Abstract
Background: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure, although gene therapy may be a promising future alternative. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgenic expression.
Objective: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice.
Methods: The subcutaneous xenograft mode was induced by subcutaneous injection of 2×107 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single- stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9) by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 staining to evaluate tumor angiogenesis.
Results: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased.
Conclusion: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and implicate rAAV9-Kal as a candidate for gene therapy of lung cancer.
Keywords: Recombinant adeno-associated virus, kallistatin, subcutaneous xenograft tumor growth, anti-angiogenic, lung cancer, gene therapy.
Graphical Abstract
[http://dx.doi.org/10.1530/ERC-18-0353] [PMID: 30893642]
[http://dx.doi.org/10.1158/2159-8290.CD-15-0854] [PMID: 26586766]
[http://dx.doi.org/10.1016/j.cllc.2020.02.024] [PMID: 32291211]
[http://dx.doi.org/10.1016/j.lfs.2020.117670] [PMID: 32298741]
[http://dx.doi.org/10.1016/S2095-4964(14)60034-0] [PMID: 25074884]
[http://dx.doi.org/10.1093/abbs/gmaa035] [PMID: 32393963]
[PMID: 29897181]
[PMID: 24816705]
[http://dx.doi.org/10.1016/j.yexcr.2015.06.021] [PMID: 26156753]
[http://dx.doi.org/10.1002/jcb.24693] [PMID: 24129914]
[http://dx.doi.org/10.1038/nature12875] [PMID: 24390344]
[http://dx.doi.org/10.1038/mt.2014.240] [PMID: 25515709]
[http://dx.doi.org/10.1002/jgm.1180] [PMID: 18338836]
[http://dx.doi.org/10.1016/j.jviromet.2006.11.019] [PMID: 17196264]
[http://dx.doi.org/10.1016/j.jchromb.2015.03.003] [PMID: 25841202]
[http://dx.doi.org/10.1038/gt.2009.157] [PMID: 19956269]
[http://dx.doi.org/10.1016/j.canlet.2007.07.008] [PMID: 17714861]
[http://dx.doi.org/10.1002/art.20991] [PMID: 15818689]
[http://dx.doi.org/10.1089/hum.2013.187] [PMID: 24512101]
[http://dx.doi.org/10.1182/blood-2002-01-0185] [PMID: 12384424]
[http://dx.doi.org/10.1002/hep.27558] [PMID: 25307947]
[http://dx.doi.org/10.1111/j.1349-7006.2009.01306.x] [PMID: 19709125]
[PMID: 23724648]
[http://dx.doi.org/10.1186/s12935-016-0365-7] [PMID: 27980455]
[http://dx.doi.org/10.3892/etm.2017.5610.] [PMID: 29434771]
[http://dx.doi.org/10.1038/mt.2011.3] [PMID: 21364543]
[http://dx.doi.org/10.3791/55724] [PMID: 30148479]
[http://dx.doi.org/10.11909/j.issn.1671-5411.2014.04.006.] [PMID: 25593580]
[http://dx.doi.org/10.1007/s12035-016-9777-6] [PMID: 26884266]
[http://dx.doi.org/10.1038/gt.2011.42] [PMID: 21512507]
[http://dx.doi.org/10.26444/aaem/100536] [PMID: 30922045]
[http://dx.doi.org/10.1128/JVI.70.5.3227-3234.1996] [PMID: 8627803]
[http://dx.doi.org/10.1073/pnas.0702778104] [PMID: 17664425]
[http://dx.doi.org/10.1128/JVI.02093-13] [PMID: 24198419]
[http://dx.doi.org/10.1038/mt.2011.72] [PMID: 21487395]
[http://dx.doi.org/10.34172/apb.2020.037] [PMID: 32373501]
[http://dx.doi.org/10.1016/j.yjmcc.2003.11.010] [PMID: 14871544]
[http://dx.doi.org/10.1155/2018/4138560]