Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier Based Drug Delivery Systems

Author(s): Meenu Mehta, Daljeet Singh Dhanjal, Saurabh Satija, Ridhima Wadhwa, Keshav Raj Paudel, Dinesh Kumar Chellappan, Shiva Mohammad, Mehra Haghi, Philip M. Hansbro and Kamal Dua*

Volume 26, Issue 42, 2020

Page: [5380 - 5392] Pages: 13

DOI: 10.2174/1381612826999201116161143

Price: $65

Abstract

Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.

Keywords: Cell signaling, nanotechnology, drug delivery, respiratory diseases, morbidity, COPD.

[1]
Bradshaw RA, Dennis EA. Cell signaling Yesterday, today, and tomorrow Handbook of Cell Signaling, 2/e Elsevier Inc. 2010; pp. 1-4.
[http://dx.doi.org/10.1016/B978-0-12-374145-5.00001-2]
[2]
Tew XN, Xin Lau NJ, Chellappan DK, et al. Immunological axis of berberine in managing inflammation underlying chronic respiratory inflammatory diseases. Chem Biol Interact 2020; 317108947
[http://dx.doi.org/10.1016/j.cbi.2020.108947] [PMID: 31968208]
[3]
Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev 2019; 28(153)190096
[http://dx.doi.org/10.1183/16000617.0096-2019] [PMID: 31636089]
[4]
Chan Y, Ng SW, Xin Tan JZ, et al. Emerging therapeutic potential of the iridoid molecule, asperuloside: A snapshot of its underlying molecular mechanisms. Chem Biol Interact 2020; 315108911
[http://dx.doi.org/10.1016/j.cbi.2019.108911] [PMID: 31786185]
[5]
Soon L, Ng PQ, Chellian J, et al. Therapeutic potential of Artemisia vulgaris: An insight into underlying immunological mechanisms. J Environ Pathol Toxicol Oncol 2019; 38(3): 205-16.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2019029397] [PMID: 31679308]
[6]
Hardwick J, Taylor J, Mehta M, et al. Targeting cancer using curcumin encapsulated vesicular drug delivery systems Curr Pharm Des Online ahead of print
[7]
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22(2): 240-73.
[http://dx.doi.org/10.1128/CMR.00046-08] [PMID: 19366914]
[8]
Pandey P, Mehta M, Shukla S, et al. Emerging nanotechnology in chronic respiratory diseases Nanoformulations in human health Cham Springer International Publishing. 2020; pp. 449-68.
[http://dx.doi.org/10.1007/978-3-030-41858-8_20]
[9]
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual evolution of cell signaling. Int J Mol Sci 2019; 20(13): 3292.
[http://dx.doi.org/10.3390/ijms20133292] [PMID: 31277491]
[10]
Heldin CH, Lu B, Evans R, Gutkind JS. Signals and receptors. Cold Spring Harb Perspect Biol 2016; 8(4)a005900
[http://dx.doi.org/10.1101/cshperspect.a005900] [PMID: 27037414]
[11]
Giancotti FG. Deregulation of cell signaling in cancer. FEBS Lett 2014; 588(16): 2558-70.
[http://dx.doi.org/10.1016/j.febslet.2014.02.005] [PMID: 24561200]
[12]
Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med 2015; 5(4)a006098
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[13]
Wadhwa R, Aggarwal T, Malyla V, et al. Identification of biomarkers and genetic approaches toward chronic obstructive pulmonary disease. J Cell Physiol 2019; 234(10): 16703-23.
[http://dx.doi.org/10.1002/jcp.28482] [PMID: 30912142]
[14]
Hansbro PM, Kim RY, Starkey MR, et al. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2017; 278(1): 41-62.
[http://dx.doi.org/10.1111/imr.12543] [PMID: 28658552]
[15]
World Health Organization Global surveillance, prevention and control of Chronic Respiratory Diseases: A Comprehensive Approach 2007. Available from: https://www.who.int/gard/publications/GARD%20Book%202007.pdf
[16]
Sharma P, Mehta M, Dhanjal DS, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact 2019; 309108720
[http://dx.doi.org/10.1016/j.cbi.2019.06.033] [PMID: 31226287]
[17]
Ahmed R, Robinson R, Mortimer K. The epidemiology of noncommunicable respiratory disease in sub-Saharan Africa, the Middle East, and North Africa. Malawi Med J 2017; 29(2): 203-11.
[http://dx.doi.org/10.4314/mmj.v29i2.24] [PMID: 28955434]
[18]
Wadhwa R, Sehgal NGN, et al. Oxidative stress and immunological complexities in multidrug-resistant tuberculosisrole of oxidative stress in pathophysiology of diseases. Springer Singapore 2020; pp. 107-24.
[http://dx.doi.org/10.1007/978-981-15-1568-2_7]
[19]
Prasher P, Sharma M, Mehta M, et al. Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem Biol Interact 2020; 325109125
[http://dx.doi.org/10.1016/j.cbi.2020.109125] [PMID: 32376238]
[20]
Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009; 360(10): 973-84.
[http://dx.doi.org/10.1056/NEJMoa0808991] [PMID: 19264686]
[21]
Berry MA, Parker D, Neale N, et al. Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. J Allergy Clin Immunol 2004; 114(5): 1106-9.
[http://dx.doi.org/10.1016/j.jaci.2004.08.032] [PMID: 15536417]
[22]
Rennard SI, Fogarty C, Kelsen S, et al. COPD Investigators. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175(9): 926-34.
[http://dx.doi.org/10.1164/rccm.200607-995OC] [PMID: 17290043]
[23]
Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med 2017; 196(3): 283-97.
[http://dx.doi.org/10.1164/rccm.201609-1830OC] [PMID: 28252317]
[24]
Coll RC, Robertson AAB, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21(3): 248-55.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[25]
Lee IT, Lin CC, Wu YC, Yang CM. TNF-α induces matrix metalloproteinase-9 expression in A549 cells: role of TNFR1/TRAF2/PKCalpha-dependent signaling pathways. J Cell Physiol 2010; 224(2): 454-64.
[http://dx.doi.org/10.1002/jcp.22142] [PMID: 20333651]
[26]
Jin Y, Liu L, Chen B, et al. Involvement of the PI3K/Akt/NF-κB signaling pathway in the attenuation of severe acute pancreatitis-associated acute lung injury by Sedum sarmentosum bunge extract. BioMed Res Int 2017; 20179698410
[http://dx.doi.org/10.1155/2017/9698410] [PMID: 29359164]
[27]
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012; 4(3)a006049
[http://dx.doi.org/10.1101/cshperspect.a006049] [PMID: 22296764]
[28]
Park SK, Dahmer MK, Quasney MW. MAPK and JAK-STAT signaling pathways are involved in the oxidative stress-induced decrease in expression of surfactant protein genes. Cell Physiol Biochem 2012; 30(2): 334-46.
[http://dx.doi.org/10.1159/000339068] [PMID: 22739240]
[29]
Lee IT, Yang CM. Inflammatory signalings involved in airway and pulmonary diseases. Mediators Inflamm 2013; 2013791231
[http://dx.doi.org/10.1155/2013/791231] [PMID: 23690670]
[30]
Mehta M, Dhanjal DS, Paudel KR, et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28(4): 795-817.
[http://dx.doi.org/10.1007/s10787-020-00698-3] [PMID: 32189104]
[31]
Hart MK, Millard MW. Approaches to chronic disease management for asthma and chronic obstructive pulmonary disease: strategies through the continuum of care. Proc Bayl Univ Med Cent 2010; 23(3): 223-9.
[http://dx.doi.org/10.1080/08998280.2010.11928623] [PMID: 20671816]
[32]
Hashemi SM, Raza M. The traditional diagnosis and treatment of respiratory diseases: a description from Avicenna’s Canon of Medicine. Ther Adv Respir Dis 2009; 3(6): 319-28.
[http://dx.doi.org/10.1177/1753465809349254] [PMID: 19880427]
[33]
van Eeden R, Rapoport BL, Smit T, Anderson R. Tuberculosis infection in a patient treated with nivolumab for non-small cell lung cancer: case report and literature review. Front Oncol 2019; 9: 659.
[http://dx.doi.org/10.3389/fonc.2019.00659] [PMID: 31396484]
[34]
Hadifar S, Behrouzi A, Fateh A, et al. Interruption of signaling pathways in lung epithelial cell by Mycobacterium tuberculosis. bioRxiv 2018.234308882
[PMID: 30192006]
[35]
Khaltaev N, Axelrod S. Chronic respiratory diseases global mortality trends, treatment guidelines, life style modifications, and air pollution: preliminary analysis. J Thorac Dis 2019; 11(6): 2643-55.
[http://dx.doi.org/10.21037/jtd.2019.06.08] [PMID: 31372301]
[36]
Hussain S. Nanomedicine for treatment of lung cancer. Adv Exp Med Biol 2016; 890: 137-47.
[http://dx.doi.org/10.1007/978-3-319-24932-2_8] [PMID: 26703803]
[37]
Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin Ther Pat 2020; 30(5): 375-87.
[http://dx.doi.org/10.1080/13543776.2020.1741547] [PMID: 32178542]
[38]
Chellappan DK, Yee LW, Xuan KY, et al. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81(4): 419-36.
[http://dx.doi.org/10.1002/ddr.21648] [PMID: 32048757]
[39]
Siddiqui S, Mistry V, Doe C, et al. Airway hyperresponsiveness is dissociated from airway wall structural remodeling. J Allergy Clin Immunol 2008; 122(2): 335-341.e3.
[http://dx.doi.org/10.1016/j.jaci.2008.05.020] [PMID: 18572228]
[40]
Amin KAM. Allergic respiratory inflammation and remodeling. Turk Thorac J 2015; 16(3): 133-40.
[http://dx.doi.org/10.5152/ttd.2015.4942] [PMID: 29404091]
[41]
Braman SS. The global burden of asthma Chest American College of Chest Physicians 2006; 4S-12.
[42]
Fitzmaurice C, Allen C, Barber RM, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study Global Burden. JAMA Oncol 2017; 3: 524-48.
[http://dx.doi.org/10.1001/jamaoncol.2016.5688] [PMID: 27918777]
[43]
Soriano JB, Abajobir AA, Abate KH, et al. GBD 2015 Chronic Respiratory Disease Collaborators Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med 2017; 5(9): 691-706.
[http://dx.doi.org/10.1016/S2213-2600(17)30293-X] [PMID: 28822787]
[44]
Qureshi H, Sharafkhaneh A, Hanania NA. Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications. Ther Adv Chronic Dis 2014; 5(5): 212-27.
[http://dx.doi.org/10.1177/2040622314532862] [PMID: 25177479]
[45]
Quaderi SA, Hurst JR. The unmet global burden of COPD Glob Health Epidemiol Genom 2018. 3e4.
[http://dx.doi.org/10.1017/gheg.2018.1] [PMID: 29868229]
[46]
Baneen U, Naseem S. Correlation of severity of chronic obstructive pulmonary disease with serum vitamin-D level. J Family Med Prim Care 2019; 8(7): 2268-77.
[PMID: 31463241]
[47]
Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer 2015; 90(2): 121-7.
[PMID: 26363803]
[48]
Bakshi HA, Zoubi MSA, Hakkim FL, et al. Dietary crocin is protective in pancreatic cancer while reducing radiation-induced hepatic oxidative damage. Nutrients 2020; 12(6): 1901.
[http://dx.doi.org/10.3390/nu12061901] [PMID: 32604971]
[49]
Aljabali AAA, Bakshi HA, Hakkim FL, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel) 2020; 12(1): 113.
[http://dx.doi.org/10.3390/cancers12010113] [PMID: 31906321]
[50]
Garg M, Lata K, Satija S. Cytotoxic potential of few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide assay on HepG2 cells. Indian J Pharmacol 2016; 48(1): 64-8.
[http://dx.doi.org/10.4103/0253-7613.174552] [PMID: 26997725]
[51]
Gupta P, Gupta A, Agarwal K, Tomar P, Satija S. Antioxidant and cytotoxic potential of a new thienyl derivative from Tagetes erecta roots. Pharm Biol 2012; 50(8): 1013-8.
[http://dx.doi.org/10.3109/13880209.2012.655378] [PMID: 22775418]
[52]
Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 2011; 32(4): 605-44.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001] [PMID: 22054876]
[53]
Inamura K. Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol 2017; 7: 193.
[http://dx.doi.org/10.3389/fonc.2017.00193] [PMID: 28894699]
[54]
Bradley SH, Kennedy MPT, Neal RD. Recognising lung cancer in primary care. Adv Ther 2019; 36(1): 19-30.
[http://dx.doi.org/10.1007/s12325-018-0843-5] [PMID: 30499068]
[55]
de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res 2018; 7(3): 220-33.
[http://dx.doi.org/10.21037/tlcr.2018.05.06] [PMID: 30050761]
[56]
Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 2003; 16(3): 463-96.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[57]
Furlow B. Tuberculosis: a review and update. Radiol Technol 2010; 82(1): 33-52.
[PMID: 20826599]
[58]
Lange C, Kalsdorf B, Maurer FP, Heyckendorf J. Tuberculosis. Internist (Berl) 2019; 60(11): 1155-75.
[http://dx.doi.org/10.1007/s00108-019-00685-z] [PMID: 31641790]
[59]
Asgedom SW, Tesfaye D, Nirayo YL, Atey TM. Time to death and risk factors among tuberculosis patients in Northern Ethiopia. BMC Res Notes 2018; 11(1): 696.
[http://dx.doi.org/10.1186/s13104-018-3806-7] [PMID: 30286801]
[60]
Shastri MD, Shukla SD, Chong WC, et al. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid Med Cell Longev 2018; 20187695364
[http://dx.doi.org/10.1155/2018/7695364] [PMID: 30405878]
[61]
Dua K, Rapalli VK, Shukla SD, et al. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother 2018; 107: 1218-29.
[http://dx.doi.org/10.1016/j.biopha.2018.08.101] [PMID: 30257336]
[62]
Meyer KC. Diagnosis and management of interstitial lung disease. Transl Respir Med 2014; 2: 4.
[http://dx.doi.org/10.1186/2213-0802-2-4] [PMID: 25505696]
[63]
Ryu JH, Daniels CE, Hartman TE, Yi ES. Diagnosis of interstitial lung diseases. Mayo Clin Proc 2007; 82(8): 976-86.
[http://dx.doi.org/10.4065/82.8.976] [PMID: 17673067]
[64]
Antoniou KM, Margaritopoulos GA, Tomassetti S, Bonella F, Costabel U, Poletti V. Interstitial lung disease. Eur Respir Rev 2014; 23(131): 40-54.
[http://dx.doi.org/10.1183/09059180.00009113] [PMID: 24591661]
[65]
Xie M, Liu X, Cao X, Guo M, Li X. Trends in prevalence and incidence of chronic respiratory diseases from 1990 to 2017. Respir Res 2020; 21(1): 49.
[http://dx.doi.org/10.1186/s12931-020-1291-8] [PMID: 32046720]
[66]
Mortaz E, Masjedi MR, Barnes P. Identification of novel therapeutic targets in COPD. Tanaffos 2011; 10(2): 9-14.
[PMID: 25191356]
[67]
Brambilla E, Gazdar A. Pathogenesis of lung cancer signalling pathways: roadmap for therapies. Eur Respir J 2009; 33(6): 1485-97.
[http://dx.doi.org/10.1183/09031936.00014009] [PMID: 19483050]
[68]
Torday JS, Rehan VK. Cell-cell signaling drives the evolution of complex traits: introduction-lung evo-devo. Integr Comp Biol 2009; 49(2): 142-54.
[http://dx.doi.org/10.1093/icb/icp017] [PMID: 20607136]
[69]
Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 2012; 4(9)a011189
[http://dx.doi.org/10.1101/cshperspect.a011189] [PMID: 22952397]
[70]
Manning BD, Toker A. AKT/PKB Signaling: Navigating the network. Cell 2017; 169(3): 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[71]
New DC, Wu K, Kwok AWS, Wong YH. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. FEBS J 2007; 274(23): 6025-36.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06116.x] [PMID: 17949438]
[72]
Pal I, Mandal M. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 2012; 33(12): 1441-58.
[http://dx.doi.org/10.1038/aps.2012.72] [PMID: 22983389]
[73]
Miao B, Skidan I, Yang J, et al. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci USA 2010; 107(46): 20126-31.
[http://dx.doi.org/10.1073/pnas.1004522107] [PMID: 21041639]
[74]
Liao Y, Hung MC. Physiological regulation of Akt activity and stability. Am J Transl Res 2010; 2(1): 19-42.
[PMID: 20182580]
[75]
Dangelmaier C, Manne BK, Liverani E, Jin J, Bray P, Kunapuli SP. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb Haemost 2014; 111(3): 508-17.
[http://dx.doi.org/10.1160/TH13-06-0484] [PMID: 24352480]
[76]
Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 2017; 15(1): 23.
[http://dx.doi.org/10.1186/s12964-017-0177-y] [PMID: 28637459]
[77]
Wang Z. Transactivation of epidermal growth factor receptor by g protein-coupled receptors: Recent progress, challenges and future research. Int J Mol Sci 2016; 17(1): 95.
[http://dx.doi.org/10.3390/ijms17010095] [PMID: 26771606]
[78]
Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors 2012; 30(2): 88-106.
[http://dx.doi.org/10.3109/08977194.2012.660936] [PMID: 22339650]
[79]
Rane SG, Reddy EP. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 2002; 21(21): 3334-58.
[http://dx.doi.org/10.1038/sj.onc.1205398] [PMID: 12032773]
[80]
Wagner MJ, Stacey MM, Liu BA, Pawson T. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 2013; 5(12)a008987
[http://dx.doi.org/10.1101/cshperspect.a008987] [PMID: 24296166]
[81]
Nardozzi JD, Lott K, Cingolani G. Phosphorylation meets nuclear import: a review. Cell Commun Signal 2010; 8: 32.
[http://dx.doi.org/10.1186/1478-811X-8-32] [PMID: 21182795]
[82]
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2012; 76: 496-6.
[http://dx.doi.org/10.1128/MMBR.00013-12] [PMID: 21372320]
[83]
Pradhan R, Singhvi G, Dubey SK, Gupta G, Dua K. MAPK pathway: a potential target for the treatment of non-small-cell lung carcinoma. Future Med Chem 2019; 11(8): 793-5.
[http://dx.doi.org/10.4155/fmc-2018-0468] [PMID: 30994024]
[84]
Munshi A, Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013; 4(9-10): 401-8.
[http://dx.doi.org/10.1177/1947601913485414] [PMID: 24349638]
[85]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[86]
Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1(4)a000034
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[87]
Solt LA, May MJ. The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 2008; 42(1-3): 3-18.
[http://dx.doi.org/10.1007/s12026-008-8025-1] [PMID: 18626576]
[88]
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30(7): 830-82.
[http://dx.doi.org/10.1210/er.2009-0013] [PMID: 19890091]
[89]
Alto NM, Orth K. Subversion of cell signaling by pathogens. Cold Spring Harb Perspect Biol 2012; 4(9)a006114
[http://dx.doi.org/10.1101/cshperspect.a006114] [PMID: 22952390]
[90]
Chin LH, Hon CM, Chellappan DK, et al. Molecular mechanisms of action of naringenin in chronic airway diseases. Eur J Pharmacol 2020; 879173139
[http://dx.doi.org/10.1016/j.ejphar.2020.173139] [PMID: 32343971]
[91]
Meduri GU, Annane D, Chrousos GP, Marik PE, Sinclair SE. Activation and regulation of systemic inflammation in ARDS: rationale for prolonged glucocorticoid therapy. Chest 2009; 136(6): 1631-43.
[http://dx.doi.org/10.1378/chest.08-2408] [PMID: 19801579]
[92]
Murray LA, Knight DA, McAlonan L, et al. Deleterious role of TLR3 during hyperoxia-induced acute lung injury. Am J Respir Crit Care Med 2008; 178(12): 1227-37.
[http://dx.doi.org/10.1164/rccm.200807-1020OC] [PMID: 18849495]
[93]
Dolinay T, Kim YS, Howrylak J, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med 2012; 185(11): 1225-34.
[http://dx.doi.org/10.1164/rccm.201201-0003OC] [PMID: 22461369]
[94]
Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464(7285): 104-7.
[http://dx.doi.org/10.1038/nature08780] [PMID: 20203610]
[95]
Di Salvo E, Ventura-Spagnolo E, Casciaro M, Navarra M, Gangemi S. IL-33/IL-31 axis: A potential inflammatory pathway. Mediators Inflamm 2018; 20183858032
[http://dx.doi.org/10.1155/2018/3858032] [PMID: 29713240]
[96]
Kunnumakkara AB, Sailo BL, Banik K, et al. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16(1): 14.
[http://dx.doi.org/10.1186/s12967-018-1381-2] [PMID: 29370858]
[97]
Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015; 75(1): 68-78.
[http://dx.doi.org/10.1016/j.cyto.2015.05.014] [PMID: 26070934]
[98]
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4: 45.
[http://dx.doi.org/10.1038/s41392-019-0079-0]
[99]
Wieczfinska J, Sitarek P, Skała E, Kowalczyk T, Pawliczak R. Inhibition of NADPH oxidase-derived reactive oxygen species decreases expression of inflammatory cytokines in A549 cells. Inflammation 2019; 42(6): 2205-14.
[http://dx.doi.org/10.1007/s10753-019-01084-0] [PMID: 31612365]
[100]
Churg A, Zhou S, Wright JL. Series “matrix metalloproteinases in lung health and disease”: Matrix metalloproteinases in COPD. Eur Respir J 2012; 39(1): 197-209.
[http://dx.doi.org/10.1183/09031936.00121611] [PMID: 21920892]
[101]
Bozinovski S, Vlahos R, Hansen M, Liu K, Anderson GP. Akt in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis 2006; 1(1): 31-8.
[http://dx.doi.org/10.2147/copd.2006.1.1.31] [PMID: 18046900]
[102]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[103]
Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 2018; 17(1): 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4] [PMID: 29455648]
[104]
Jurišić V, Obradovic J, Pavlović S, Djordjevic N. Epidermal growth factor receptor gene in non-small-cell lung cancer: The importance of promoter polymorphism investigation. Anal Cell Pathol (Amst) 2018; 20186192187
[http://dx.doi.org/10.1155/2018/6192187] [PMID: 30406002]
[105]
Tian T, Li X, Zhang J. mTOR signaling in cancer and mtor inhibitors in solid tumor targeting therapy. Int J Mol Sci 2019; 20(3): 755.
[http://dx.doi.org/10.3390/ijms20030755] [PMID: 30754640]
[106]
Arcaro A, Guerreiro AS. The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr Genomics 2007; 8(5): 271-306.
[http://dx.doi.org/10.2174/138920207782446160] [PMID: 19384426]
[107]
Skrypnyk N, Chen X, Hu W, et al. PPARα activation can help prevent and treat non-small cell lung cancer. Cancer Res 2014; 74(2): 621-31.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1928] [PMID: 24302581]
[108]
Souza JA, Rossa C Jr, Garlet GP, Nogueira AV, Cirelli JA. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. J Appl Oral Sci 2012; 20(2): 128-38.
[http://dx.doi.org/10.1590/S1678-77572012000200002] [PMID: 22666826]
[109]
Hestvik ALK, Hmama Z, Av-Gay Y. Kinome analysis of host response to mycobacterial infection: a novel technique in proteomics. Infect Immun 2003; 71(10): 5514-22.
[http://dx.doi.org/10.1128/IAI.71.10.5514-5522.2003] [PMID: 14500469]
[110]
Cicchese JM, Evans S, Hult C, et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 2018; 285(1): 147-67.
[http://dx.doi.org/10.1111/imr.12671] [PMID: 30129209]
[111]
Hossain MM, Norazmi MN. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection--the double-edged sword? BioMed Res Int 2013; 2013179174
[http://dx.doi.org/10.1155/2013/179174] [PMID: 24350246]
[112]
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214(2): 199-210.
[http://dx.doi.org/10.1002/path.2277] [PMID: 18161745]
[113]
Barkauskas CE, Noble PW. Cellular mechanisms of tissue fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis. Am J Physiol Cell Physiol 2014; 306(11): C987-96.
[http://dx.doi.org/10.1152/ajpcell.00321.2013] [PMID: 24740535]
[114]
Li M, Krishnaveni MS, Li C, et al. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 2011; 121(1): 277-87.
[http://dx.doi.org/10.1172/JCI42090] [PMID: 21135509]
[115]
Bonniaud P, Kolb M, Galt T, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-β-mediated pulmonary fibrosis. J Immunol 2004; 173(3): 2099-108.
[http://dx.doi.org/10.4049/jimmunol.173.3.2099] [PMID: 15265946]
[116]
Xu Y, Mizuno T, Sridharan A, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 2016; 1(20)e90558
[http://dx.doi.org/10.1172/jci.insight.90558] [PMID: 27942595]
[117]
Sadikot RT, Zeng H, Joo M, et al. Targeted immunomodulation of the NF-kappaB pathway in airway epithelium impacts host defense against Pseudomonas aeruginosa. J Immunol 2006; 176(8): 4923-30.
[http://dx.doi.org/10.4049/jimmunol.176.8.4923] [PMID: 16585588]
[118]
Sadikot RT, Kolanjiyil AV, Kleinstreuer C, Rubinstein I. Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome. Biomed Hub 2017; 2(2): 1-12.
[http://dx.doi.org/10.1159/000477086] [PMID: 31988911]
[119]
Aljabali AA, Obeid MA, Amawi HA, et al. Application of nanomaterials in the diagnosis and treatment of genetic disorders Applications of nanomaterials in human health Singapore Springer Singapore. 2020; pp. 125-46.
[http://dx.doi.org/10.1007/978-981-15-4802-4_7]
[120]
Hinge N, Pandey MM, Singhvi G, et al. Nanomedicine advances in cancer therapy Advanced 3D-printed systems and nanosystems for drug delivery and tissue engineering. Elsevier 2020; pp. 219-53.
[http://dx.doi.org/10.1016/B978-0-12-818471-4.00008-X]
[121]
Mehta M. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 2019; 308: 206-15.
[http://dx.doi.org/10.1016/j.cbi.2019.05.028] [PMID: 31136735]
[122]
Dua K, Wadhwa R, Singhvi G, et al. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res 2019; 80(6): 714-30.
[http://dx.doi.org/10.1002/ddr.21571] [PMID: 31691339]
[123]
Chellappan DK, Sze Ning QL, Su Min SK, et al. Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chem Biol Interact 2019; 310108732
[http://dx.doi.org/10.1016/j.cbi.2019.108732] [PMID: 31276660]
[124]
Dua K, Gupta G, Chellapan DK, Bebawy M, Collet T. Nanoparticle-based therapies as a modality in treating wounds and preventing biofilm. Panminerva Med 2018; 60(4): 237-8.
[http://dx.doi.org/10.23736/S0031-0808.18.03435-3] [PMID: 30563307]
[125]
Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM. Targeting microRNAs using nanotechnology in pulmonary diseases. Panminerva Med 2018; 60(4): 230-1.
[http://dx.doi.org/10.23736/S0031-0808.18.03459-6] [PMID: 30563304]
[126]
Dua K, Malyla V, Singhvi G, et al. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2019; 299: 168-78.
[http://dx.doi.org/10.1016/j.cbi.2018.12.009] [PMID: 30553721]
[127]
Dua K, Gupta G, Chellappan DK, Shukla S, Hansbro PM. Targeting bacterial biofilms in pulmonary diseases in pediatric population. Minerva Pediatr 2019; 71(3): 309-10.
[http://dx.doi.org/10.23736/S0026-4946.18.05256-8] [PMID: 30419743]
[128]
Satija S, Mehta M, Sharma M, et al. Vesicular drug delivery systems as theranostics in COVID-19. Future Med Chem 2020; 12(18): 1607-9.
[http://dx.doi.org/10.4155/fmc-2020-0149] [PMID: 32589055]
[129]
Madala SK, Schmidt S, Davidson C, Ikegami M, Wert S, Hardie WD. MEK-ERK pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor receptor activation. Am J Respir Cell Mol Biol 2012; 46(3): 380-8.
[http://dx.doi.org/10.1165/rcmb.2011-0237OC] [PMID: 22021337]
[130]
Korfhagen TR, Le Cras TD, Davidson CR, et al. Rapamycin prevents transforming growth factor-α-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2009; 41(5): 562-72.
[http://dx.doi.org/10.1165/rcmb.2008-0377OC] [PMID: 19244201]
[131]
Wadhwa R, Pandey P, Gupta G, et al. Emerging complexity and the need for advanced drug delivery in targeting candida species. Curr Top Med Chem 2019; 19(28): 2593-609.
[http://dx.doi.org/10.2174/1568026619666191026105308] [PMID: 31746290]
[132]
Marchetti GM, Burwell TJ, Peterson NC, et al. Targeted drug delivery via caveolae-associated protein PV1 improves lung fibrosis. Commun Biol 2019; 2: 92.
[http://dx.doi.org/10.1038/s42003-019-0337-2] [PMID: 30854484]
[133]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[134]
Mehta M, Satija S, Nanda A, et al. Nanotechnologies for Boswellic Acids. Am J Drug Discov Dev 2014; 4: 1-11.
[http://dx.doi.org/10.3923/ajdd.2014.1.11]
[135]
R. P. Rao M. S. Babrekar L. Liposomal drug delivery for solubility and bioavailability enhancement of efavirenz. Indian J Pharm Sci 2018; 80: 1115-24.
[136]
Mehta M. Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 2019; 304: 10-9.
[http://dx.doi.org/10.1016/j.cbi.2019.02.021] [PMID: 30849336]
[137]
Chai G, Park H, Yu S, et al. Evaluation of co-delivery of colistin and ciprofloxacin in liposomes using an in vitro human lung epithelial cell model. Int J Pharm 2019; 569118616
[http://dx.doi.org/10.1016/j.ijpharm.2019.118616] [PMID: 31415873]
[138]
Chen X, Huang W, Wong BC, et al. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomedicine 2012; 7: 1139-48.
[PMID: 22412300]
[139]
Pandolfi L, Frangipane V, Bocca C, et al. Hyaluronic acid-decorated liposomes as innovative targeted delivery system for lung fibrotic cells. Molecules 2019; 24(18): 3291.
[http://dx.doi.org/10.3390/molecules24183291] [PMID: 31509965]
[140]
Riaz MK, Zhang X, Wong KH, et al. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine 2019; 14: 2879-902.
[http://dx.doi.org/10.2147/IJN.S192219] [PMID: 31118613]
[141]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54(Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[142]
Kaur G, Singh SK, Kumar R, et al. Development of modified apple polysaccharide capped silver nanoparticles loaded with mesalamine for effective treatment of ulcerative colitis. J Drug Deliv Sci Technol 2020; 60101980
[http://dx.doi.org/10.1016/j.jddst.2020.101980]
[143]
Tan YY, Yap PK, Xin Lim GL, et al. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329109221
[http://dx.doi.org/10.1016/j.cbi.2020.109221] [PMID: 32768398]
[144]
Pardhi DM, Şen Karaman D, Timonen J, et al. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020; 586119531
[http://dx.doi.org/10.1016/j.ijpharm.2020.119531] [PMID: 32540348]
[145]
Ng PQ, Ling LSC, Chellian J, et al. Applications of nanocarriers as drug delivery vehicles for active phytoconstituents. Curr Pharm Des 2020; 26: 4580-90.
[http://dx.doi.org/10.2174/1381612826666200610111013] [PMID: 32520681]
[146]
Mehta M, Satija S, Paudel KR, et al. Incipient need of targeting airway remodeling using advanced drug delivery in chronic respiratory diseases. Future Med Chem 2020; 12(10): 873-5.
[http://dx.doi.org/10.4155/fmc-2020-0091] [PMID: 32352313]
[147]
Rajeshkumar S, Menon S, Venkat Kumar S, et al. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B 2019; 197111531
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111531] [PMID: 31212244]
[148]
Chellappan DK, Yee NJ, Kaur Ambar Jeet Singh BJ, et al. Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther Deliv 2019; 10(5): 281-93.
[http://dx.doi.org/10.4155/tde-2019-0019] [PMID: 31094299]
[149]
Kumar P, Mehta M, Satija S, et al. Enzymatic in vitro anti-diabetic activity of few traditional Indian medicinal plants. J Biol Sci 2013; 13: 540-4.
[http://dx.doi.org/10.3923/jbs.2013.540.544]
[150]
Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 2005; 85(4): 227-34.
[http://dx.doi.org/10.1016/j.tube.2004.11.003] [PMID: 15922668]
[151]
Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 2015; 219: 500-18.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[152]
Patil-Gadhe A, Kyadarkunte A, Patole M, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro-in vivo aerosol performance. Eur J Pharm Biopharm 2014; 88(1): 169-77.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.007] [PMID: 25078860]
[153]
Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part I oral bioavailability improvement. Eur J Pharm Biopharm 2014; 88(1): 160-8.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.019] [PMID: 24878424]
[154]
Bondì ML, Ferraro M, Di Vincenzo S, et al. Effects in cigarette smoke stimulated bronchial epithelial cells of a corticosteroid entrapped into nanostructured lipid carriers. J Nanobiotechnology 2014; 12: 46.
[http://dx.doi.org/10.1186/s12951-014-0046-4] [PMID: 25432702]
[155]
Dua K, Hansbro NG, Hansbro PM. Steroid resistance and concomitant respiratory infections: A challenging battle in pulmonary clinic. EXCLI J 2017; 16: 981-5.
[PMID: 28900378]
[156]
Sato MR, Oshiro Junior JA, Machado RTA, et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther 2017; 11: 909-21.
[http://dx.doi.org/10.2147/DDDT.S127048] [PMID: 28356717]
[157]
da Silva PB, de Freitas ES, Solcia MC, et al. A nanostructured lipid system to improve the oral bioavailability of Ruthenium(II) complexes for the treatment of infections caused by Mycobacterium tuberculosis. Front Microbiol 2018; 9: 2930.
[http://dx.doi.org/10.3389/fmicb.2018.02930] [PMID: 30574128]
[158]
Pinheiro M, Ribeiro R, Vieira A, Andrade F, Reis S. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther 2016; 10: 2467-75.
[http://dx.doi.org/10.2147/DDDT.S104395] [PMID: 27536067]
[159]
Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 2009; 109(7): 3141-57.
[http://dx.doi.org/10.1021/cr900174j] [PMID: 19534493]
[160]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[161]
Blattes E, Vercellone A, Eutamène H, et al. Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proc Natl Acad Sci USA 2013; 110(22): 8795-800.
[http://dx.doi.org/10.1073/pnas.1221708110] [PMID: 23671078]
[162]
Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006; 14(8): 546-56.
[http://dx.doi.org/10.1080/10611860600825159] [PMID: 17050121]
[163]
Bohr A, Tsapis N, Andreana I, et al. Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules 2017; 18(8): 2379-88.
[http://dx.doi.org/10.1021/acs.biomac.7b00572] [PMID: 28639789]
[164]
Ayatollahi S, Salmasi Z, Hashemi M, et al. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. Int J Biochem Cell Biol 2017; 92: 210-7.
[http://dx.doi.org/10.1016/j.biocel.2017.10.005] [PMID: 29031805]
[165]
Azzazy HME, Mansour MMH, Kazmierczak SC. From diagnostics to therapy: prospects of quantum dots. Clin Biochem 2007; 40(13-14): 917-27.
[http://dx.doi.org/10.1016/j.clinbiochem.2007.05.018] [PMID: 17689518]
[166]
Wu T, Tang M. Toxicity of quantum dots on respiratory system. Inhal Toxicol 2014; 26(2): 128-39.
[http://dx.doi.org/10.3109/08958378.2013.871762] [PMID: 24495248]
[167]
Nagy A, Hollingsworth JA, Hu B, et al. Functionalization-dependent induction of cellular survival pathways by CdSe quantum dots in primary normal human bronchial epithelial cells. ACS Nano 2013; 7(10): 8397-411.
[http://dx.doi.org/10.1021/nn305532k] [PMID: 24007210]
[168]
Singh RD, Shandilya R, Bhargava A, et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: From biology to clinical translation. Front Genet 2018; 9: 616.
[http://dx.doi.org/10.3389/fgene.2018.00616] [PMID: 30574163]
[169]
Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: A review on structure and their interaction with proteins. J Chem 2013; 2013676815
[http://dx.doi.org/10.1155/2013/676815]
[170]
Simon J, Flahaut E, Golzio M. Overview of carbon nanotubes for biomedical applications. Materials (Basel) 2019; 12(4): 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[171]
Liu W, Speranza G. Functionalization of carbon nanomaterials for biomedical applications. C - J Carbon Res 2019; 5: 72.
[172]
Adenuga AA, Truong L, Tanguay RL, Remcho VT. Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. Int J Biomed Nanosci Nanotechnol 2013; 3(1-2): 38-51.
[http://dx.doi.org/10.1504/IJBNN.2013.054514] [PMID: 25750663]
[173]
Li X, Wang L, Fan Y, et al. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 2012; 2012548389
[http://dx.doi.org/10.1155/2012/548389]
[174]
Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 2013; 7(4): 2891-7.
[http://dx.doi.org/10.1021/nn401196a] [PMID: 23560817]
[175]
Bhirde AA, Patel V, Gavard J, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009; 3(2): 307-16.
[http://dx.doi.org/10.1021/nn800551s] [PMID: 19236065]
[176]
Liu HL, Zhang YL, Yang N, et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis 2011; 2e159
[http://dx.doi.org/10.1038/cddis.2011.27] [PMID: 21593791]
[177]
He X, Young SH, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol 2011; 24(12): 2237-48.
[http://dx.doi.org/10.1021/tx200351d] [PMID: 22081859]
[178]
Pacurari M, Yin XJ, Zhao J, et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 2008; 116(9): 1211-7.
[http://dx.doi.org/10.1289/ehp.10924] [PMID: 18795165]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy