Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanoparticles for Targeting of Prostate Cancer

Author(s): Hooman Yari, Hariprasad Gali and Vibhudutta Awasthi*

Volume 26, Issue 42, 2020

Page: [5393 - 5413] Pages: 21

DOI: 10.2174/1381612826666200721001500

Price: $65

Abstract

Prostate cancer (PCa) is the leading cause of death by cancer in men. Because of the drastic decline in the survival rate of PCa patients with advanced/metastatic disease, early diagnosis of disease and therapy without toxic side effects is crucial. Chemotherapy is widely used to control the progression of PCa at the later stages; however, it is associated with off-target toxicities and severe adverse effects due to the lack of specificity. Delivery of therapeutic or diagnostic agents by using targeted nanoparticles is a promising strategy to enhance accuracy and sensitivity of diagnosis of PCa and to increase efficacy and specificity of therapeutic agents. Numerous efforts have been made in past decades to create nanoparticles with different architectural bases for specific delivery payloads to prostate tumors. Major PCa associated cell membrane protein markers identified as targets for such purposes include folate receptor, sigma receptors, transferrin receptor, gastrin-releasing peptide receptor, urokinase plasminogen activator receptor, and prostate specific membrane antigen. Among these markers, prostate specific membrane antigen has emerged as an extremely specific and sensitive targetable marker for designing targeted nanoparticle-based delivery systems for PCa. In this article, we review contemporary advances in design, specificity, and efficacy of nanoparticles functionalized against PCa. Whenever feasible, both diagnostic as well as therapeutic applications are discussed.

Keywords: Nanoparticle, prostate cancer, folate receptor, sigma receptors, transferrin receptor, gastrin-releasing peptide receptor, urokinase plasminogen activator receptor, and prostate specific membrane antigen.

[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Brawley OW. Prostate cancer epidemiology in the United States. World J Urol 2012; 30(2): 195-200.
[http://dx.doi.org/10.1007/s00345-012-0824-2] [PMID: 22476558]
[3]
Cancer Facts C. Figures American Cancer Society Atlanta. 2017.
[4]
Bouchelouche K, Choyke PL, Capala J. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides. Discov Med 2010; 9(44): 55-61.
[PMID: 20102687]
[5]
Tannock IF, de Wit R, Berry WR, et al. TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351(15): 1502-12.
[http://dx.doi.org/10.1056/NEJMoa040720] [PMID: 15470213]
[6]
Carles J, Castellano D, Climent MA, Maroto P, Medina R, Alcaraz A. Castration-resistant metastatic prostate cancer: Current status and treatment possibilities. Clin Transl Oncol 2012; 14(3): 169-76.
[http://dx.doi.org/10.1007/s12094-012-0780-8] [PMID: 22374419]
[7]
Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 2012; 17(3-4): 160-6.
[http://dx.doi.org/10.1016/j.drudis.2011.09.015] [PMID: 21983329]
[8]
Della-Longa S, Arcovito A. Structural and functional insights on folate receptor α (FRα) by homology modeling, ligand docking and molecular dynamics. J Mol Graph Model 2013; 44: 197-207.
[http://dx.doi.org/10.1016/j.jmgm.2013.05.012] [PMID: 23880302]
[9]
Muller C. Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr Pharm Des 2012; 18(8): 1058-83.
[http://dx.doi.org/10.2174/138161212799315777] [PMID: 22272825]
[10]
Hattori Y, Maitani Y. Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther 2005; 12(10): 796-809.
[http://dx.doi.org/10.1038/sj.cgt.7700844] [PMID: 15891776]
[11]
Chen Y, Wang G, Kong D, et al. Double-targeted and double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for prostate cancer. Mol Carcinog 2013; 52(3): 237-46.
[http://dx.doi.org/10.1002/mc.21850] [PMID: 22161782]
[12]
Yao H, Qiu H, Shao Z, et al. Nanoparticle formulation of small DNA molecules, Dbait, improves the sensitivity of hormone-independent prostate cancer to radiotherapy. Nanomedicine (Lond) 2016; 12(8): 2261-71.
[http://dx.doi.org/10.1016/j.nano.2016.06.010] [PMID: 27389144]
[13]
Zhang X, Liu N, Shao Z, et al. Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy. Nanomedicine (Lond) 2017; 13(4): 1309-21.
[http://dx.doi.org/10.1016/j.nano.2017.01.015] [PMID: 28185938]
[14]
Xiang B, Dong DW, Shi NQ, et al. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials 2013; 34(28): 6976-91.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.055] [PMID: 23777916]
[15]
Evans JC, Malhotra M, Sweeney K, et al. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours. Int J Pharm 2017; 532(1): 511-8.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.013] [PMID: 28916296]
[16]
Guo J, O’Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016; 509(1-2): 16-27.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.027] [PMID: 27188645]
[17]
Zhao D, Zhao X, Zu Y, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine 2010; 5: 669-77.
[PMID: 20957218]
[18]
de Oliveira R, Zhao P, Li N, et al. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Int J Pharm 2013; 454(2): 703-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.031] [PMID: 23701998]
[19]
Patil Y, Shmeeda H, Amitay Y, Ohana P, Kumar S, Gabizon A. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine (Lond) 2018; 14(4): 1407-16.
[http://dx.doi.org/10.1016/j.nano.2018.04.011] [PMID: 29680672]
[20]
Flores O, Santra S, Kaittanis C, et al. psma-targeted theranostic nanocarrier for prostate cancer. Theranostics 2017; 7(9): 2477-94.
[http://dx.doi.org/10.7150/thno.18879] [PMID: 28744329]
[21]
Au KM, Satterlee A, Min Y, et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 2016; 82: 178-93.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.018] [PMID: 26763733]
[22]
de Oliveira LF, Bouchmella K, Gonçalves Kde A, Bettini J, Kobarg J, Cardoso MB. Functionalized silica nanoparticles as an alternative platform for targeted drug-delivery of water insoluble drugs. Langmuir 2016; 32(13): 3217-25.
[http://dx.doi.org/10.1021/acs.langmuir.6b00214] [PMID: 26930039]
[23]
Heger Z, Polanska H, Merlos Rodrigo MA, et al. Prostate tumor attenuation in the nu/nu murine model due to anti-sarcosine antibodies in folate-targeted liposomes. Sci Rep 2016; 6: 33379.
[http://dx.doi.org/10.1038/srep33379] [PMID: 27646588]
[24]
Choi KH, Nam KC, Malkinski L, Choi EH, Jung JS, Park BJ. Size-dependent photodynamic anticancer activity of biocompatible multifunctional magnetic submicron particles in prostate cancer cells. Molecules 2016; 21(9): 21.
[http://dx.doi.org/10.3390/molecules21091187] [PMID: 27607999]
[25]
Choi KH, Nam KC, Kim UH, Cho G, Jung JS, Park BJ. Optimized photodynamic therapy with multifunctional cobalt magnetic nanoparticles. Nanomaterials (Basel) 2017; 7(6): 7.
[http://dx.doi.org/10.3390/nano7060144] [PMID: 28604596]
[26]
Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans 2017; 46(37): 12692-704.
[http://dx.doi.org/10.1039/C7DT02139A] [PMID: 28914298]
[27]
Evans JC, Malhotra M, Guo J, et al. Folate-targeted amphiphilic cyclodextrin.siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. Nanomedicine (Lond) 2016; 12(8): 2341-51.
[http://dx.doi.org/10.1016/j.nano.2016.06.014] [PMID: 27389146]
[28]
Evans JC, McCarthy J, Torres-Fuentes C, et al. Cyclodextrin mediated delivery of NF-κB and SRF siRNA reduces the invasion potential of prostate cancer cells in vitro. Gene Ther 2015; 22(10): 802-10.
[http://dx.doi.org/10.1038/gt.2015.50] [PMID: 26005860]
[29]
Wolfe SA Jr, Culp SG, De Souza EB. Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary. Endocrinology 1989; 124(3): 1160-72.
[http://dx.doi.org/10.1210/endo-124-3-1160] [PMID: 2537173]
[30]
Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC. Sigma receptors: biology and function. Pharmacol Rev 1990; 42(4): 355-402.
[PMID: 1964225]
[31]
John CS, Vilner BJ, Geyer BC, Moody T, Bowen WD. Targeting sigma receptor-binding benzamides as in vivo diagnostic and therapeutic agents for human prostate tumors. Cancer Res 1999; 59(18): 4578-83.
[PMID: 10493511]
[32]
Vilner BJ, John CS, Bowen WD. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 1995; 55(2): 408-13.
[PMID: 7812973]
[33]
Zhang Y, Huang Y, Zhang P, Gao X, Gibbs RB, Li S. Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells. Int J Nanomedicine 2012; 7: 4473-85.
[PMID: 22927761]
[34]
Banerjee R, Tyagi P, Li S, Huang L. Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer 2004; 112(4): 693-700.
[http://dx.doi.org/10.1002/ijc.20452] [PMID: 15382053]
[35]
Puri R, Kaur Bhatia R, Shankar Pandey R, Kumar Jain U, Katare OP, Madan J. Sigma-2 receptor ligand anchored telmisartan loaded nanostructured lipid particles augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in prostate cancer cells. Drug Dev Ind Pharm 2016; 42(12): 2020-30.
[http://dx.doi.org/10.1080/03639045.2016.1190741] [PMID: 27184705]
[36]
Guo J, Ogier JR, Desgranges S, Darcy R, O’Driscoll C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 2012; 33(31): 7775-84.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.012] [PMID: 22828585]
[37]
Fitzgerald KA, Malhotra M, Gooding M, et al. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. Int J Pharm 2016; 499(1-2): 131-45.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.055] [PMID: 26721726]
[38]
Evans JC, Malhotra M, Fitzgerald KA, et al. Formulation and evaluation of anisamide-targeted amphiphilic cyclodextrin nanoparticles to promote therapeutic gene silencing in a 3D prostate cancer bone metastases model. Mol Pharm 2017; 14(1): 42-52.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00646] [PMID: 28043128]
[39]
Luan X, Rahme K, Cong Z, et al. Anisamide-targeted PEGylated gold nanoparticles designed to target prostate cancer mediate: Enhanced systemic exposure of siRNA, tumour growth suppression and a synergistic therapeutic response in combination with paclitaxel in mice. Eur J Pharm Biopharm 2019; 137: 56-67.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.013] [PMID: 30779980]
[40]
Wang L, Pei J, Cong Z, et al. Development of anisamide-targeted PEGylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice. Int J Nanomedicine 2019; 14: 1817-33.
[http://dx.doi.org/10.2147/IJN.S192520] [PMID: 30880982]
[41]
Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006; 121(2): 144-58.
[http://dx.doi.org/10.1016/j.clim.2006.06.010] [PMID: 16904380]
[42]
Keer HN, Kozlowski JM, Tsai YC, Lee C, McEwan RN, Grayhack JT. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J Urol 1990; 143(2): 381-5.
[http://dx.doi.org/10.1016/S0022-5347(17)39970-6] [PMID: 1688956]
[43]
Nie Y, Schaffert D, Rödl W, Ogris M, Wagner E, Günther M. Dual-targeted polyplexes: one step towards a synthetic virus for cancer gene therapy. J Control Release 2011; 152(1): 127-34.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.028] [PMID: 21392549]
[44]
Singh R, Norret M, House MJ, et al. Dose-dependent therapeutic distinction between active and passive targeting revealed using transferrin-coated PGMA nanoparticles. Small 2016; 12(3): 351-9.
[http://dx.doi.org/10.1002/smll.201502730] [PMID: 26619362]
[45]
Donat SM, Powell CT, Israeli RS, Fair WR, Heston WD. Reversal by transferrin of growth-inhibitory effect of suramin on hormone-refractory human prostate cancer cells. J Natl Cancer Inst 1995; 87(1): 41-6.
[http://dx.doi.org/10.1093/jnci/87.1.41] [PMID: 7666462]
[46]
Xu L, Frederik P, Pirollo KF, et al. Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum Gene Ther 2002; 13(3): 469-81.
[http://dx.doi.org/10.1089/10430340252792594] [PMID: 11860713]
[47]
Seki M, Iwakawa J, Cheng H, Cheng PW. p53 and PTEN/MMAC1/TEP1 gene therapy of human prostate PC-3 carcinoma xenograft, using transferrin-facilitated lipofection gene delivery strategy. Hum Gene Ther 2002; 13(6): 761-73.
[http://dx.doi.org/10.1089/104303402317322311] [PMID: 11936974]
[48]
Xu L, Pirollo KF, Tang WH, Rait A, Chang EH. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 1999; 10(18): 2941-52.
[http://dx.doi.org/10.1089/10430349950016357] [PMID: 10609655]
[49]
Korotcov A, Shan L, Meng H, et al. A nanocomplex system as targeted contrast agent delivery vehicle for magnetic resonance imaging dynamic contrast enhancement study. J Nanosci Nanotechnol 2010; 10(11): 7545-9.
[http://dx.doi.org/10.1166/jnn.2010.2821] [PMID: 21137979]
[50]
Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 2004; 112(2): 335-40.
[http://dx.doi.org/10.1002/ijc.20405] [PMID: 15352049]
[51]
Sundaram S, Roy SK, Ambati BK, Kompella UB. Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium. FASEB J 2009; 23(11): 3752-65.
[http://dx.doi.org/10.1096/fj.09-129825] [PMID: 19608628]
[52]
Xu L, Huang CC, Huang W, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 2002; 1(5): 337-46.
[PMID: 12489850]
[53]
Yu W, Pirollo KF, Yu B, et al. Enhanced transfection efficiency of a systemically delivered tumor-targeting immunolipoplex by inclusion of a pH-sensitive histidylated oligolysine peptide. Nucleic Acids Res 2004; 32(5)e48
[http://dx.doi.org/10.1093/nar/gnh049] [PMID: 15026537]
[54]
Yu W, Pirollo KF, Rait A, et al. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther 2004; 11(19): 1434-40.
[http://dx.doi.org/10.1038/sj.gt.3302304] [PMID: 15229629]
[55]
Hwang SH, Rait A, Pirollo KF, et al. Tumor-targeting nanodelivery enhances the anticancer activity of a novel quinazolinone analogue. Mol Cancer Ther 2008; 7(3): 559-68.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0548] [PMID: 18347143]
[56]
Felber AE, Castagner B, Elsabahy M, Deleavey GF, Damha MJ, Leroux JC. siRNA nanocarriers based on methacrylic acid copolymers. J Control Release 2011; 152(1): 159-67.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.012] [PMID: 21195736]
[57]
Kos P, Lächelt U, He D, Nie Y, Gu Z, Wagner E. Dual-targeted polyplexes based on sequence-defined peptide-PEG-oligoamino amides. J Pharm Sci 2015; 104(2): 464-75.
[http://dx.doi.org/10.1002/jps.24194] [PMID: 25266644]
[58]
Lu Y, Jiang W, Wu X, et al. Peptide T7-modified polypeptide with disulfide bonds for targeted delivery of plasmid DNA for gene therapy of prostate cancer. Int J Nanomedicine 2018; 13: 6913-27.
[http://dx.doi.org/10.2147/IJN.S180957] [PMID: 30464450]
[59]
Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 1971; 27(2): 166-7.
[http://dx.doi.org/10.1007/BF02145873] [PMID: 5544731]
[60]
Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 1999; 59(5): 1152-9.
[PMID: 10070977]
[61]
Chanda N, Shukla R, Katti KV, Kannan R. Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett 2009; 9(5): 1798-805.
[http://dx.doi.org/10.1021/nl8037147] [PMID: 19351145]
[62]
Chanda N, Kattumuri V, Shukla R, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA 2010; 107(19): 8760-5.
[http://dx.doi.org/10.1073/pnas.1002143107] [PMID: 20410458]
[63]
Yang Y, Neef T, Mittelholzer C, et al. The biodistribution of self-assembling protein nanoparticles shows they are promising vaccine platforms. J Nanobiotechnology 2013; 11: 36.
[http://dx.doi.org/10.1186/1477-3155-11-36] [PMID: 24219600]
[64]
Zhang W, Garg S, Eldi P, et al. Targeting prostate cancer cells with genetically engineered polypeptide-based micelles displaying gastrin-releasing peptide. Int J Pharm 2016; 513(1-2): 270-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.039] [PMID: 27633281]
[65]
Zhang W, Song Y, Eldi P, et al. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles. Int J Nanomedicine 2018; 13: 293-305.
[http://dx.doi.org/10.2147/IJN.S152485] [PMID: 29391790]
[66]
Mendoza-Sánchez AN, Ferro-Flores G, Ocampo-García BE, et al. Lys3-bombesin conjugated to 99mTc-labelled gold nanoparticles for in vivo gastrin releasing peptide-receptor imaging. J Biomed Nanotechnol 2010; 6(4): 375-84.
[http://dx.doi.org/10.1166/jbn.2010.1132] [PMID: 21323111]
[67]
Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, et al. Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3) -bombesin internalized in nuclei of prostate cancer cells. J Labelled Comp Radiopharm 2013; 56(13): 663-71.
[http://dx.doi.org/10.1002/jlcr.3087] [PMID: 25196028]
[68]
Silva F, Zambre A, Campello MP, et al. Interrogating the role of receptor-mediated mechanisms: biological fate of peptide-functionalized radiolabeled gold nanoparticles in tumor mice. Bioconjug Chem 2016; 27(4): 1153-64.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00102] [PMID: 27003101]
[69]
Pretze M, Hien A, Rädle M, Schirrmacher R, Wängler C, Wängler B. gastrin-releasing peptide receptor- and prostate-specific membrane antigen-specific ultrasmall gold nanoparticles for characterization and diagnosis of prostate carcinoma via fluorescence imaging. Bioconjug Chem 2018; 29(5): 1525-33.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00067] [PMID: 29542916]
[70]
Martin AL, Hickey JL, Ablack AL, Lewis JD, Luyt LG, Gillies ER. Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. J Nanopart Res 2009; 12(5): 1599-608.
[http://dx.doi.org/10.1007/s11051-009-9681-3] [PMID: 22328862]
[71]
Lee CM, Jeong HJ, Cheong SJ, et al. Prostate cancer-targeted imaging using magnetofluorescent polymeric nanoparticles functionalized with bombesin. Pharm Res 2010; 27(4): 712-21.
[http://dx.doi.org/10.1007/s11095-010-0072-3] [PMID: 20182773]
[72]
Hu K, Wang H, Tang G, et al. In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. J Nucl Med 2015; 56(8): 1278-84.
[http://dx.doi.org/10.2967/jnumed.115.158873] [PMID: 26112023]
[73]
Cui D, Lu X, Yan C, et al. Gastrin-releasing peptide receptor-targeted gadolinium oxide-based multifunctional nanoparticles for dual magnetic resonance/fluorescent molecular imaging of prostate cancer. Int J Nanomedicine 2017; 12: 6787-97.
[http://dx.doi.org/10.2147/IJN.S139246] [PMID: 28979118]
[74]
Cai H, Xie F, Mulgaonkar A, et al. Bombesin functionalized (64)Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine (Lond) 2018.
[http://dx.doi.org/10.2217/nnm-2018-0062]
[75]
Steinmetz NF, Ablack AL, Hickey JL, et al. Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing Peptide receptors. Small 2011; 7(12): 1664-72.
[http://dx.doi.org/10.1002/smll.201000435] [PMID: 21520408]
[76]
Bleul R, Thiermann R, Marten GU, et al. Continuously manufactured magnetic polymersomes--a versatile tool (not only) for targeted cancer therapy. Nanoscale 2013; 5(23): 11385-93.
[http://dx.doi.org/10.1039/c3nr02190d] [PMID: 23820598]
[77]
Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 1999; 39(2): 123-9.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19990501)39:2<123:AID-PROS7>3.0.CO;2-2] [PMID: 10221568]
[78]
Li Y, Cozzi PJ. Targeting uPA/uPAR in prostate cancer. Cancer Treat Rev 2007; 33(6): 521-7.
[http://dx.doi.org/10.1016/j.ctrv.2007.06.003] [PMID: 17658220]
[79]
Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR. Expression of urokinase plasminogen activator and receptor in conjunction with the ets family and AP-1 complex transcription factors in high grade prostate cancers. Eur J Cancer 2001; 37(8): 1033-40.
[http://dx.doi.org/10.1016/S0959-8049(01)00077-6] [PMID: 11334730]
[80]
Abdalla MO, Karna P, Sajja HK, et al. Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Control Release 2011; 149(3): 314-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.030] [PMID: 21047537]
[81]
Wang M, Löwik DW, Miller AD, Thanou M. Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles. Bioconjug Chem 2009; 20(1): 32-40.
[http://dx.doi.org/10.1021/bc8001908] [PMID: 19099499]
[82]
Ahmed MSU, Salam AB, Yates C, et al. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int J Nanomedicine 2017; 12: 6973-84.
[http://dx.doi.org/10.2147/IJN.S139011] [PMID: 29033565]
[83]
Pinto JT, Suffoletto BP, Berzin TM, et al. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res 1996; 2(9): 1445-51.
[PMID: 9816319]
[84]
Carter RE, Feldman AR, Coyle JT. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 1996; 93(2): 749-53.
[http://dx.doi.org/10.1073/pnas.93.2.749] [PMID: 8570628]
[85]
Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 2004; 91(3): 528-39.
[http://dx.doi.org/10.1002/jcb.10661] [PMID: 14755683]
[86]
Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 1987; 7(5B): 927-35.
[PMID: 2449118]
[87]
Troyer JK, Beckett ML, Wright GL Jr. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer 1995; 62(5): 552-8.
[http://dx.doi.org/10.1002/ijc.2910620511] [PMID: 7665226]
[88]
Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998; 82(11): 2256-61.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2256:AID-CNCR22>3.0.CO;2-S] [PMID: 9610707]
[89]
Ross JS, Sheehan CE, Fisher HA, et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 2003; 9(17): 6357-62.
[PMID: 14695135]
[90]
Liu H, Moy P, Kim S, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997; 57(17): 3629-34.
[PMID: 9288760]
[91]
Bander NH, Nanus DM, Milowsky MI, Kostakoglu L, Vallabahajosula S, Goldsmith SJ. Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin Oncol 2003; 30(5): 667-76.
[http://dx.doi.org/10.1016/S0093-7754(03)00358-0] [PMID: 14571414]
[92]
Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR Jr. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 2004; 15(6): 1174-81.
[http://dx.doi.org/10.1021/bc0499127] [PMID: 15546182]
[93]
Thomas TP, Patri AK, Myc A, et al. In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 2004; 5(6): 2269-74.
[http://dx.doi.org/10.1021/bm049704h] [PMID: 15530041]
[94]
Moffatt S, Papasakelariou C, Wiehle S, Cristiano R. Successful in vivo tumor targeting of prostate-specific membrane antigen with a highly efficient J591/PEI/DNA molecular conjugate. Gene Ther 2006; 13(9): 761-72.
[http://dx.doi.org/10.1038/sj.gt.3302721] [PMID: 16453011]
[95]
Fuchs AV, Tse BW, Pearce AK, et al. Evaluation of polymeric nanomedicines targeted to psma: effect of ligand on targeting efficiency. Biomacromolecules 2015; 16(10): 3235-47.
[http://dx.doi.org/10.1021/acs.biomac.5b00913] [PMID: 26335533]
[96]
Willemsen RA, Pechar M, Carlisle RC, et al. Multi-component polymeric system for tumour cell-specific gene delivery using a universal bungarotoxin linker. Pharm Res 2010; 27(11): 2274-82.
[http://dx.doi.org/10.1007/s11095-010-0088-8] [PMID: 20300804]
[97]
Fung EK, Cheal SM, Fareedy SB, et al. Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling. EJNMMI Res 2016; 6(1): 7.
[http://dx.doi.org/10.1186/s13550-016-0164-0] [PMID: 26801327]
[98]
Osborne JR, Akhtar NH, Vallabhajosula S, Anand A, Deh K, Tagawa ST. Prostate-specific membrane antigen-based imaging. Urol Oncol 2013; 31(2): 144-54.
[http://dx.doi.org/10.1016/j.urolonc.2012.04.016] [PMID: 22658884]
[99]
Bandekar A, Zhu C, Jindal R, Bruchertseifer F, Morgenstern A, Sofou S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α-particle therapy of cancer. J Nucl Med 2014; 55(1): 107-14.
[http://dx.doi.org/10.2967/jnumed.113.125476] [PMID: 24337602]
[100]
Nagesh PKB, Johnson NR, Boya VKN, et al. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces 2016; 144: 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[101]
Ikegami S, Tadakuma T, Yamakami K, et al. Selective gene therapy for prostate cancer cells using liposomes conjugated with IgM type monoclonal antibody against prostate-specific membrane antigen. Hum Cell 2005; 18(1): 17-23.
[http://dx.doi.org/10.1111/j.1749-0774.2005.tb00053.x] [PMID: 16130896]
[102]
Sawant RM, Cohen MB, Torchilin VP, Rokhlin OW. Prostate cancer-specific monoclonal antibody 5D4 significantly enhances the cytotoxicity of doxorubicin-loaded liposomes against target cells in vitro. J Drug Target 2008; 16(7): 601-4.
[http://dx.doi.org/10.1080/10611860802228954] [PMID: 18686131]
[103]
Hariri W, Sudha T, Bharali DJ, Cui H, Mousa SA. Nano-targeted delivery of toremifene, an estrogen receptor-α blocker in prostate cancer. Pharm Res 2015; 32(8): 2764-74.
[http://dx.doi.org/10.1007/s11095-015-1662-x] [PMID: 25762087]
[104]
Dostalova S, Cerna T, Hynek D, et al. Site-directed conjugation of antibodies to apoferritin nanocarrier for targeted drug delivery to prostate cancer cells. ACS Appl Mater Interfaces 2016; 8(23): 14430-41.
[http://dx.doi.org/10.1021/acsami.6b04286] [PMID: 27219717]
[105]
Dostalova S, Polanska H, Svobodova M, et al. Prostate-specific membrane antigen-targeted site-directed antibody-conjugated apoferritin nanovehicle favorably influences in vivo side effects of doxorubicin. Sci Rep 2018; 8(1): 8867.
[http://dx.doi.org/10.1038/s41598-018-26772-z] [PMID: 29891921]
[106]
Pang ST, Lin FW, Chuang CK, Yang HW. Co-DELIVERY of Docetaxel and p44/42 MAPK siRNA using PSMA antibody-conjugated BSA-PEI layer-by-layer nanoparticles for prostate cancer target therapy. Macromol Biosci 2017; 17(5): 17.
[http://dx.doi.org/10.1002/mabi.201600421] [PMID: 28128882]
[107]
Tse BW, Cowin GJ, Soekmadji C, et al. PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine (Lond) 2015; 10(3): 375-86.
[http://dx.doi.org/10.2217/nnm.14.122] [PMID: 25407827]
[108]
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010; 9(7): 537-50.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[109]
Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 2002; 62(14): 4029-33.
[PMID: 12124337]
[110]
Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 2004; 64(21): 7668-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2550] [PMID: 15520166]
[111]
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol 2010; 624: 163-75.
[http://dx.doi.org/10.1007/978-1-60761-609-2_11] [PMID: 20217595]
[112]
Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007; 28(5): 869-76.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[113]
Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 2008; 105(45): 17356-61.
[http://dx.doi.org/10.1073/pnas.0809154105] [PMID: 18978032]
[114]
Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 2011; 108(5): 1850-5.
[http://dx.doi.org/10.1073/pnas.1011379108] [PMID: 21233423]
[115]
Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103(16): 6315-20.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[116]
Gu F, Langer R, Farokhzad OC. Formulation/preparation of functionalized nanoparticles for in vivo targeted drug delivery. Methods Mol Biol 2009; 544: 589-98.
[http://dx.doi.org/10.1007/978-1-59745-483-4_37] [PMID: 19488725]
[117]
Gu F, Zhang L, Teply BA, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 2008; 105(7): 2586-91.
[http://dx.doi.org/10.1073/pnas.0711714105] [PMID: 18272481]
[118]
Wang AZ, Yuet K, Zhang L, et al. ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine (Lond) 2010; 5(3): 361-8.
[http://dx.doi.org/10.2217/nnm.10.6] [PMID: 20394530]
[119]
Xu W, Siddiqui IA, Nihal M, et al. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 2013; 34(21): 5244-53.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.006] [PMID: 23582862]
[120]
Chen R, Zhao Y, Huang Y, et al. Nanomicellar TGX221 blocks xenograft tumor growth of prostate cancer in nude mice. Prostate 2015; 75(6): 593-602.
[http://dx.doi.org/10.1002/pros.22941] [PMID: 25620467]
[121]
Zhao Y, Duan S, Zeng X, et al. Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells. Mol Pharm 2012; 9(6): 1705-16.
[http://dx.doi.org/10.1021/mp3000309] [PMID: 22494444]
[122]
Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 2011; 7(15): 2241-9.
[http://dx.doi.org/10.1002/smll.201100472] [PMID: 21648076]
[123]
Leach JC, Wang A, Ye K, Jin S. A RNA-DNA hybrid aptamer for nanoparticle-based prostate tumor targeted drug delivery. Int J Mol Sci 2016; 17(3): 380.
[http://dx.doi.org/10.3390/ijms17030380] [PMID: 26985893]
[124]
Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget 2017; 8(6): 9375-87.
[http://dx.doi.org/10.18632/oncotarget.14072] [PMID: 28030843]
[125]
Dassie JP, Liu XY, Thomas GS, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 2009; 27(9): 839-49.
[http://dx.doi.org/10.1038/nbt.1560] [PMID: 19701187]
[126]
Gait MJ, Agrawal S. Advances in nucleic acid therapeutics. Royal Society of Chemistry 2019.
[127]
Wu X, Ding B, Gao J, et al. Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int J Nanomedicine 2011; 6: 1747-56.
[PMID: 21980237]
[128]
Wu X, Tai Z, Zhu Q, et al. Study on the prostate cancer-targeting mechanism of aptamer-modified nanoparticles and their potential anticancer effect in vivo. Int J Nanomedicine 2014; 9: 5431-40.
[PMID: 25473281]
[129]
Chen Z, Tai Z, Gu F, Hu C, Zhu Q, Gao S. Aptamer-mediated delivery of docetaxel to prostate cancer through polymeric nanoparticles for enhancement of antitumor efficacy. Eur J Pharm Biopharm 2016; 107: 130-41.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.007] [PMID: 27393562]
[130]
Hao Z, Fan W, Hao J, et al. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv 2016; 23(3): 874-81.
[http://dx.doi.org/10.3109/10717544.2014.920059] [PMID: 24892627]
[131]
Wu M, Wang Y, Wang Y, et al. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine 2017; 12: 5313-30.
[http://dx.doi.org/10.2147/IJN.S136032] [PMID: 28794625]
[132]
Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010; 4(7): 3689-96.
[http://dx.doi.org/10.1021/nn901877h] [PMID: 20550178]
[133]
Baek SE, Lee KH, Park YS, et al. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release 2014; 196: 234-42.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.018] [PMID: 25450401]
[134]
Binzel DW, Shu Y, Li H, et al. Specific delivery of MiRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol Ther 2016; 24(7): 1267-77.
[http://dx.doi.org/10.1038/mt.2016.85] [PMID: 27125502]
[135]
Pi F, Binzel DW, Lee TJ, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol 2018; 13(1): 82-9.
[http://dx.doi.org/10.1038/s41565-017-0012-z] [PMID: 29230043]
[136]
Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol Ther Nucleic Acids 2013; 2(7)e107
[http://dx.doi.org/10.1038/mtna.2013.37] [PMID: 23860551]
[137]
Stuart CH, Singh R, Smith TL, et al. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine (Lond) 2016; 11(10): 1207-22.
[http://dx.doi.org/10.2217/nnm-2015-0017] [PMID: 27077564]
[138]
Kaittanis C, Bolaender A, Yoo B, Shah N, Ouerfelli O, Grimm J. Targetable clinical nanoparticles for precision cancer therapy based on disease-specific molecular inflection points. Nano Lett 2017; 17(11): 7160-8.
[http://dx.doi.org/10.1021/acs.nanolett.7b04209] [PMID: 29035540]
[139]
Barinka C, Rovenská M, Mlcochová P, et al. Structural insight into the pharmacophore pocket of human glutamate carboxypeptidase II. J Med Chem 2007; 50(14): 3267-73.
[http://dx.doi.org/10.1021/jm070133w] [PMID: 17567119]
[140]
Subasinghe N, Schulte M, Chan MY, Roon RJ, Koerner JF, Johnson RL. Synthesis of acyclic and dehydroaspartic acid analogues of Ac-Asp-Glu-OH and their inhibition of rat brain N-acetylated alpha-linked acidic dipeptidase (NAALA dipeptidase). J Med Chem 1990; 33(10): 2734-44.
[http://dx.doi.org/10.1021/jm00172a009] [PMID: 2213826]
[141]
Zhou J, Neale JH, Pomper MG, Kozikowski AP. NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov 2005; 4(12): 1015-26.
[http://dx.doi.org/10.1038/nrd1903] [PMID: 16341066]
[142]
Bouvet V, Wuest M, Jans HS, et al. Automated synthesis of [(18)F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res 2016; 6(1): 40.
[http://dx.doi.org/10.1186/s13550-016-0195-6] [PMID: 27142881]
[143]
Chen Y, Pullambhatla M, Foss CA, et al. 2-(3-1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 2011; 17(24): 7645-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1357] [PMID: 22042970]
[144]
Maresca KP, Hillier SM, Femia FJ, et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem 2009; 52(2): 347-57.
[http://dx.doi.org/10.1021/jm800994j] [PMID: 19111054]
[145]
Banerjee SR, Foss CA, Castanares M, et al. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem 2008; 51(15): 4504-17.
[http://dx.doi.org/10.1021/jm800111u] [PMID: 18637669]
[146]
Kiess AP, Banerjee SR, Mease RC, et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging 2015; 59(3): 241-68.
[PMID: 26213140]
[147]
Chandran SS, Banerjee SR, Mease RC, Pomper MG, Denmeade SR. Characterization of a targeted nanoparticle functionalized with a urea-based inhibitor of prostate-specific membrane antigen (PSMA). Cancer Biol Ther 2008; 7(6): 974-82.
[http://dx.doi.org/10.4161/cbt.7.6.5968] [PMID: 18698158]
[148]
Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H. PSMA theranostics: current status and future directions. Mol Imaging 2018; •••: 17.
[http://dx.doi.org/10.1177/1536012118776068] [PMID: 29873291]
[149]
Aragnol D, Leserman LD. Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc Natl Acad Sci USA 1986; 83(8): 2699-703.
[http://dx.doi.org/10.1073/pnas.83.8.2699] [PMID: 3458229]
[150]
Harding JA, Engbers CM, Newman MS, Goldstein NI, Zalipsky S. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta 1997; 1327(2): 181-92.
[http://dx.doi.org/10.1016/S0005-2736(97)00056-4] [PMID: 9271260]
[151]
Sanna V, Pintus G, Roggio AM, et al. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells. J Med Chem 2011; 54(5): 1321-32.
[http://dx.doi.org/10.1021/jm1013715] [PMID: 21306166]
[152]
Autio KA, Dreicer R, Anderson J, et al. Safety and efficacy of BIND-014, a Docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a phase 2 clinical trial. JAMA Oncol 2018; 4(10): 1344-51.
[http://dx.doi.org/10.1001/jamaoncol.2018.2168] [PMID: 29978216]
[153]
Hrkach J, Von Hoff D, Mukkaram Ali M, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 2012; 4(128)
[http://dx.doi.org/10.1126/scitranslmed.3003651] [PMID: 22491949]
[154]
Banerjee SR, Foss CA, Horhota A, et al. 111In- and IRDye800CW-labeled PLA-PEG nanoparticle for imaging prostate-specific membrane antigen-expressing tissues. Biomacromolecules 2017; 18(1): 201-9.
[http://dx.doi.org/10.1021/acs.biomac.6b01485] [PMID: 28001364]
[155]
Behnam Azad B, Banerjee SR, Pullambhatla M, et al. Evaluation of a PSMA-targeted BNF nanoparticle construct. Nanoscale 2015; 7(10): 4432-42.
[http://dx.doi.org/10.1039/C4NR06069E] [PMID: 25675333]
[156]
Huang B, Otis J, Joice M, Kotlyar A, Thomas TP. PSMA-targeted stably linked “dendrimer-glutamate urea-methotrexate” as a prostate cancer therapeutic. Biomacromolecules 2014; 15(3): 915-23.
[http://dx.doi.org/10.1021/bm401777w] [PMID: 24392665]
[157]
Chen Z, Penet MF, Krishnamachary B, Banerjee SR, Pomper MG, Bhujwalla ZM. PSMA-specific theranostic nanoplex for combination of TRAIL gene and 5-FC prodrug therapy of prostate cancer. Biomaterials 2016; 80: 57-67.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.048] [PMID: 26706476]
[158]
Chen Z, Penet MF, Nimmagadda S, et al. PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano 2012; 6(9): 7752-62.
[http://dx.doi.org/10.1021/nn301725w] [PMID: 22866897]
[159]
Langut Y, Talhami A, Mamidi S, et al. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice. Proc Natl Acad Sci USA 2017; 114(52): 13655-60.
[http://dx.doi.org/10.1073/pnas.1714587115] [PMID: 29229829]
[160]
Jin J, Sui B, Gou J, et al. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells. PLoS One 2014; 9(11)e112200
[http://dx.doi.org/10.1371/journal.pone.0112200] [PMID: 25386942]
[161]
Pearce AK, Rolfe BE, Russell PJ, et al. Development of a polymer theranostic for prostate cancer. Polym Chem 2014; 5: 6932-42.
[http://dx.doi.org/10.1039/C4PY00999A]
[162]
Pearce AK, Simpson JD, Fletcher NL, et al. Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials 2017; 141: 330-9.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.004] [PMID: 28711780]
[163]
Xu X, Wu J, Liu Y, et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 2017; 11(3): 2618-27.
[http://dx.doi.org/10.1021/acsnano.6b07195] [PMID: 28240870]
[164]
Tai W, Li J, Corey E, Gao X. A ribonucleoprotein octamer for targeted siRNA delivery. Nat Biomed Eng 2018; 2: 326-37.
[http://dx.doi.org/10.1038/s41551-018-0214-1]
[165]
Zhang H, Liu X, Wu F, et al. A novel prostate-specific membrane-antigen (psma) targeted micelle-encapsulating wogonin inhibits prostate cancer cell proliferation via inducing intrinsic apoptotic pathway. Int J Mol Sci 2016; 17(5): 17.
[http://dx.doi.org/10.3390/ijms17050676] [PMID: 27196894]
[166]
Lee S, Lee Y, Kim H, Lee DY, Jon S. Bilirubin nanoparticle-assisted delivery of a small molecule-drug conjugate for targeted cancer therapy. Biomacromolecules 2018; 19(6): 2270-7.
[http://dx.doi.org/10.1021/acs.biomac.8b00189] [PMID: 29712433]
[167]
Mangadlao JD, Wang X, McCleese C, et al. Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 2018; 12(4): 3714-25.
[http://dx.doi.org/10.1021/acsnano.8b00940] [PMID: 29641905]
[168]
Lee JB, Zhang K, Tam YY, et al. A Glu-urea-Lys ligand-conjugated lipid nanoparticle/siRNA system inhibits androgen receptor expression in vivo. Mol Ther Nucleic Acids 2016; 5(8)e348
[http://dx.doi.org/10.1038/mtna.2016.43] [PMID: 28131285]
[169]
Li X, Yang W, Zou Y, Meng F, Deng C, Zhong Z. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. J Control Release 2015; 220(Pt B): 704-14.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.058] [PMID: 26348387]
[170]
Yari H, Nkepang G, Awasthi V. Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer. Materials (Basel) 2019; 12(5): 12.
[http://dx.doi.org/10.3390/ma12050756] [PMID: 30841602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy