Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment

Author(s): Vinitha Rani and Ashwini Prabhu*

Volume 27, Issue 7, 2021

Published on: 02 October, 2020

Page: [919 - 931] Pages: 13

DOI: 10.2174/1381612826666201002145454

Price: $65

Abstract

Background: Radiation therapy is a widely employed modality that is used to destroy cancer cells, but it also tends to induce changes in the tumor microenvironment and promote angiogenesis. Radiation, when used as a sole means of therapeutic approach to treat cancer, tends to trigger the angiogenic pathways, leading to the upregulation of several angiogenic growth factors such as VEGF, bFGF, PDGF and angiogenin. This uncontrolled angiogenesis leads to certain angiogenic disorders like vascular outgrowth and an increase in tumor progression that can pose a serious threat to patients.

Objective: This review emphasizes on various components of the tumor microenvironment, angiogenic growth factors and biological effects of radiation on tumors in provoking the relapse. It also describes the angiogenic mechanisms that trigger the tumor relapse after radiation therapy and how angiogenesis inhibitors can help in overcoming this phenomenon. It gives an overview of various angiogenesis inhibitors in pre-clinical as well as in clinical trials.

Conclusion: The review focuses on the beneficial effects of the combinatorial therapeutic approach of anti-angiogenesis therapy and radiation in tumor management.

Keywords: Angiogenesis inhibitors, radiation, growth factors, hypoxia, tumor microenvironment, therapy.

[1]
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012; 9(3): 193-9.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[2]
Willers H, Dahm-Daphi J, Powell SN. Repair of radiation damage to DNA. Br J Cancer 2004; 90(7): 1297-301.
[http://dx.doi.org/10.1038/sj.bjc.6601729] [PMID: 15054444]
[3]
Hubenak JR, Zhang Q, Branch CD, Kronowitz SJ. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast Reconstr Surg 2014; 133(1): 49e-56e.
[http://dx.doi.org/10.1097/01.prs.0000440818.23647.0b] [PMID: 24374687]
[4]
Yoshimura M, Itasaka S, Harada H, Hiraoka M. Microenvironment and radiation therapy. BioMed Res Int 2013; 2013: 685308.
[http://dx.doi.org/10.1155/2013/685308] [PMID: 23509762]
[5]
Ng J, Shuryak I. Minimizing second cancer risk following radiotherapy: current perspectives. Cancer Manag Res 2014; 7: 1-11.
[http://dx.doi.org/10.2147/CMAR.S47220] [PMID: 25565886]
[6]
Michaels HB, Hunt JW. A model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach. Radiat Res 1978; 74(1): 23-34.
[http://dx.doi.org/10.2307/3574754] [PMID: 674566]
[7]
Barker CA, Postow MA. Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys 2014; 88(5): 986-97.
[http://dx.doi.org/10.1016/j.ijrobp.2013.08.035] [PMID: 24661650]
[8]
Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004; 4(9): 737-47.
[http://dx.doi.org/10.1038/nrc1451] [PMID: 15343280]
[9]
Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front Mol Biosci 2014; 1: 24-32.
[http://dx.doi.org/10.3389/fmolb.2014.00024] [PMID: 25988165]
[10]
Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18(1): 157.
[http://dx.doi.org/10.1186/s12943-019-1089-9] [PMID: 31711497]
[11]
Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 2004; 14(3): 198-206.
[http://dx.doi.org/10.1016/j.semradonc.2004.04.008] [PMID: 15254862]
[12]
Flamant S, Tamarat R. Extracellular vesicles and vascular injury: new insights for radiation exposure. Radiat Res 2016; 186(2): 203-18.
[http://dx.doi.org/10.1667/RR14482.1] [PMID: 27459703]
[13]
Carvalho HAD, Villar RC. Radiotherapy and immune response: the systemic effects of a local treatment. Clinics (São Paulo) 2018; 73(Suppl. 1).e557s
[http://dx.doi.org/10.6061/clinics/2018/e557s] [PMID: 30540123]
[14]
Yusuf SW, Venkatesulu BP, Mahadevan LS, Krishnan S. Radiation-induced cardiovascular disease: a clinical perspective. Front Cardiovasc Med 2017; 4: 66.
[http://dx.doi.org/10.3389/fcvm.2017.00066] [PMID: 29124057]
[15]
Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019; 11(1): 40.
[http://dx.doi.org/10.1186/s13073-019-0653-7] [PMID: 31221199]
[16]
Park B, Yee C, Lee KM. The effect of radiation on the immune response to cancers. Int J Mol Sci 2014; 15(1): 927-43.
[http://dx.doi.org/10.3390/ijms15010927] [PMID: 24434638]
[17]
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015; 3: 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[18]
Stępień K, Ostrowski RP, Matyja E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol 2016; 33(9): 101.
[http://dx.doi.org/10.1007/s12032-016-0814-0] [PMID: 27485098]
[19]
Prasad P, Gordijo CR, Abbasi AZ, et al. Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 2014; 8(4): 3202-12.
[http://dx.doi.org/10.1021/nn405773r] [PMID: 24702320]
[20]
Wardman P. Nitroimidazoles as hypoxic cell radiosensitizers and hypoxia probes: misonidazole, myths and mistakes. Br J Radiol 2019; 92(1093): 20170915.
[PMID: 29303355]
[21]
Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015; 15: 130.
[http://dx.doi.org/10.1186/s12872-015-0124-z] [PMID: 26481314]
[22]
Ziyad S, Iruela-Arispe ML. Molecular mechanisms of tumor angiogenesis. Genes Cancer 2011; 2: 1085-96.
[http://dx.doi.org/10.1177/1947601911432334]
[23]
Li YQ, Chen P, Jain V, Reilly RM, Wong CS. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 2004; 161(2): 143-52.
[http://dx.doi.org/10.1667/RR3117] [PMID: 14731076]
[24]
Zhou Q, Zhao Y, Li P, Bai X, Ruan C. Thrombomodulin as a marker of radiation-induced endothelial cell injury. Radiat Res 1992; 131(3): 285-9.
[http://dx.doi.org/10.2307/3578417] [PMID: 1332109]
[25]
Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2(10): 727-39.
[http://dx.doi.org/10.1038/nrc905] [PMID: 12360276]
[26]
Klagsbrun M, D’Amore PA. Regulators of angiogenesis. Annu Rev Physiol 1991; 53: 217-39.
[http://dx.doi.org/10.1146/annurev.ph.53.030191.001245] [PMID: 1710435]
[27]
El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol 2013; 170(4): 712-29.
[http://dx.doi.org/10.1111/bph.12344] [PMID: 23962094]
[28]
Takano S, Yamashita T, Ohneda O. Molecular therapeutic targets for glioma angiogenesis. J Oncol 2010; 2010: 351908.
[http://dx.doi.org/10.1155/2010/351908] [PMID: 20414463]
[29]
Gotink KJ, Verheul HM. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 2010; 13(1): 1-14.
[http://dx.doi.org/10.1007/s10456-009-9160-6] [PMID: 20012482]
[30]
Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemis EA, Astsaturov I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets 2009; 13(3): 339-62.
[http://dx.doi.org/10.1517/14712590902735795] [PMID: 19236156]
[31]
Gurung BA, Bhattacharjee A. Significance of RAS signaling in cancer and strategies for its control. J Oncol Hematol Rev 2015; 11: 147-52.
[http://dx.doi.org/10.17925/OHR.2015.11.02.147]
[32]
Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem 2011; 3(14): 1787-808.
[http://dx.doi.org/10.4155/fmc.11.121] [PMID: 22004085]
[33]
Griffith EC, Su Z, Turk BE, et al. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol 1997; 4(6): 461-71.
[http://dx.doi.org/10.1016/S1074-5521(97)90198-8] [PMID: 9224570]
[34]
Satchi-Fainaro R, Puder M, Davies JW, et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 2004; 10(3): 255-61.
[http://dx.doi.org/10.1038/nm1002] [PMID: 14981512]
[35]
Bernier SG, Westlin WF, Hannig G. Fumagillin class inhibitors of methionine aminopeptidase-2. Drugs Future 2005; 30: 497-508.
[http://dx.doi.org/10.1358/dof.2005.030.05.895807]
[36]
Matsumoto K, Nakamura T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci 2003; 94(4): 321-7.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01440.x] [PMID: 12824898]
[37]
Koukourakis GV, Kouloulias V, Zacharias G, et al. Temozolomide with radiation therapy in high grade brain gliomas: pharmaceuticals considerations and efficacy; a review article. Molecules 2009; 14(4): 1561-77.
[http://dx.doi.org/10.3390/molecules14041561] [PMID: 19384285]
[38]
Ryu CH, Yoon WS, Park KY, et al. Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells. J Biomed Biotechnol 2012; 2012: 987495.
[http://dx.doi.org/10.1155/2012/987495] [PMID: 22701311]
[39]
De Fazio S, Russo E, Ammendola M, Donato Di Paola E, De Sarro G. Efficacy and safety of bevacizumab in glioblastomas. Curr Med Chem 2012; 19(7): 972-81.
[http://dx.doi.org/10.2174/092986712799320646] [PMID: 22214463]
[40]
Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999; 59(14): 3374-8.
[PMID: 10416597]
[41]
Zhao T, Wang X, Xu T, Xu X, Liu Z. Bevacizumab significantly increases the risks of hypertension and proteinuria in cancer patients: A systematic review and comprehensive meta-analysis. Oncotarget 2017; 8(31): 51492-506.
[http://dx.doi.org/10.18632/oncotarget.18190] [PMID: 28881662]
[42]
Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005; 9(2): 267-85.
[http://dx.doi.org/10.1111/j.1582-4934.2005.tb00355.x] [PMID: 15963249]
[43]
Dormán G, Cseh S, Hajdú I, et al. Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs 2010; 70(8): 949-64.
[http://dx.doi.org/10.2165/11318390-000000000-00000] [PMID: 20481653]
[44]
Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 2002; 115(Pt 19): 3719-27.
[http://dx.doi.org/10.1242/jcs.00063] [PMID: 12235282]
[45]
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. LlortAsens M, Guenther C, Fagerholm SC. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol 2019; 10: 1078.
[http://dx.doi.org/10.3389/fimmu.2019.01078] [PMID: 31231358]
[46]
Juliano RL, Varner JA. Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 1993; 5(5): 812-8.
[http://dx.doi.org/10.1016/0955-0674(93)90030-T] [PMID: 8240825]
[47]
Kurtz JE, Dufour P. Adecatumumab: an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opin Biol Ther 2010; 10(6): 951-8.
[http://dx.doi.org/10.1517/14712598.2010.482098] [PMID: 20426706]
[48]
Nicolaides C, Dimou S, Pavlidisa N. Prognostic factors in aggressive non‐Hodgkin’s lymphomas. Oncologist 1998; 3(3): 189-97.
[http://dx.doi.org/10.1634/theoncologist.3-3-189] [PMID: 10388103]
[49]
Dracham CB, Shankar A, Madan R. Radiation induced secondary malignancies: a review article. Radiat Oncol J 2018; 36(2): 85-94.
[http://dx.doi.org/10.3857/roj.2018.00290] [PMID: 29983028]
[50]
Brown JC, Winters-Stone K, Lee A, Schmitz KH. Cancer, physical activity, and exercise. Compr Physiol 2012; 2(4): 2775-809.
[PMID: 23720265]
[51]
Rajarajeswaran P, Vishnupriya R. Exercise in cancer. Indian J Med Paediatr Oncol 2009; 30(2): 61-70.
[http://dx.doi.org/10.4103/0971-5851.60050] [PMID: 20596305]
[52]
Ferrini K, Ghelfi F, Mannucci R, Titta L. Lifestyle, nutrition and breast cancer: facts and presumptions for consideration. Ecancermedicalscience 2015; 9: 557.
[http://dx.doi.org/10.3332/ecancer.2015.557] [PMID: 26284121]
[53]
Tseng TS, Lin HY, Moody-Thomas S, Martin M, Chen T. Who tended to continue smoking after cancer diagnosis: the national health and nutrition examination survey 1999-2008. BMC Public Health 2012; 12: 784.
[http://dx.doi.org/10.1186/1471-2458-12-784] [PMID: 22974404]
[54]
Toi M, Hoshina S, Takayanagi T, Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 1994; 85(10): 1045-9.
[http://dx.doi.org/10.1111/j.1349-7006.1994.tb02904.x] [PMID: 7525523]
[55]
John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 2001; 7(1): 14-23.
[http://dx.doi.org/10.1007/BF03032599] [PMID: 11349215]
[56]
Li D, Weng S, Zhong C, Xu D, Yuan Y. Risk of second primary cancers among long-term survivors of breast cancer. Front Oncol 2019; 9: 1426.
[PMID: 31998630]
[57]
Wang Y, Deng W, Li N, et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front Pharmacol 2018; 9: 185.
[http://dx.doi.org/10.3389/fphar.2018.00185] [PMID: 29556198]
[58]
Procaccio L, Damuzzo V, Di Sarra F, et al. Safety and tolerability of anti-angiogenic protein kinase inhibitors and vascular-disrupting agents in cancer: focus on gastrointestinal malignancies. Drug Saf 2019; 42(2): 159-79.
[http://dx.doi.org/10.1007/s40264-018-0776-6] [PMID: 30649744]
[59]
Willett CG, Kozin SV, Duda DG, et al. Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 2006; 33(5)(Suppl. 10): S35-40.
[http://dx.doi.org/10.1053/j.seminoncol.2006.08.007] [PMID: 17145523]
[60]
Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10(2): 145-7.
[http://dx.doi.org/10.1038/nm988] [PMID: 14745444]
[61]
Wachsberger PR, Burd R, Cardi C, et al. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int J Radiat Oncol Biol Phys 2007; 67(5): 1526-37.
[http://dx.doi.org/10.1016/j.ijrobp.2006.11.011] [PMID: 17234361]
[62]
Gaya AM, Rustin GJ. Vascular disrupting agents: a new class of drug in cancer therapy. Clin Oncol (R Coll Radiol) 2005; 17(4): 277-90.
[http://dx.doi.org/10.1016/j.clon.2004.11.011] [PMID: 15997924]
[63]
Goedegebuure RSA, de Klerk LK, Bass AJ, Derks S, Thijssen VLJL. Combining radiotherapy with anti-angiogenic therapy and immunotherapy; a therapeutic triad for cancer? Front Immunol 2019; 9: 3107.
[http://dx.doi.org/10.3389/fimmu.2018.03107] [PMID: 30692993]
[64]
Chae YK, Ranganath K, Hammerman PS, et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 2017; 8(9): 16052-74.
[http://dx.doi.org/10.18632/oncotarget.14109] [PMID: 28030802]
[65]
Tello-Montoliu A, Patel JV, Lip GYH. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 2006; 4(9): 1864-74.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01995.x] [PMID: 16961595]
[66]
Lee SH, Kim KW, Min KM, Kim KW, Chang SI, Kim JC. Angiogenin reduces immune inflammation via inhibition of TANK-binding kinase 1 expression in human corneal fibroblast cells. Mediators Inflamm 2014; 2014: 861435.
[http://dx.doi.org/10.1155/2014/861435] [PMID: 24860242]
[67]
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci 2017; 147: 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[68]
Ong SKL, Shanmugam MK, Fan L, et al. Focus on formononetin: anticancer potential and molecular targets. Cancers (Basel) 2019; 11(5): 611-9.
[http://dx.doi.org/10.3390/cancers11050611] [PMID: 31052435]
[69]
Lund EL, Bastholm L, Kristjansen PE. Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin Cancer Res 2000; 6(3): 971-8.
[PMID: 10741723]
[70]
Murata R, Nishimura Y, Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 1997; 37(5): 1107-13.
[http://dx.doi.org/10.1016/S0360-3016(96)00628-1] [PMID: 9169820]
[71]
Puli S, Lai JC, Bhushan A. Inhibition of matrix degrading enzymes and invasion in human glioblastoma (U87MG) cells by isoflavones. J Neurooncol 2006; 79(2): 135-42.
[http://dx.doi.org/10.1007/s11060-006-9126-0] [PMID: 16598420]
[72]
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 2016; 17(6): 868-74.
[http://dx.doi.org/10.3390/ijms17060868] [PMID: 27271600]
[73]
Wagemakers M, van der Wal GE, Cuberes R, et al. COX-2 inhibition combined with radiation reduces orthotopic glioma outgrowth by targeting the tumor vasculature. Transl Oncol 2009; 2(1): 1-7.
[http://dx.doi.org/10.1593/tlo.08160] [PMID: 19252746]
[74]
Tarafdar A, Pula G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. Int J Mol Sci 2018; 19(12): 3824.
[http://dx.doi.org/10.3390/ijms19123824] [PMID: 30513656]
[75]
Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2015; 12(1): 5-23.
[http://dx.doi.org/10.1038/cmi.2014.89] [PMID: 25263488]
[76]
Gatne D, Addepalli V. Overview of angiogenesis inhibitors from natural sources.biochemical basis and therapeutic implications of angiogenesis.Adv Biochem Health Dis. 2013; 6: pp. 499-520.
[http://dx.doi.org/10.1007/978-1-4614-5857-9_26]
[77]
Avram S, Ghiulai R, Pavel IZ, et al. Targeting cancer angiogenesis using the chorioallantoic membrane assay. Nat Prod Cancer Drug Discov 2017; 8: 45-66.
[http://dx.doi.org/10.5772/intechopen.68506]
[78]
Natarajan M, Aravindan S, Herman TS, Aravindan N. Hyperthermia and radiotherapy in combination with curcumin prevent tumor cell migration and progression of breast cancer. Cancer Res 2012; 14: 1458-8.
[79]
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep 2019; 9(1): 19161.
[http://dx.doi.org/10.1038/s41598-019-55605-w] [PMID: 31844085]
[80]
Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012; 327(1-2): 48-60.
[http://dx.doi.org/10.1016/j.canlet.2011.12.012] [PMID: 22182453]
[81]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 2016; 15(1): 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[82]
Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The importance of poly (ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol Cell 2018; 71(2): 319-331.e3.
[http://dx.doi.org/10.1016/j.molcel.2018.06.004] [PMID: 29983321]
[83]
Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 2015; 141(11): 1985-94.
[http://dx.doi.org/10.1007/s00432-015-1974-6] [PMID: 25910988]
[84]
Hallahan DE, Chen AY, Teng M, Cmelak AJ. Drug-radiation interactions in tumor blood vessels. Oncology (Williston Park) 1999; 13(10)(Suppl. 5): 71-7.
[PMID: 10550829]
[85]
Weintraub NL, Jones WK, Manka D. Understanding radiation-induced vascular disease. J Am Coll Cardiol 2010; 55(12): 1237-9.
[http://dx.doi.org/10.1016/j.jacc.2009.11.053] [PMID: 20298931]
[86]
Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 2012; 177(3): 311-27.
[http://dx.doi.org/10.1667/RR2773.1] [PMID: 22229487]
[87]
Potiron VA, Abderrahmani R, Clément-Colmou K, et al. Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer. PLoS One 2013; 8(12): e84076.
[http://dx.doi.org/10.1371/journal.pone.0084076] [PMID: 24391887]
[88]
Kanthou C, Tozer G. Targeting the vasculature of tumours: combining VEGF pathway inhibitors with radiotherapy. Br J Radiol 2019; 92(1093): 20180405.
[PMID: 30160184]
[89]
Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006; 63(5): 601-15.
[http://dx.doi.org/10.1007/s00018-005-5426-3] [PMID: 16465447]
[90]
Hagenbuchner J, Rupp M, Salvador C, et al. Nuclear FOXO3 predicts adverse clinical outcome and promotes tumor angiogenesis in neuroblastoma. Oncotarget 2016; 7(47): 77591-606.
[http://dx.doi.org/10.18632/oncotarget.12728] [PMID: 27769056]
[91]
National Institutes of Health. LiverTox: clinical and research information on drug-induced liver injury. 2017. Available from: https://livertox. nih. gov
[92]
Le Tourneau C, Raymond E, Faivre S. Sunitinib: a novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Ther Clin Risk Manag 2007; 3(2): 341-8.
[http://dx.doi.org/10.2147/tcrm.2007.3.2.341] [PMID: 18360643]
[93]
Lee ATJ, Jones RL, Huang PH. Pazopanib in advanced soft tissue sarcomas. Signal Transduct Target Ther 2019; 4: 16.
[http://dx.doi.org/10.1038/s41392-019-0049-6] [PMID: 31123606]
[94]
BækMøller N. Budolfsen C, Grimm D, Krüger M, Infanger M, Wehland M, E Magnusson. Drug-induced hypertension caused by multikinase inhibitors (sorafenib, sunitinib, lenvatinib and axitinib) in renal cell carcinoma treatment. Int J Mol Sci 2019; 20: 4712.
[http://dx.doi.org/10.3390/ijms20194712]
[95]
Morabito A, Piccirillo MC, Falasconi F, et al. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist 2009; 14(4): 378-90.
[http://dx.doi.org/10.1634/theoncologist.2008-0261] [PMID: 19349511]
[96]
Ciombor KK, Berlin J. Aflibercept--a decoy VEGF receptor. Curr Oncol Rep 2014; 16(2): 368.
[http://dx.doi.org/10.1007/s11912-013-0368-7] [PMID: 24445500]
[97]
Reardon DA, Neyns B, Weller M, Tonn JC, Nabors LB, Stupp R. Cilengitide: an RGD pentapeptide ανβ3 and ανβ5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol 2011; 7(3): 339-54.
[http://dx.doi.org/10.2217/fon.11.8] [PMID: 21417900]
[98]
Bornstein P. Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 2009; 3(3-4): 189-200.
[http://dx.doi.org/10.1007/s12079-009-0060-8] [PMID: 19798599]
[99]
Senan S, Smit EF. Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist 2007; 12(4): 465-77.
[http://dx.doi.org/10.1634/theoncologist.12-4-465] [PMID: 17470689]
[100]
Raben D, Helfrich B. Angiogenesis inhibitors: a rational strategy for radiosensitization in the treatment of non-small-cell lung cancer? Clin Lung Cancer 2004; 6(1): 48-57.
[http://dx.doi.org/10.3816/CLC.2004.n.021] [PMID: 15310417]
[101]
Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91(3): 1071-121.
[http://dx.doi.org/10.1152/physrev.00038.2010] [PMID: 21742796]
[102]
Xu J, You C, Zhang S, et al. Angiogenesis and cell proliferation in human craniopharyngioma xenografts in nude mice. J Neurosurg 2006; 105(4)(Suppl.): 306-10.
[PMID: 17328281]
[103]
Ansiaux R, Baudelet C, Jordan BF, et al. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res 2005; 11(2 Pt 1): 743-50.
[PMID: 15701864]
[104]
Lakka SS, Rao JS. Antiangiogenic therapy in brain tumors. Expert Rev Neurother 2008; 8(10): 1457-73.
[http://dx.doi.org/10.1586/14737175.8.10.1457] [PMID: 18928341]
[105]
Fernandes C, Costa A, Osório L, et al. Current standards of care in glioblastoma therapy. Exon Publications 2017; 8: 197-241.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch11] [PMID: 29251860]
[106]
Schmidt B, Lee HJ, Ryeom S, Yoon SS. Combining bevacizumab with radiation or chemoradiation for solid tumors: a review of the scientific rationale, and clinical trials. Curr Angiogenes 2012; 1(3): 169-79.
[http://dx.doi.org/10.2174/2211552811201030169] [PMID: 24977113]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy