178] [PMID: 24313878]
[152]
Henninger NA, Taylor JL. Family perspectives on a successful transition to adulthood for individuals with disabilities. Intellect Dev Disabil 2014; 52(2): 98-111.
[http://dx.doi.org/10.1352/1934-9556-52.2.98] [PMID: 24725109]
[153]
Howlin P, Magiati I. Autism spectrum disorder: outcomes in adulthood. Curr Opin Psychiatry 2017; 30(2): 69-76.
[http://dx.doi.org/10.1097/YCO.0000000000000308] [PMID: 28067726]
[154]
Kenny L, Cribb SJ, Pellicano E. Childhood executive function predicts later autistic features and adaptive behavior in young autistic people: a 12-year prospective study. J Abnorm Child Psychol 2019; 47(6): 1089-99.
[http://dx.doi.org/10.1007/s10802-018-0493-8] [PMID: 30421376]
[155]
Johnston K, Murray K, Spain D, et al. Executive function: cognition and behaviour in adults with Autism Spectrum Disorders (ASD). J Autism Dev Disord 2019; 49: 4181-92.
[156]
Colombo-Dougovito AM, Lee J. Social skill Outcomes Following Physical Activity-Based Interventions for Individuals on the Autism Spectrum: A Scoping Review Spanning Young Childhood Through Young Adulthood. Adapt Phys Activ Q 2020; 1-32.
[http://dx.doi.org/10.1123/apaq.2019-0080] [PMID: 33285514]
[157]
Livingston LA, Happé F. Conceptualising compensation in neurodevelopmental disorders: Reflections from autism spectrum disorder. Neurosci Biobehav Rev 2017; 80: 729-42.
[http://dx.doi.org/10.1016/j.neubiorev.2017.06.005] [PMID: 28642070]
[158]
Livingston LA, Colvert E, Bolton P, Happé F. Social Relationships Study Team. Good social skills despite poor theory of mind: exploring compensation in autism spectrum disorder. J Child Psychol Psychiatry 2019; 60(1): 102-10.
[http://dx.doi.org/10.1111/jcpp.12886] [PMID: 29582425]
[159]
Leader G, Molina Bonilla P, Naughton K, et al. Complex comorbid Presentations are Associated with Harmful Behavior Problems among Children and Adolescents with Cerebral Palsy. Dev Neurorehabil 2020; 1-10.
[http://dx.doi.org/10.1080/17518423.2020.1770353] [PMID: 32508226]
[160]
Buie T, Campbell DB, Fuchs GJ III, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 2010; 125(S1): S1-18.
[http://dx.doi.org/10.1542/peds.2009-1878C]
[161]
McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 2014; 133(5): 872-83.
[http://dx.doi.org/10.1542/peds.2013-3995] [PMID: 24777214]
[162]
Barnhill K, Gutierrez A. Analysis of dietary intake and nutritional status in children with autism spectrum disorder. Autism-Open Access 2015; 5: 3.
[http://dx.doi.org/10.4172/2165-7890.1000154]
[163]
Saad K, Abdel-Rahman AA, Elserogy YM, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci 2016; 19(8): 346-51.
[http://dx.doi.org/10.1179/1476830515Y.0000000019] [PMID: 25876214]
[164]
Latif A, Heinz P, Cook R. Iron deficiency in autism and Asperger syndrome. Autism 2002; 6(1): 103-14.
[http://dx.doi.org/10.1177/1362361302006001008] [PMID: 11918106]
[165]
Rubenstein E, Schieve L, Bradley C, et al. The prevalence of gluten free diet use among preschool children with autism spectrum disorder. Autism Res 2018; 11(1): 185-93.
[http://dx.doi.org/10.1002/aur.1896] [PMID: 29155492]
[166]
Hyman SL, Stewart PA, Foley J, et al. The gluten-free/casein-free diet: a double-blind challenge trial in children with autism. J Autism Dev Disord 2016; 46(1): 205-20.
[http://dx.doi.org/10.1007/s10803-015-2564-9] [PMID: 26343026]
[167]
Ghalichi F, Ghaemmaghami J, Malek A, Ostadrahimi A. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J Pediatr 2016; 12(4): 436-42.
[http://dx.doi.org/10.1007/s12519-016-0040-z] [PMID: 27286693]
[168]
Alessandria C, Caviglia GP, Campion D, et al. HLA-DQ Genotyping, duodenal histology, and response to exclusion diet in autistic children with gastrointestinal symptoms. J Pediatr Gastroenterol Nutr 2019; 69(1): 39-44.
[http://dx.doi.org/10.1097/MPG.0000000000002293] [PMID: 31232884]
[169]
Michel M, Schmidt MJ, Mirnics K. Immune system gene dysregulation in autism and schizophrenia. Dev Neurobiol 2012; 72(10): 1277-87.
[http://dx.doi.org/10.1002/dneu.22044] [PMID: 22753382]
[170]
Gupta S, Ellis SE, Ashar FN, et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 2014; 5: 5748.
[http://dx.doi.org/10.1038/ncomms6748] [PMID: 25494366]
[171]
Carpita B, Marazziti D, Palego L, et al. Microbiota, immune system and autism spectrum disorders. an integrative model towards novel treatment options. Curr Med Chem 2019.
[PMID: 31448708]
[172]
Paysour MJ, Bolte AC, Lukens JR. Crosstalk between the microbiome and gestational immunity in autism-related disorders. DNA Cell Biol 2019; 38(5): 405-9.
[http://dx.doi.org/10.1089/dna.2019.4653] [PMID: 30817175]
[173]
Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology 2017; 42(1): 284-98.
[http://dx.doi.org/10.1038/npp.2016.158] [PMID: 27534269]
[174]
DiStasio MM, Nagakura I, Nadler MJ, Anderson MP. T lymphocytes and cytotoxic astrocyte blebs correlate across autism brains. Ann Neurol 2019; 86(6): 885-98.
[http://dx.doi.org/10.1002/ana.25610] [PMID: 31591744]
[175]
Xie S, Karlsson H, Dalman C, et al. Family history of mental and neurological disorders and risk of autism. JAMA Netw Open 2019; 2(3): e190154.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.0154] [PMID: 30821823]
[176]
Frye RE, Rossignol DA. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res 2011; 69(5 Pt 2): 41R-7R.
[http://dx.doi.org/10.1203/PDR.0b013e318212f16b] [PMID: 21289536]
[177]
Luigetti M, Sauchelli D, Primiano G, et al. Peripheral neuropathy is a common manifestation of mitochondrial diseases: a single-centre experience. Eur J Neurol 2016; 23(6): 1020-7.
[http://dx.doi.org/10.1111/ene.12954] [PMID: 26822221]
[178]
Luigetti M, Primiano G, Cuccagna C, et al. Small fibre neuropathy in mitochondrial diseases explored with sudoscan. Clin Neurophysiol 2018; 129(8): 1618-23.
[http://dx.doi.org/10.1016/j.clinph.2018.04.755] [PMID: 29890373]
[179]
Sundelin HE, Larsson H, Lichtenstein P, et al. Autism and epilepsy: A population-based nationwide cohort study. Neurology 2016; 87(2): 192-7.
[http://dx.doi.org/10.1212/WNL.0000000000002836] [PMID: 27306624]
[180]
Canitano R. Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 2007; 16(1): 61-6.
[http://dx.doi.org/10.1007/s00787-006-0563-2] [PMID: 16932856]
[181]
Mash EJ, Barkley RA. Child Psychopathology. New York: The Guilford Press 2003; pp. 409-54.
[182]
O’Brien G, Pearson J. Autism and learning disability. Autism 2004; 8(2): 125-40.
[http://dx.doi.org/10.1177/1362361304042718] [PMID: 15165430]
[183]
Chiurazzi P, Pirozzi F. Advances in understanding-genetic basis of intellectual disability. F1000 Res 2016; 5: 599.
[http://dx.doi.org/10.12688/f1000research.7134.1]
[184]
Mazarati AM, Lewis ML, Pittman QJ. Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia 2017; 58(Suppl. 3): 48-56.
[http://dx.doi.org/10.1111/epi.13786] [PMID: 28675557]
[185]
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2018; 47(6): 534-48.
[http://dx.doi.org/10.1111/ejn.13595] [PMID: 28452083]
[186]
Li J, Wang L, Guo H, et al. Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Mol Psychiatry 2017; 22(9): 1282-90.
[http://dx.doi.org/10.1038/mp.2017.140] [PMID: 28831199]
[187]
Meng H, Xu HQ, Yu L, et al. The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat 2015; 36(6): 573-80.
[http://dx.doi.org/10.1002/humu.22782] [PMID: 25754450]
[188]
Molnár Z, Clowry GJ, Šestan N, et al. New insights into the development of the human cerebral cortex. J Anat 2019; 235(3): 432-51.
[http://dx.doi.org/10.1111/joa.13055] [PMID: 31373394]
[189]
Nakagawa N, Plestant C, Yabuno-Nakagawa K, et al. Memo1-mediated tiling of radial glial cells facilitates cerebral cortical development. Neuron 2019; 103(5): 836-852.e5.
[http://dx.doi.org/10.1016/j.neuron.2019.05.049] [PMID: 31277925]
[190]
Krakowiak P, Goodlin-Jones B, Hertz-Picciotto I, Croen LA, Hansen RL. Sleep problems in children with autism spectrum disorders, developmental delays, and typical development: a population-based study. J Sleep Res 2008; 17(2): 197-206.
[http://dx.doi.org/10.1111/j.1365-2869.2008.00650.x] [PMID: 18482108]
[191]
Mayes SD, Calhoun SL. Variables related to sleep problems in children with autism. Res Autism Spectr Disord 2009; 3(4): 931-41.
[http://dx.doi.org/10.1016/j.rasd.2009.04.002]
[192]
Richdale AL, Schreck KA. Sleep problems in autism spectrum disorders: Prevalence, nature, & possible biopsychosocial aetiologies. Sleep Medicine Reviews 2009; 13 (6).
[193]
Carmassi C, Palagini L, Caruso D, et al. Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 2019; 10: 366.
[http://dx.doi.org/10.3389/fpsyt.2019.00366] [PMID: 31244687]
[194]
Geoffray MM, Nicolas A, Speranza M, Georgieff N. Are circadian rhythms new pathways to understand Autism Spectrum Disorder? J Physiol Paris 2016; 110(4 Pt B): 434-8.
[http://dx.doi.org/10.1016/j.jphysparis.2017.06.002] [PMID: 28625682]
[195]
Kotagal S, Broomall E. Sleep in children with autism spectrum disorder. Pediatr Neurol 2012; 47(4): 242-51.
[http://dx.doi.org/10.1016/j.pediatrneurol.2012.05.007] [PMID: 22964437]
[196]
Mannion A, Leader G. Sleep problems in autism spectrum disorder: A literature review. J Autism Dev Disord 2014; 1(2): 101-9.
[http://dx.doi.org/10.1007/s40489-013-0009-y]
[197]
Tordjman S, Anderson GM, Bellissant E, et al. Day and nighttime excretion of 6-sulphatoxymelatonin in adolescents and young adults with autistic disorder. Psychoneuroendocrinology 2012; 37(12): 1990-7.
[http://dx.doi.org/10.1016/j.psyneuen.2012.04.013] [PMID: 22613035]
[198]
Tordjman S, Davlantis KS, Georgieff N, et al. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives. Front Pediatr 2015; 3: 1.
[http://dx.doi.org/10.3389/fped.2015.00001] [PMID: 25756039]
[199]
Kobayashi Y, Ye Z, Hensch TK. Clock genes control cortical critical period timing. Neuron 2015; 86(1): 264-75.
[http://dx.doi.org/10.1016/j.neuron.2015.02.036] [PMID: 25801703]
[200]
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 2010; 72: 517-49.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135821] [PMID: 20148687]
[201]
Cortesi F, Giannotti F, Sebastiani T, Panunzi S, Valente D. Controlled-release melatonin, singly and combined with cognitive behavioural therapy, for persistent insomnia in children with autism spectrum disorders: a randomized placebo-controlled trial. J Sleep Res 2012; 21(6): 700-9.
[http://dx.doi.org/10.1111/j.1365-2869.2012.01021.x] [PMID: 22616853]
[202]
Holloway JM, Long TM, Biasini F. Relationships between gross motor skills and social function in young boys with autism spectrum disorder. Pediatr Phys Ther 2018; 30(3): 184-90.
[http://dx.doi.org/10.1097/PEP.0000000000000505] [PMID: 29727358]
[203]
Johnson BP, Rinehart NJ, White O, Millist L, Fielding J. Saccade adaptation in autism and Asperger’s disorder. Neuroscience 2013; 243: 76-87.
[http://dx.doi.org/10.1016/j.neuroscience.2013.03.051] [PMID: 23562581]
[204]
Mosconi MW, Luna B, Kay-Stacey M, et al. Saccade adaptation abnormalities implicate dysfunction of cerebellar-dependent learning mechanisms in Autism Spectrum Disorders (ASD). PLoS One 2013; 8(5): e63709.
[http://dx.doi.org/10.1371/journal.pone.0063709] [PMID: 23704934]
[205]
Geschwind DH. Advances in autism. Annu Rev Med 2009; 60: 367-80.
[http://dx.doi.org/10.1146/annurev.med.60.053107.121225] [PMID: 19630577]
[206]
Oristaglio J, Hyman West S, Ghaffari M, et al. Children with autism spectrum disorders show abnormal conditioned response timing on delay, but not trace, eyeblink conditioning. Neuroscience 2013; 248: 708-18.
[http://dx.doi.org/10.1016/j.neuroscience.2013.06.007] [PMID: 23769889]
[207]
Fatemi SH, Aldinger KA, Ashwood P, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 2012; 11(3): 777-807.
[http://dx.doi.org/10.1007/s12311-012-0355-9] [PMID: 22370873]
[208]
Alaerts K, Woolley DG, Steyaert J, Di Martino A, Swinnen SP, Wenderoth N. Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Soc Cogn Affect Neurosci 2014; 9(10): 1589-600.
[http://dx.doi.org/10.1093/scan/nst156] [PMID: 24078018]
[209]
Delbruck E, Yang M, Yassine A, Grossman ED. Functional connectivity in ASD: Atypical pathways in brain networks supporting action observation and joint attention. Brain Res 2019; 1706: 157-65.
[http://dx.doi.org/10.1016/j.brainres.2018.10.029] [PMID: 30392771]
[210]
MacDonald M, Lord C, Ulrich DA. Motor skills and calibrated autism severity in young children with autism spectrum disorder. Adapt Phys Activ Q 2014; 31(2): 95-105.
[http://dx.doi.org/10.1123/apaq.2013-0068] [PMID: 24762385]
[211]
Stins JF, Ledebt A, Emck C, van Dokkum EH, Beek PJ. Patterns of postural sway in high anxious children. Behav Brain Funct 2009; 5: 42.
[http://dx.doi.org/10.1186/1744-9081-5-42] [PMID: 19799770]
[212]
Ozsivadjian A, Knott F. Anxiety problems in young people with autism spectrum disorder: a case series. Clin Child Psychol Psychiatry 2011; 16(2): 203-14.
[http://dx.doi.org/10.1177/1359104511404749] [PMID: 21571763]
[213]
Wijnhoven LAMW, Creemers DHM, Vermulst AA, Granic I. Prevalence and risk factors of anxiety in a clinical Dutch sample of children with an autism spectrum disorder. Front Psychiatry 2018; 9: 50.
[http://dx.doi.org/10.3389/fpsyt.2018.00050] [PMID: 29551982]
[214]
Horslen BC, Carpenter MG. Arousal, valence and their relative effects on postural control. Exp Brain Res 2011; 215(1): 27-34.
[http://dx.doi.org/10.1007/s00221-011-2867-9] [PMID: 21947171]
[215]
Moseley RL, Pulvermüller F. What can autism teach us about the role of sensorimotor systems in higher cognition? New clues from studies on language, action semantics, and abstract emotional concept processing. Cortex 2018; 100: 149-90.
[http://dx.doi.org/10.1016/j.cortex.2017.11.019] [PMID: 29306521]
[216]
Victorio M. EHMTI-0290. Headaches in patients with autism spectrum disorder. J Headache Pain 2014; 15: B37.
[http://dx.doi.org/10.1186/1129-2377-15-S1-B37]
[217]
Asztély K, Kopp S, Gillberg C, Waern M, Bergman S. Chronic pain and health-Related Quality Of Life In Women With Autism And/Or ADHD: A Prospective Longitudinal Study. J Pain Res 2019; 12: 2925-32.
[http://dx.doi.org/10.2147/JPR.S212422] [PMID: 31695481]
[218]
Sullivan JC, Miller LJ, Nielsen DM, Schoen SA. The presence of migraines and its association with sensory hyperreactivity and anxiety symptomatology in children with autism spectrum disorder. Autism 2014; 18(6): 743-7.
[http://dx.doi.org/10.1177/1362361313489377] [PMID: 24072661]
[219]
Howe FE, Stagg SD. How sensory experiences affect adolescents with an autistic spectrum condition within the classroom. J Autism Dev Disord 2016; 46(5): 1656-68.
[http://dx.doi.org/10.1007/s10803-015-2693-1] [PMID: 26791372]
[220]
Vannucchi G, Masi G, Toni C, Dell’Osso L, Marazziti D, Perugi G. Clinical features, developmental course, and psychiatric comorbidity of adult autism spectrum disorders. CNS Spectr 2014; 19(2): 157-64.
[http://dx.doi.org/10.1017/S1092852913000941] [PMID: 24352005]
[221]
Nakagawa A, Olsson NC, Hiraoka Y, et al. Long-term outcome of CBT in adults with OCD and comorbid ASD: A naturalistic follow-up study. Curr Psychol 2019; 38(6): 1763-71.
[http://dx.doi.org/10.1007/s12144-018-9952-1]
[222]
Gadelkarim W, Shahper S, Reid J, et al. Overlap of obsessive-compulsive personality disorder and autism spectrum disorder traits among OCD outpatients: an exploratory study. Int J Psychiatry Clin Pract 2019; 23(4): 297-306.
[http://dx.doi.org/10.1080/13651501.2019.1638939] [PMID: 31375037]
[223]
Griffiths DL, Farrell LJ, Waters AM, White SW. ASD traits among youth with obsessive-compulsive disorder. Child Psychiatry Hum Dev 2017; 48(6): 911-21.
[http://dx.doi.org/10.1007/s10578-017-0714-3] [PMID: 28236160]
[224]
Meier SM, Petersen L, Schendel DE, Mattheisen M, Mortensen PB, Mors O. Obsessive-compulsive disorder and autism spectrum disorders: Longitudinal and offspring risk. PLoS One 2015; 10(11): e0141703.
[http://dx.doi.org/10.1371/journal.pone.0141703] [PMID: 26558765]
[225]
Arildskov TW, Højgaard DR, Skarphedinsson G, et al. Subclinical autism spectrum symptoms in pediatric obsessive-compulsive disorder. Eur Child Adolesc Psychiatry 2016; 25(7): 711-23.
[http://dx.doi.org/10.1007/s00787-015-0782-5] [PMID: 26518580]
[226]
Bejerot S. An autistic dimension: a proposed subtype of obsessive-compulsive disorder. Autism 2007; 11(2): 101-10.
[http://dx.doi.org/10.1177/1362361307075699] [PMID: 17353211]
[227]
Ruta L, Mugno D, D’Arrigo VG, Vitiello B, Mazzone L. Obsessive-compulsive traits in children and adolescents with Asperger syndrome. Eur Child Adolesc Psychiatry 2010; 19(1): 17-24.
[http://dx.doi.org/10.1007/s00787-009-0035-6] [PMID: 19557496]
[228]
Mito H, Matsuura N, Mukai K, et al. The impacts of elevated autism spectrum disorder traits on clinical and psychosocial features and long-term treatment outcome in adult patients with obsessive-compulsive disorder. Compr Psychiatry 2014; 55(7): 1526-33.
[http://dx.doi.org/10.1016/j.comppsych.2014.05.005] [PMID: 24957957]
[229]
Reddihough DS, Marraffa C, Mouti A, et al. Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders: a randomized clinical trial. JAMA 2019; 322(16): 1561-9.
[http://dx.doi.org/10.1001/jama.2019.14685] [PMID: 31638682]
[230]
Gaigg SB, Flaxman PE, McLaven G, et al. Self-guided mindfulness and cognitive behavioural practices reduce anxiety in autistic adults: A pilot 8-month waitlist-controlled trial of widely available online tools. Autism 2020; 24(4): 867-83.
[http://dx.doi.org/10.1177/1362361320909184] [PMID: 32267168]
[231]
Wood JJ, Kendall PC, Wood KS, et al. Cognitive behavioral treatments for anxiety in children with autism spectrum disorder: A randomized clinical trial. JAMA Psychiatry 2020; 77(5): 474-83.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.4160] [PMID: 31755906]
[232]
Ramirez AC, Grebe SC, McNeel MM, et al. Parent-led, stepped-care cognitive-behavioral therapy for youth with autism and co-occurring anxiety: study rationale and method. Brazilian J Psychiatry 2020.
[233]
Pickard K, Blakeley-Smith A, Boles R, et al. Examining the sustained use of a cognitive behavioral therapy program for youth with autism spectrum disorder and co-occurring anxiety. Res Autism Spectr Disord 2020; 73: 101532.
[http://dx.doi.org/10.1016/j.rasd.2020.101532]
[234]
Parr JR, Brice S, Welsh P, et al. Treating anxiety in autistic adults: study protocol for the Personalised Anxiety Treatment-Autism (PAT-A©) pilot randomised controlled feasibility trial. Trials 2020; 21(1): 265.
[http://dx.doi.org/10.1186/s13063-020-4161-2] [PMID: 32171316]
[235]
Liu F, Li J, Wu F, Zheng H, Peng Q, Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl Psychiatry 2019; 9(1): 43.
[http://dx.doi.org/10.1038/s41398-019-0389-6] [PMID: 30696816]
[236]
Cekici H, Sanlier N. Current nutritional approaches in managing autism spectrum disorder: A review. Nutr Neurosci 2019; 22(3): 145-55.
[http://dx.doi.org/10.1080/1028415X.2017.1358481] [PMID: 28762296]
[237]
Karhu E, Zukerman R, Eshraghi RS, et al. Nutritional interventions for autism spectrum disorder. Nutr Rev 2020; 78(7): 515-31.
[http://dx.doi.org/10.1093/nutrit/nuz092] [PMID: 31876938]
[238]
Adams JB, Audhya T, Geis E, et al. Comprehensive nutritional and dietary intervention for autism spectrum disorder - A randomized, controlled 12-month trial. Nutrients 2018; 10(3): 369.
[http://dx.doi.org/10.3390/nu10030369] [PMID: 29562612]
[239]
Hollander E, Soorya L, Wasserman S, Esposito K, Chaplin W, Anagnostou E. Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. Int J Neuropsychopharmacol 2006; 9(2): 209-13.
[http://dx.doi.org/10.1017/S1461145705005791] [PMID: 16316486]
[240]
Matsuo K, Yabuki Y, Fukunaga K. 5-aminolevulinic acid inhibits oxidative stress and ameliorates autistic-like behaviors in prenatal valproic acid-exposed rats. Neuropharmacology 2020; 168: 107975.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107975] [PMID: 31991146]
[241]
Zhou MS, Nasir M, Farhat LC, Kook M, Artukoglu BB, Bloch MH. Meta-analysis: pharmacologic treatment of restricted and repetitive behaviors in autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2020; 6.
[PMID: 32387445]
[242]
Escelsior A, Murri MB, Corsini GP, et al. Cannabinoid use and self-injurious behaviours: a systematic review and meta-analysis. J Affect Disord 2020; 12.
[PMID: 32956965]
[243]
Carminati GG, Deriaz N, Bertschy G. Low-dose venlafaxine in three adolescents and young adults with autistic disorder improves self-injurious behavior and attention deficit/hyperactivity disorders (ADHD)-like symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(2): 312-5.
[http://dx.doi.org/10.1016/j.pnpbp.2005.10.002] [PMID: 16307837]
[244]
Marler S, Sanders KB, Veenstra-VanderWeele J. N-acetylcysteine as treatment for self-injurious behavior in a child with autism. J Child Adolesc Psychopharmacol 2014; 24(4): 231-4.
[http://dx.doi.org/10.1089/cap.2013.0137] [PMID: 24815193]
[245]
Lee ES, Vidal C, Findling RL. A focused review on the treatment of pediatric patients with atypical antipsychotics. J Child Adolesc Psychopharmacol 2018; 28(9): 582-605.
[http://dx.doi.org/10.1089/cap.2018.0037] [PMID: 30312108]
[246]
Fusar-Poli L, Cavone V, Tinacci S, et al. Cannabinoids for people with ASD: A systematic review of published and ongoing studies. Brain Sci 2020; 10(9): 572.
[http://dx.doi.org/10.3390/brainsci10090572] [PMID: 32825313]
[247]
Muskett A, Radtke SR, Ollendick T. A pilot study of one-session treatment for specific phobias in children with ASD traits. J Child Fam Stud 2020; 29(4): 1021-8.
[http://dx.doi.org/10.1007/s10826-019-01620-4]
[248]
Ollendick T, Muskett A, Radtke SR, Smith I. Adaptation of one-session treatment for specific phobias for children with autism spectrum disorder using a non-concurrent multiple baseline design: a preliminary investigation. J Autism Dev Disord 2020; 1: 1-3.
[http://dx.doi.org/10.1007/s10803-020-04582-5] [PMID: 32613485]
[249]
Farrell LJ, Miyamoto T, Donovan CL, et al. Virtual reality one-session treatment of child-specific phobia of dogs: a controlled, multiple baseline case series. Behav Ther 2020; 16.
[http://dx.doi.org/10.1016/j.beth.2020.06.003]
[250]
Sharmili SS, Kanagaraj R. Live Beyond Fear: A Virtual Reality Serious Game Platform to Overcome Phobias. 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). 336-9.
[251]
Fodstad JC, Kerswill SA, Kirsch AC, Lagges A, Schmidt J. Assessment and treatment of noise hypersensitivity in a teenager with autism spectrum disorder: a case study. J Autism Dev Disord 2020; 20: 1-2.
[http://dx.doi.org/10.1007/s10803-020-04650-w] [PMID: 32816171]
[252]
Johnston D, Egermann H, Kearney G, et al. A virtual reality game designed to address auditory hypersensitivity in individuals with autism spectrum disorder. Appl Sci (Basel) 2020; 10(9): 2996.
[http://dx.doi.org/10.3390/app10092996]
[253]
Rogers SJ, Dawson G. Early Start Denver Model for young children with autism: Promoting language, learning, and engagement. 2020.
[254]
Aravamudhan S, Awasthi S. Behavioral Interventions to Treat Speech Sound Disorders in Children With Autism. Behav Anal Pract 2019; 13(1): 174-85.
[http://dx.doi.org/10.1007/s40617-019-00362-5] [PMID: 32231978]
[255]
Perihan C, Burke M, Bowman-Perrott L, et al. Effects of cognitive behavioral therapy for reducing anxiety in children with high functioning ASD: A systematic review and meta-analysis. J Autism Dev Disord 2020; 50(6): 1958-72.
[http://dx.doi.org/10.1007/s10803-019-03949-7] [PMID: 30810842]
[256]
Pastor-Cerezuela G, Fernández-Andrés MI, Sanz-Cervera P, Marín-Suelves D. The impact of sensory processing on executive and cognitive functions in children with autism spectrum disorder in the school context. Res Dev Disabil 2020; 96: 103540.
[http://dx.doi.org/10.1016/j.ridd.2019.103540] [PMID: 31862533]
[257]
Yang J, Fu X, Liao X, Li Y. Effects of gut microbial-based treatments on gut microbiota, behavioral symptoms, and gastrointestinal symptoms in children with autism spectrum disorder: A systematic review. Psychiatry Res 2020; 293: 113471.
[http://dx.doi.org/10.1016/j.psychres.2020.113471] [PMID: 33198044]
[258]
Cheng B, Zhu J, Yang T, et al. Vitamin A deficiency increases the risk of gastrointestinal comorbidity and exacerbates core symptoms in children with autism spectrum disorder. Pediatr Res 2020; 30: 1-6.
[http://dx.doi.org/10.1038/s41390-020-0865-y] [PMID: 32225174]
[259]
Babinska K, Celusakova H, Belica I, et al. Gastrointestinal symptoms and feeding problems and their associations with dietary interventions, food supplement use, and behavioral characteristics in a sample of children and adolescents with autism spectrum disorders. Int J Environ Res Public Health 2020; 17(17): 6372.
[http://dx.doi.org/10.3390/ijerph17176372] [PMID: 32882981]
[260]
Renard E, Leheup B, Guéant-Rodriguez RM, Oussalah A, Quadros EV, Guéant JL. Folinic acid improves the score of Autism in the EFFET placebo-controlled randomized trial. Biochimie 2020; 173: 57-61.
[http://dx.doi.org/10.1016/j.biochi.2020.04.019] [PMID: 32387472]
[261]
González-Domenech PJ, Díaz Atienza F, García Pablos C, Fernández Soto ML, Martínez-Ortega JM, Gutiérrez-Rojas L. Influence of a combined gluten-free and casein-free diet on behavior disorders in children and adolescents diagnosed with autism spectrum disorder: a 12-month follow-up clinical trial. J Autism Dev Disord 2020; 50(3): 935-48.
[http://dx.doi.org/10.1007/s10803-019-04333-1] [PMID: 31813108]
[262]
Ogbu D, Xia E, Sun J. Gut instincts: vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders. Open Biol 2020; 10(7): 200063.
[http://dx.doi.org/10.1098/rsob.200063] [PMID: 32634371]
[263]
Thom RP, McDougle CJ. Immune modulatory treatments for autism spectrum disorder. Seminars in Pediatric Neurology 2020.
[264]
Hesapcioglu ST, Ceylan MF, Kasak M, Sen CP. Olanzapine, risperidone, and aripiprazole use in children and adolescents with Autism Spectrum Disorders. Res Autism Spectr Disord 2020; 72: 101520.
[http://dx.doi.org/10.1016/j.rasd.2020.101520]
[265]
Aman M, Rettiganti M, Nagaraja HN, et al. Tolerability, safety, and benefits of risperidone in children and adolescents with autism: 21-month follow-up after 8-week placebo-controlled trial. J Child Adolesc Psychopharmacol 2015; 25(6): 482-93.
[http://dx.doi.org/10.1089/cap.2015.0005] [PMID: 26262903]
[266]
Gringras P, Nir T, Breddy J, Frydman-Marom A, Findling RL. Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 2017; 56(11): 948-957.e4.
[http://dx.doi.org/10.1016/j.jaac.2017.09.414] [PMID: 29096777]
[267]
Vitti-Ruela BV, Dokkedal-Silva V, Morelhão PK, Xavier SD, Tufik S, Andersen ML. Insomnia and treatment strategies: improving quality of life in children with autism spectrum disorder. J Autism Dev Disord 2020; 1-2.
[PMID: 32949314]
[268]
Pattison E, Papadopoulos N, Marks D, McGillivray J, Rinehart N. Behavioural treatments for Sleep Problems in Children with Autism Spectrum Disorder: a Review of the Recent Literature. Curr Psychiatry Rep 2020; 22(9): 46.
[http://dx.doi.org/10.1007/s11920-020-01172-1] [PMID: 32661719]
[269]
Rzepka-Migut B, Paprocka J. Efficacy and safety of melatonin treatment in children with autism spectrum disorder and attention-deficit/hyperactivity disorder-a review of the literature. Brain Sci 2020; 10(4): 219.
[http://dx.doi.org/10.3390/brainsci10040219] [PMID: 32272607]
[270]
Melin K, Skarphedinsson G, Thomsen PH, et al. Treatment gains are sustainable in pediatric obsessive-compulsive disorder: three-year follow-up from the NordLOTS. J Am Acad Child Adolesc Psychiatry 2020; 59(2): 244-53.
[http://dx.doi.org/10.1016/j.jaac.2019.01.010] [PMID: 30768383]
[271]
Flygare O, Andersson E, Ringberg H, et al. Adapted cognitive behavior therapy for obsessive-compulsive disorder with co-occurring autism spectrum disorder: A clinical effectiveness study. Autism 2020; 24(1): 190-9.
[http://dx.doi.org/10.1177/1362361319856974] [PMID: 31187645]
[272]
Alolaby RR, Jiraanont P, Durbin-Johnson B, et al. Molecular biomarkers predictive of sertraline treatment response in young children with autism spectrum disorder. Front Genet 2020; 11: 308.
[http://dx.doi.org/10.3389/fgene.2020.00308] [PMID: 32346385]
[273]
Liang Y, Duan L, Xu X, et al. Mesenchymal stem cell-derived exosomes for treatment of autism spectrum disorder. ACS Applied Bio Materials 2020; 3(9): 6384-93.
[http://dx.doi.org/10.1021/acsabm.0c00831]
[274]
Pistollato F, Forbes-Hernández TY, Calderón Iglesias R, et al. Pharmacological, non-pharmacological and stem cell therapies for the management of autism spectrum disorders: A focus on human studies. Pharmacol Res 2020; 152: 104579.
[http://dx.doi.org/10.1016/j.phrs.2019.104579] [PMID: 31790820]
[275]
Paudel R, Raj K, Gupta YK, Singh S. Oxiracetam and zinc ameliorates autism-like symptoms in propionic acid model of rats. Neurotox Res 2020; 37(4): 815-26.
[http://dx.doi.org/10.1007/s12640-020-00169-1] [PMID: 32026359]
[276]
Robberecht H, Verlaet AAJ, Breynaert A, De Bruyne T, Hermans N. Magnesium, Iron, Zinc, Copper and Selenium Status in Attention-Deficit/Hyperactivity Disorder (ADHD). Molecules 2020; 25(19): 4440.
[http://dx.doi.org/10.3390/molecules25194440] [PMID: 32992575]
[277]
Botturi A, Ciappolino V, Delvecchio G, Boscutti A, Viscardi B, Brambilla P. The role and the effect of magnesium in mental disorders: a systematic review. Nutrients 2020; 12(6): 1661.
[http://dx.doi.org/10.3390/nu12061661] [PMID: 32503201]
[278]
Infante M, Sears B, Rizzo AM, et al. Omega-3 PUFAs and vitamin D co-supplementation as a safe-effective therapeutic approach for core symptoms of autism spectrum disorder: case report and literature review. Nutr Neurosci 2020; 23(10): 779-90.
[http://dx.doi.org/10.1080/1028415X.2018.1557385] [PMID: 30545280]
[279]
Robea MA, Jijie R, Nicoara M, et al. Vitamin C attenuates Oxidative Stress and Behavioral Abnormalities Triggered by Fipronil and Pyriproxyfen Insecticide Chronic Exposure on Zebrafish Juvenile. Antioxidants 2020; 9(10): 944.
[http://dx.doi.org/10.3390/antiox9100944] [PMID: 33019596]
[280]
De Crescenzo F, D’Alò GL, Morgano GP, et al. ISACA guideline working group. Impact of polyunsaturated fatty acids on patient-important outcomes in children and adolescents with autism spectrum disorder: a systematic review. Health Qual Life Outcomes 2020; 18(1): 28.
[http://dx.doi.org/10.1186/s12955-020-01284-5] [PMID: 32066439]
[281]
Guo M, Li L, Zhang Q, et al. Vitamin and mineral status of children with autism spectrum disorder in Hainan Province of China: associations with symptoms. Nutr Neurosci 2020; 23(10): 803-10.
[http://dx.doi.org/10.1080/1028415X.2018.1558762] [PMID: 30570388]
[282]
Frye RE. Mitochondrial dysfunction in autism spectrum disorder: Unique abnormalities and targeted treatments. Seminars in Pediatric Neurology 2020.
[283]
Tang S, Sun N, Floris DL, Zhang X, Di Martino A, Yeo BTT. Reconciling dimensional and categorical models of autism heterogeneity: A brain connectomics and behavioral study. Biol Psychiatry 2020; 87(12): 1071-82.
[http://dx.doi.org/10.1016/j.biopsych.2019.11.009] [PMID: 31955916]
[284]
Sacco R, Lenti C, Saccani M, et al. Cluster analysis of autistic patients based on principal pathogenetic components. Autism Res 2012; 5(2): 137-47.
[http://dx.doi.org/10.1002/aur.1226] [PMID: 22431251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy