Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Data Sharing and Privacy in Pharmaceutical Studies

Author(s): Rufan Chen, Yi Zhang, Zuochao Dou, Feng Chen, Kang Xie and Shuang Wang*

Volume 27, Issue 7, 2021

Published on: 12 January, 2021

Page: [911 - 918] Pages: 8

DOI: 10.2174/1381612827999210112204732

Price: $65

Abstract

Adverse drug events have been a long-standing concern for the wide-ranging harms to public health, and the substantial disease burden. The key to diminish or eliminate the impacts is to build a comprehensive pharmacovigilance system. Application of the “big data” approach has been proved to assist the detection of adverse drug events by involving previously unavailable data sources and promoting health information exchange. Even though challenges and potential risks still remain. The lack of effective privacy-preserving measures in the flow of medical data is the most important Accepted: one, where urgent actions are required to prevent the threats and facilitate the construction of pharmacovigilance systems. Several privacy protection methods are reviewed in this article, which may be helpful to break the barrier.

Keywords: Drug use, pharmacovigilance, data sharing, data privacy, ethics, policy, social netowork.

[1]
WHO. Pharmacovigilance. World Health Organization 2015. Available from: . https://www.who.int/medicines/areas/quality_safety/saf ety_efficacy/pharmvigi/en/
[2]
CFR - Code of Federal Regulations Title 21. FDA. 2019.https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcf r/cfrsearch.cfm?fr=312.32
[3]
Becker ML, Kallewaard M, Caspers PWJ, Visser LE, Leufkens HGM, Stricker BHC. Hospitalisations and emergency department visits due to drug-drug interactions: a literature review. Pharmacoepidemiol Drug Saf 2007; 16(6): 641-51.
[http://dx.doi.org/10.1002/pds.1351] [PMID: 17154346]
[4]
Sepehri G, Khazaelli P, Dahooie FA, Sepehri E, Dehghani MR. Prevalence of potential drug interactions in an Iranian general hospital. Indian J Pharm Sci 2012; 74(1): 75-9.
[http://dx.doi.org/10.4103/0250-474X.102548] [PMID: 23204627]
[5]
Lin C-F, Wang C-Y, Bai C-H. Polypharmacy, aging and potential drug-drug interactions in outpatients in Taiwan: a retrospective computerized screening study. Drugs Aging 2011; 28(3): 219-25.
[http://dx.doi.org/10.2165/11586870-000000000-00000] [PMID: 21250763]
[6]
Teixeira JJV, Crozatti MTL, dos Santos CA, Romano-Lieber NS. Potential drug-drug interactions in prescriptions to patients over 45 years of age in primary care, southern Brazil. PLoS One 2012; 7(10)
[http://dx.doi.org/10.1371/journal.pone.0047062] [PMID: 23071711]
[7]
Neto PRO, Nobili A, Marusic S, et al. Prevalence and predictors of potential drug-drug interactions in the elderly: a cross-sectional study in the brazilian primary public health system. J Pharm Pharm Sci 2012; 15: 344.
[http://dx.doi.org/10.18433/J37K5W]
[8]
Björkman IK, Fastbom J, Schmidt IK, Bernsten CB. Pharmaceutical Care of the Elderly in Europe Research (PEER) Group. Drug-drug interactions in the elderly. Ann Pharmacother 2002; 36(11): 1675-81.
[http://dx.doi.org/10.1345/aph.1A484] [PMID: 12398558]
[9]
Cruciol-Souza JM, Thomson JC. Prevalence of potential drug-drug interactions and its associated factors in a Brazilian teaching hospital. J Pharm Pharm Sci 2006; 9(3): 427-33.
[PMID: 17207423]
[10]
Sharma S, Chhetri HP, Alam K. A study of potential drug-drug interactions among hospitalized cardiac patients in a teaching hospital in Western Nepal. Indian J Pharmacol 2014; 46(2): 152-6.
[http://dx.doi.org/10.4103/0253-7613.129303] [PMID: 24741184]
[11]
Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998; 279(15): 1200-5.
[http://dx.doi.org/10.1001/jama.279.15.1200] [PMID: 9555760]
[12]
Moura CS, Acurcio FA, Belo NO. Drug-drug interactions associated with length of stay and cost of hospitalization. J Pharm Pharm Sci 2009; 12(3): 266-72.
[http://dx.doi.org/10.18433/J35C7Z] [PMID: 20067703]
[13]
Percha B, Altman RB. Informatics confronts drug-drug interactions. Trends Pharmacol Sci 2013; 34(3): 178-84.
[http://dx.doi.org/10.1016/j.tips.2013.01.006] [PMID: 23414686]
[14]
Smets HLE, De Haes JFF, De Swaef A, Jorens PG, Verpooten GA. Exposure of the elderly to potential nephrotoxic drug combinations in Belgium. Pharmacoepidemiol Drug Saf 2008; 17(10): 1014-9.
[http://dx.doi.org/10.1002/pds.1641] [PMID: 18763247]
[15]
Vilar S, Friedman C, Hripcsak G. Detection of drug-drug interactions through data mining studies using clinical sources, scientific literature and social media. Brief Bioinform 2018; 19(5): 863-77.
[http://dx.doi.org/10.1093/bib/bbx010] [PMID: 28334070]
[16]
Triplitt C. Drug interactions of medications commonly used in diabetesDiabetes Spectr 2006 Available from: https://spectrum.diabetesjournals.org/content/19/4/202.s
[http://dx.doi.org/10.2337/diaspect.19.4.202]
[17]
Coloma PM, Trifirò G, Patadia V, Sturkenboom M. Postmarketing safety surveillance: where does signal detection using electronic healthcare records fit into the big picture? Drug Saf 2013; 36(3): 183-97.
[http://dx.doi.org/10.1007/s40264-013-0018-x] [PMID: 23377696]
[18]
Center for Drug Evaluation. FDA issues public health warning on phenylpropanolamine. US Food and Drug Administration 2018. Available from:. https://www.fda.gov/drugs/information-drug-class/fda-i
[19]
Cantu C, Arauz A, Murillo-Bonilla LM, López M, Barinagarrementeria F. Stroke associated with sympathomimetics contained in over-the-counter cough and cold drugs. Stroke 2003; 34(7): 1667-72.
[http://dx.doi.org/10.1161/01.STR.0000075293.45936.FA] [PMID: 12791938]
[20]
Miller J, Ross JS, Wilenzick M, Mello MM. Sharing of clinical trial data and results reporting practices among large pharmaceutical companies: cross sectional descriptive study and pilot of a tool to improve company practices. BMJ 2019; 366: l4217.
[http://dx.doi.org/10.1136/bmj.l4217] [PMID: 31292127]
[21]
Correia RB, Li L, Rocha LM. Monitoring potential drug interactions and reactions via network analysis of instagram user timelines. Pac Symp Biocomput 2016; 21: 492-503.
[http://dx.doi.org/10.1142/9789814749411_0045] [PMID: 26776212]
[22]
Vallance P, Freeman A, Stewart M. Data sharing as part of the normal scientific process: a view from the pharmaceutical industry. PLoS Med 2016; 13(1)
[http://dx.doi.org/10.1371/journal.pmed.1001936] [PMID: 26731493]
[23]
Benitez K, Malin B. Evaluating re-identification risks with respect to the HIPAA privacy rule. J Am Med Inform Assoc 2010; 17(2): 169-77.
[http://dx.doi.org/10.1136/jamia.2009.000026] [PMID: 20190059]
[24]
El Emam K, Jonker E, Arbuckle L, Malin B. A systematic review of re-identification attacks on health data. PLoS One 2011; 6(12)
[http://dx.doi.org/10.1371/journal.pone.0028071] [PMID: 22164229]
[25]
Price J. What can big data offer the pharmacovigilance of orphan drugs? Clin Ther 2016; 38(12): 2533-45.
[http://dx.doi.org/10.1016/j.clinthera.2016.11.009] [PMID: 27914633]
[26]
Ventola CL. Big data and pharmacovigilance: data mining for adverse drug events and interactions. P&T 2018; 43(6): 340-51.
[PMID: 29896033]
[27]
Abbott R. Big data and pharmacovigilance: using health information exchanges to revolutionize drug safety. Iowa Law Rev 2013; 99: 225.
[28]
Duggirala HJ, Tonning JM, Smith E, et al. Use of data mining at the Food and Drug Administration. J Am Med Inform Assoc 2016; 23(2): 428-34.
[http://dx.doi.org/10.1093/jamia/ocv063] [PMID: 26209436]
[29]
Center for Drug Evaluation. FDA Adverse Event Reporting System (FAERS) Public Dashboard. US Food and Drug Administration 2019. Available from:. https://www.fda.gov/drugs/questions-and-answers-fdasadverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
[30]
Scarlattilaan OAD. Amsterdam 1083 H S 2018 Annual Report on EudraVigilance for the European Parliament, the Council and the Commission 2018. Available from: . https://www.ema.europa.eu/en/documents/report/2018-a nnual-report-eudravigilance-european-parliament-counc il-commission-reporting-period-1-january_en.pdf
[31]
What is VigiBase. Uppsala Monitoring Centre. Available from: . https://www.who-umc.org/vigibase/vigibase/
[32]
Harpaz R, DuMochel W, Shah NH. Big data and adverse drug reaction detection. Clin Pharmacol Ther 2016; 99(3): 268-70.
[http://dx.doi.org/10.1002/cpt.302] [PMID: 26575203]
[33]
Iyer SV, Harpaz R, LePendu P, Bauer-Mehren A, Shah NH. Mining clinical text for signals of adverse drug-drug interactions. J Am Med Inform Assoc 2014; 21(2): 353-62.
[http://dx.doi.org/10.1136/amiajnl-2013-001612] [PMID: 24158091]
[34]
Carbonell P, Mayer MA, Bravo À. Exploring brand-name drug mentions on Twitter for pharmacovigilance. Stud Health Technol Inform 2015; 210: 55-9.
[PMID: 25991101]
[35]
Hamed AA, Wu X, Erickson R, Fandy T. Twitter K-H networks in action: Advancing biomedical literature for drug search. J Biomed Inform 2015; 56: 157-68.
[http://dx.doi.org/10.1016/j.jbi.2015.05.015] [PMID: 26065982]
[36]
Powell GE, Seifert HA, Reblin T, et al. Social media listening for routine post-marketing safety surveillance. Drug Saf 2016; 39(5): 443-54.
[http://dx.doi.org/10.1007/s40264-015-0385-6] [PMID: 26798054]
[37]
Pappa D, Stergioulas LK. Harnessing social media data for pharmacovigilance: a review of current state of the art, challenges and future directions. Int J Data Sci Anal 2019; 8(2): 113-35.
[http://dx.doi.org/10.1007/s41060-019-00175-3]
[38]
Bhattacharya M, Snyder S, Malin M, et al. Using social media data in routine pharmacovigilance: a pilot study to identify safety signals and patient perspectives. Pharmaceut Med 2017; 31(3): 167-74.
[http://dx.doi.org/10.1007/s40290-017-0186-6]
[39]
Golder S, Norman G, Loke YK. Systematic review on the prevalence, frequency and comparative value of adverse events data in social media. Br J Clin Pharmacol 2015; 80(4): 878-88.
[http://dx.doi.org/10.1111/bcp.12746] [PMID: 26271492]
[40]
Liu X, Chen H. A research framework for pharmacovigilance in health social media: Identification and evaluation of patient adverse drug event reports. J Biomed Inform 2015; 58: 268-79.
[http://dx.doi.org/10.1016/j.jbi.2015.10.011] [PMID: 26518315]
[41]
Pierce CE, Bouri K, Pamer C, et al. Evaluation of facebook and twitter monitoring to detect safety signals for medical products: an analysis of recent FDA safety alerts. Drug Saf 2017; 40(4): 317-31.
[http://dx.doi.org/10.1007/s40264-016-0491-0] [PMID: 28044249]
[42]
Freifeld CC, Brownstein JS, Menone CM, et al. Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Saf 2014; 37(5): 343-50.
[http://dx.doi.org/10.1007/s40264-014-0155-x] [PMID: 24777653]
[43]
White RW, Tatonetti NP, Shah NH, Altman RB, Horvitz E. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc 2013; 20(3): 404-8.
[http://dx.doi.org/10.1136/amiajnl-2012-001482] [PMID: 23467469]
[44]
Yom-Tov E, Gabrilovich E. Postmarket drug surveillance without trial costs: discovery of adverse drug reactions through large-scale analysis of web search queries. J Med Internet Res 2013; 15(6)
[http://dx.doi.org/10.2196/jmir.2614] [PMID: 23778053]
[45]
Abernethy DR, Woodcock J, Lesko LJ. Pharmacological mechanism-based drug safety assessment and prediction. Clin Pharmacol Ther 2011; 89(6): 793-7.
[http://dx.doi.org/10.1038/clpt.2011.55] [PMID: 21490594]
[46]
Ross JS, Waldstreicher J, Bamford S, et al. Overview and experience of the YODA Project with clinical trial data sharing after 5 years. Sci Data 2018; 5.
[http://dx.doi.org/10.1038/sdata.2018.268] [PMID: 30480665]
[47]
Sinha PK, Sunder G, Bendale P, Mantri M, Dande A. Electronic Health Record: Standards, Coding Systems, Frameworks, and Infrastructures. John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9781118479612]
[48]
Rupp SR. making room for patient autonomy in health information exchange: the role of informed consent. St Louis Univ Law J 2012; 56(3): 885.
[49]
Kogetsu A, Ogishima S, Kato K. Authentication of patients and participants in health information exchange and consent for medical research: a key step for privacy protection, respect for autonomy, and trustworthiness. Front Genet 2018; 9: 167.
[http://dx.doi.org/10.3389/fgene.2018.00167] [PMID: 29910822]
[50]
Kierkegaard P, Kaushal R, Vest JR. How could health information exchange better meet the needs of care practitioners? Appl Clin Inform 2014; 5(4): 861-77.
[http://dx.doi.org/10.4338/ACI-2014-06-RA-0055] [PMID: 25589903]
[51]
Zhang A, Bacchus A, Lin X. Consent-based access control for secure and privacy-preserving health information exchange. Secur Commun Netw 2016; 9: 3496-508.
[http://dx.doi.org/10.1002/sec.1556]
[52]
Ghosh R, Lewis D. Aims and approaches of Web-RADR: a consortium ensuring reliable ADR reporting via mobile devices and new insights from social media. Expert Opin Drug Saf 2015; 14(12): 1845-53.
[http://dx.doi.org/10.1517/14740338.2015.1096342] [PMID: 26436834]
[53]
HIPAA for Dummies. HIPAA Guide. Available from:. https://www.hipaaguide.net/hipaa-for-dummies/
[54]
General Data Protection Regulation (GDPR) - Official Legal Text. Available from: General Data Protection Regulation (GDPR). https://gdpr-info.eu/
[55]
Cyber-security Law of the People’s Republic of China Available from: . https://www.dezshira.com/library/legal/cyber-security-l aw-china-8013.html
[56]
Gellman R. The deidentification dilemma: a legislative and contractual proposal. 21 Fordham Intell Prop Media & Ent LJ 2011. Available from:. https://ir.lawnet.fordham.edu/cgi/viewcontent.cgi?articl
[57]
Wu Xin, Zheng Hao, Dou Zuochao, et al. A novel privacy-preserving federated genome-wide association study framework and its application in identifying potential risk variants in ankylosing spondylitis Brief Bioinform 2020; bbaa090
[58]
Gentry C. Fully homomorphic encryption using ideal lattices. Proceedings of the forty-first annual ACM symposium on Theory of computing. 169-78.
[59]
Lee J, Sun J, Wang F, Wang S, Jun C-H, Jiang X. Privacy-preserving patient similarity learning in a federated environment: development and analysis. JMIR Med Inform 2018; 6(2)
[http://dx.doi.org/10.2196/medinform.7744] [PMID: 29653917]
[60]
Shimizu K, Nuida K, Arai H, et al. Privacy-preserving search for chemical compound databases. BMC Bioinformatics 2015; 16(Suppl. 18): S6.
[http://dx.doi.org/10.1186/1471-2105-16-S18-S6] [PMID: 26678650]
[61]
Shimizu K, Nuida K, Rätsch G. Efficient privacy-preserving string search and an application in genomics. Bioinformatics 2016; 32(11): 1652-61.
[http://dx.doi.org/10.1093/bioinformatics/btw050] [PMID: 27153731]
[62]
Bellare M, Hoang VT, Rogaway P. Foundations of garbled circuits. Proceedings of the 2012 ACM conference on Computer and communications security - CCS ’12.
[63]
Karnin E, Greene J, Hellman M. On secret sharing systems. IEEE Trans Inf Theory 1983; 29(1): 35-41.
[http://dx.doi.org/10.1109/TIT.1983.1056621]
[64]
Dankar FK, Madathil N, Dankar SK, Boughorbel S. Privacy-preserving analysis of distributed biomedical data: designing efficient and secure multiparty computations using distributed statistical learning theory. JMIR Med Inform 2019; 7(2)e12702
[65]
Dankar FK, Ptitsyn A, Dankar SK. The development of large-scale de-identified biomedical databases in the age of genomics-principles and challenges. Hum Genomics 2018; 12(1): 19.
[http://dx.doi.org/10.1186/s40246-018-0147-5] [PMID: 29636096]
[66]
Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol 2018; 36(6): 547-51.
[http://dx.doi.org/10.1038/nbt.4108] [PMID: 29734293]
[67]
Ma R, Li Y, Li C, et al. Secure multiparty computation for privacy-preserving drug discovery. Bioinformatics 2020; 36(9): 2872-80.
[http://dx.doi.org/10.1093/bioinformatics/btaa038] [PMID: 31950974]
[68]
Wagner J, Paulson JN, Wang X, Bhattacharjee B, Corrada Bravo H. Privacy-preserving microbiome analysis using secure computation. Bioinformatics 2016; 32(12): 1873-9.
[http://dx.doi.org/10.1093/bioinformatics/btw073] [PMID: 26873931]
[69]
McSherry F, Talwar K. Mechanism Design via Differential Privacy. 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07). 94-103.
[http://dx.doi.org/10.1109/FOCS.2007.66]
[70]
Honkela A, Das M, Nieminen A, Dikmen O, Kaski S. Efficient differentially private learning improves drug sensitivity prediction. Biol Direct 2018; 13(1): 1.
[http://dx.doi.org/10.1186/s13062-017-0203-4] [PMID: 29409513]
[71]
Niinimäki T, Heikkilä MA, Honkela A, Kaski S. Representation transfer for differentially private drug sensitivity prediction. Bioinformatics 2019; 35(14): i218-24.
[http://dx.doi.org/10.1093/bioinformatics/btz373] [PMID: 31510659]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy