Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Preparation, Characterization and In Vitro Biological Evaluation of Novel Curcumin Derivatives as Cytotoxic and Apoptosis-Inducing Agents

Author(s): Omid K. Arjomandi, Saiedeh Almasi, Leila Hosseinzadeh, Mahboubeh Kavoosi and Hadi Adibi*

Volume 21, Issue 10, 2021

Published on: 02 October, 2020

Page: [1309 - 1322] Pages: 14

DOI: 10.2174/1871520620666201002111205

Price: $65

Abstract

Background: Curcumin is a natural polyphenol and lead compound of the rhizomes of curcuma longa and it has been widely used for pharmacological activities.

Objective: In this study, a series of novel derivatives of curcumin, with this group linked to a 2-amino-4- phenylpyran-3-carbonitrile system, have been synthesized and tested for their antitumor activities in vitro against a panel of three human cancer cell lines (MCF-7, A2780, and U-87MG).

Methods: The in vitro cytotoxic activity of the synthesized compounds was tested on three cancer cell lines (MCF-7, A2780, and U-87MG) using MTT colorimetric assay. Meanwhile, the ability of the active compounds to induce apoptosis in cancer cells was investigated by examination of caspase-3 and caspase-9 and mitochondrial membrane potential assay.

Results: Under relatively mild conditions in ethanol, the reaction of a series of substrates afforded the corresponding derivatives of curcumin mostly in good yields (13 analogues, 48-94% yields). Bioassay results indicated that compounds L6 (para-Bromo), L9 (para-Nitro) and L12 (meta-Methoxy) were the most active members in this study demonstrating potent activities against A2780 cancer cells and experimental results of fluorescent staining and flow cytometry analysis revealed that L6 and L9 could induce apoptosis in A2780 cells with apoptosis ratios of about 40% and 46%, respectively at 24h of treatment at 15.35μM and 23μM in A2780 cells. On the other hand, they could increase the caspase-3 activity slightly (10%), while having no significant impact on the activities of caspase-9.

Conclusion: Those two derivatives could be considered as useful templates for future development to obtain more potent antitumor agents.

Keywords: Curcumin/analogs and derivatives, caspase 3, caspase 9, cytotoxicity tests, apoptosis, colorimetry/methods, apoptosis inducing factor.

Graphical Abstract

[1]
Saha, P.; Yeoh, B.S.; Xiao, X.; Golonka, R.M.; Kumarasamy, S.; Vijay-Kumar, M. Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation. Biochem. Pharmacol., 2019, 168, 71-81.
[http://dx.doi.org/10.1016/j.bcp.2019.06.017] [PMID: 31228465]
[2]
Lui, G.Y.; Kovacevic, Z.; Richardson, V.; Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget, 2015, 6(22), 18748-18779.
[http://dx.doi.org/10.18632/oncotarget.4349] [PMID: 26125440]
[3]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Practice, 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[4]
Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571(7766), 489-499.
[http://dx.doi.org/10.1038/s41586-019-1411-0] [PMID: 31341302]
[5]
Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol., 2019, 10(1), 10-27.
[http://dx.doi.org/10.14740/wjon1166] [PMID: 30834048]
[6]
Nenclares, P.; Harrington, K.J. The biology of cancer. Medicine (Baltimore), 2020, 48(2), 67-72.
[http://dx.doi.org/10.1016/j.mpmed.2019.11.001]
[7]
Temko, D.; Tomlinson, I.P.M.; Severini, S.; Schuster-Böckler, B.; Graham, T.A. The effects of mutational processes and selection on driver mutations across cancer types. Nat. Commun., 2018, 9(1), 1857.
[http://dx.doi.org/10.1038/s41467-018-04208-6] [PMID: 29748584]
[8]
Li, L.; Tian, T.; Zhang, X. Stochastic modelling of multistage carcinogenesis and progression of human lung cancer. J. Theor. Biol., 2019, 479, 81-89.
[http://dx.doi.org/10.1016/j.jtbi.2019.07.006] [PMID: 31299333]
[9]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[10]
Koeffler, H.P.; McCormick, F.; Denny, C. Molecular mechanisms of cancer. West. J. Med., 1991, 155(5), 505-514.
[PMID: 1815390]
[11]
Sahai, E. Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev., 2005, 15(1), 87-96.
[http://dx.doi.org/10.1016/j.gde.2004.12.002] [PMID: 15661538]
[12]
Levine, M.S.; Holland, A.J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev., 2018, 32(9-10), 620-638.
[http://dx.doi.org/10.1101/gad.314351.118] [PMID: 29802124]
[13]
Du, F.; Sun, L.; Chu, Y.; Li, T.; Lei, C.; Wang, X.; Jiang, M.; Min, Y.; Lu, Y.; Zhao, X.; Nie, Y.; Fan, D. DDIT4 promotes gastric cancer proliferation and tumorigenesis through the p53 and MAPK pathways. Cancer Commun (Lond), 2018, 38(1), 45.
[http://dx.doi.org/10.1186/s40880-018-0315-y] [PMID: 29976242]
[14]
Bian, Z-Q.; Luo, Y.; Guo, F.; Huang, Y.Z.; Zhong, M.; Cao, H. Overexpressed ACP5 has prognostic value in colorectal cancer and promotes cell proliferation and tumorigenesis via FAK/PI3K/AKT signaling pathway. Am. J. Cancer Res., 2019, 9(1), 22-35.
[PMID: 30755809]
[15]
Jan, R.; Chaudhry, G.E. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull., 2019, 9(2), 205-218.
[http://dx.doi.org/10.15171/apb.2019.024] [PMID: 31380246]
[16]
Sharma, A.; Boise, L.H.; Shanmugam, M. Cancer metabolism and the evasion of apoptotic cell death. Cancers (Basel), 2019, 11(8), 1144.
[http://dx.doi.org/10.3390/cancers11081144] [PMID: 31405035]
[17]
Knight, T.; Luedtke, D.; Edwards, H.; Taub, J.W.; Ge, Y. A delicate balance - The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol., 2019, 162, 250-261.
[http://dx.doi.org/10.1016/j.bcp.2019.01.015] [PMID: 30668936]
[18]
Ma, Y-H.V. A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsyst. Nanoeng., 2018, 4(1), 1-13.
[http://dx.doi.org/10.1038/micronano.2017.104]
[19]
Wang, N.; Bertalan, M.S.; Brastianos, P.K. Leptomeningeal metastasis from systemic cancer: Review and update on management. Cancer, 2018, 124(1), 21-35.
[http://dx.doi.org/10.1002/cncr.30911] [PMID: 29165794]
[20]
Abdelfatah, M.M.; Barakat, M.; Lee, H.; Kim, J.J.; Uedo, N.; Grimm, I.; Othman, M.O. The incidence of lymph node metastasis in early gastric cancer according to the expanded criteria in comparison with the absolute criteria of the Japanese Gastric Cancer Association: A systematic review of the literature and meta-analysis. Gastrointest. Endosc., 2018, 87(2), 338-347.
[http://dx.doi.org/10.1016/j.gie.2017.09.025] [PMID: 28966062]
[21]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[22]
Hainaut, P.; Plymoth, A. Targeting the hallmarks of cancer: Towards a rational approach to next-generation cancer therapy. Curr. Opin. Oncol., 2013, 25(1), 50-51.
[http://dx.doi.org/10.1097/CCO.0b013e32835b651e] [PMID: 23150341]
[23]
Gutschner, T.; Diederichs, S. The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol., 2012, 9(6), 703-719.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[24]
Jin, G.; Wang, K.; Liu, Y.; Liu, X.; Zhang, X.; Zhang, H. Proteomic level changes on treatment in MCF-7/DDP breast cancer drug-resistant cells. Anticancer. Agents Med. Chem., 2020, 20(6), 687-699.
[http://dx.doi.org/10.2174/1871520620666200213102849] [PMID: 32053082]
[25]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[26]
Markowska, A.; Kaysiewicz, J.; Markowska, J.; Huczyński, A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg. Med. Chem. Lett., 2019, 29(13), 1549-1554.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.045] [PMID: 31054863]
[27]
Piperigkou, Z. Strategies to target matrix metalloproteinases as therapeutic approach in cancer. In: Proteases and Cancer; Springer: Germany, 2018, pp. 325-348.
[http://dx.doi.org/10.1007/978-1-4939-7595-2_27]
[28]
Roy, A.; Jauhari, N.; Bharadvaja, N. 6 Medicinal Plants. In: Anticancer Plants: Natural Products and Biotechnological Implements.Volume 2; Springer: Singapore, 2018, p. 109.
[29]
Molendijk, J.; Robinson, H.; Djuric, Z.; Hill, M.M. Lipid mechanisms in hallmarks of cancer. Mol. Omics, 2020, 16(1), 6-18.
[http://dx.doi.org/10.1039/C9MO00128J] [PMID: 31755509]
[30]
He, L.; Wang, K.N.; Zheng, Y.; Cao, J.J.; Zhang, M.F.; Tan, C.P.; Ji, L.N.; Mao, Z.W. Cyclometalated iridium(iii) complexes induce mitochondria-derived paraptotic cell death and inhibit tumor growth in vivo. Dalton Trans., 2018, 47(20), 6942-6953.
[http://dx.doi.org/10.1039/C8DT00783G] [PMID: 29721561]
[31]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[32]
Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol., 2017, 17(3), 151-164.
[http://dx.doi.org/10.1038/nri.2016.147] [PMID: 28138137]
[33]
Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 426-431.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.088] [PMID: 28212726]
[34]
D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[35]
Wiman, K.G.; Zhivotovsky, B. Understanding cell cycle and cell death regulation provides novel weapons against human diseases. J. Intern. Med., 2017, 281(5), 483-495.
[http://dx.doi.org/10.1111/joim.12609] [PMID: 28374555]
[36]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[37]
Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol., 2018, 36, 489-517.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053010] [PMID: 29400998]
[38]
Kondylis, V.; Kumari, S.; Vlantis, K.; Pasparakis, M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol. Rev., 2017, 277(1), 113-127.
[http://dx.doi.org/10.1111/imr.12550] [PMID: 28462531]
[39]
Jabir, M.S.; Taha, A.A.; Sahib, U.I.; Taqi, Z.J.; Al-Shammari, A.M.; Salman, A.S. Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line. Mater. Sci. Eng. C, 2019, 94, 949-964.
[http://dx.doi.org/10.1016/j.msec.2018.10.014] [PMID: 30423784]
[40]
Han, T.; Li, J.; Xue, J.; Li, H.; Xu, F.; Cheng, K.; Li, D.; Li, Z.; Gao, M.; Hua, H. Scutellarin derivatives as apoptosis inducers: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 135, 270-281.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.020] [PMID: 28458133]
[41]
Luo, G.; Muyaba, M.; Lyu, W.; Tang, Z.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Design, synthesis and biological evaluation of novel 3-substituted 4-anilino-coumarin derivatives as antitumor agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 867-874.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.013] [PMID: 28110871]
[42]
Bisi, A.; Cappadone, C.; Rampa, A.; Farruggia, G.; Sargenti, A.; Belluti, F.; Di Martino, R.M.C.; Malucelli, E.; Meluzzi, A.; Iotti, S.; Gobbi, S. Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. Eur. J. Med. Chem., 2017, 127, 577-585.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.020] [PMID: 28109950]
[43]
Mirzaei, H.; Masoudifar, A.; Sahebkar, A.; Zare, N.; Sadri Nahand, J.; Rashidi, B.; Mehrabian, E.; Mohammadi, M.; Mirzaei, H.R.; Jaafari, M.R. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol., 2018, 233(4), 3004-3015.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[44]
Adahoun, M.A.; Al-Akhras, M.H.; Jaafar, M.S.; Bououdina, M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 98-107.
[http://dx.doi.org/10.3109/21691401.2015.1129628] [PMID: 26747522]
[45]
Murray-Stewart, T.; Casero, R.A. Regulation of polyamine metabolism by curcumin for cancer prevention and therapy. Med. Sci. (Basel), 2017, 5(4), 38.
[http://dx.doi.org/10.3390/medsci5040038] [PMID: 29258259]
[46]
Rashidi, B.; Malekzadeh, M.; Goodarzi, M.; Masoudifar, A.; Mirzaei, H. Green tea and its anti-angiogenesis effects. Biomed. Pharmacother., 2017, 89, 949-956.
[http://dx.doi.org/10.1016/j.biopha.2017.01.161] [PMID: 28292023]
[47]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[48]
Mirossay, L.; Varinská, L.; Mojžiš, J. Antiangiogenic effect of flavonoids and chalcones: An update. Int. J. Mol. Sci., 2017, 19(1), 27.
[http://dx.doi.org/10.3390/ijms19010027] [PMID: 29271940]
[49]
Manju, K.; Jat, R.; Anju, G. A review on medicinal plants used as a source of anticancer agents. Int. J. Drug Res. Tech, 2012, 2(2), 177-183.
[50]
Li, F-S.; Weng, J-K. Demystifying traditional herbal medicine with modern approach. Nat. Plants, 2017, 3(8), 17109.
[http://dx.doi.org/10.1038/nplants.2017.109] [PMID: 28758992]
[51]
Damps, T.; Laskowska, A.K.; Kowalkowski, T.; Prokopowicz, M.; Puszko, A.K.; Sosnowski, P.; Czuwara, J.; Konop, M.; Różycki, K.; Borkowska, J.K.; Misicka, A.; Rudnicka, L. The effect of wool hydrolysates on squamous cell carcinoma cells in vitro. Possible implications for cancer treatment. PLoS One, 2017, 12(8), e0184034.
[http://dx.doi.org/10.1371/journal.pone.0184034] [PMID: 28859143]
[52]
Stanic, Z.; Girousi, S. Electrochemical investigation of some biological important compounds correlated to curcumin. Asia Pac. J. Life Sci., 2012, 6(2), 153.
[53]
Vogel, H.; Pelletier, J. Curcumin-biological and medicinal properties. J. Pharm. (Cairo), 2006, 2(50), 24.
[54]
Roughley, P.J.; Whiting, D.A. Experiments in the biosynthesis of curcumin. J. Chem. Soc., Perkin Trans. 1, 1973, 2379-2388.
[http://dx.doi.org/10.1039/p19730002379]
[55]
Akbar, M.U. Critical review on curcumin as a therapeutic agent: From traditional herbal medicine to an ideal therapeutic agent. Crit. Rev. Eukaryotic Gene Expression, 2018, 28(1), 17-24.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2018020088]
[56]
Niazi, J. Pharmacotherapeutics of curcuma longa-A potent patent. IJPPR, 2010, 1, 24-30.
[57]
De, A.K.; De, M. Functional and Therapeutic Applications of Some Important Spices. In: The Role of Functional Food Security in Global Health; Elsevier: Netherlands, 2019, pp. 499-510.
[58]
Lin, J-K.; Lin-Shiau, S-Y. Mechanisms of cancer chemoprevention by curcumin. Proc. Natl. Sci. Counc. Repub. China B, 2001, 25(2), 59-66.
[PMID: 11370761]
[59]
Momtazi, A.A. Curcumin as a MicroRNA regulator in cancer: A review.In: Reviews of Physiology, Biochemistry and Pharmacology; Springer: Germany, 2016, Vol. 171, pp. 1-38.
[60]
Fu, H.; Wang, C.; Yang, D.; Wei, Z.; Xu, J.; Hu, Z.; Zhang, Y.; Wang, W.; Yan, R.; Cai, Q. Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J. Cell. Physiol., 2018, 233(6), 4634-4642.
[http://dx.doi.org/10.1002/jcp.26190] [PMID: 28926094]
[61]
Wang, X.; Hang, Y.; Liu, J.; Hou, Y.; Wang, N.; Wang, M. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol. Lett., 2017, 13(6), 4825-4831.
[http://dx.doi.org/10.3892/ol.2017.6053] [PMID: 28599484]
[62]
Liou, A.-T.; Chen, M.-F.; Yang, C.-W. Curcumin induces p53-null hepatoma cell line Hep3B apoptosis through the AKT-PTENFOXO4 pathway. Evid.-Based Complem. Altern. Med., 2017, 2017, Article ID 4063865..
[63]
Mullaicharam, A.; Maheswaran, A. Pharmacological effects of curcumin. Int. J. of Nutr. Pharmacol. Neurol. Dis., 2012, 2(2), 92.
[http://dx.doi.org/10.4103/2231-0738.95930]
[64]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J. Tradit. Complement. Med., 2016, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[65]
Ali, N.M.; Yeap, S.K.; Abu, N.; Lim, K.L.; Ky, H.; Pauzi, A.Z.M.; Ho, W.Y.; Tan, S.W.; Alan-Ong, H.K.; Zareen, S.; Alitheen, N.B.; Akhtar, M.N. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells. Cancer Cell Int., 2017, 17(1), 30.
[http://dx.doi.org/10.1186/s12935-017-0400-3] [PMID: 28239299]
[66]
Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of curcumin in disease prevention and treatment. Adv. Biomed. Res., 2018, 7, 38.
[http://dx.doi.org/10.4103/abr.abr_147_16] [PMID: 29629341]
[67]
Griffiths, K.; Aggarwal, B.B.; Singh, R.B.; Buttar, H.S.; Wilson, D.; De Meester, F. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases, 2016, 4(3), 28.
[http://dx.doi.org/10.3390/diseases4030028] [PMID: 28933408]
[68]
Gupta, A. Anticancer curcumin: Natural analogues and structure activity relationship.In: Studies in Natural Products Chemistry; Elsevier: Netherlands, 2017, pp. 355-401.
[69]
Larasati, Y.A.; Yoneda-Kato, N.; Nakamae, I.; Yokoyama, T.; Meiyanto, E.; Kato, J.Y. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep., 2018, 8(1), 2039.
[http://dx.doi.org/10.1038/s41598-018-20179-6] [PMID: 29391517]
[70]
Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol., 2017, 9, 31-45.
[http://dx.doi.org/10.2147/JEP.S70568] [PMID: 28435333]
[71]
Liu, W-L.; Chang, J.M.; Chong, I.W.; Hung, Y.L.; Chen, Y.H.; Huang, W.T.; Kuo, H.F.; Hsieh, C.C.; Liu, P.L. Curcumin inhibits LIN-28A through the activation of miRNA-98 in the lung cancer cell line A549. Molecules, 2017, 22(6), 929.
[http://dx.doi.org/10.3390/molecules22060929] [PMID: 28587210]
[72]
Zhou, X. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol. Res. Featuring Preclin. Clin. Cancer Therapeut., 2016, 23(1-2), 29-34.
[http://dx.doi.org/10.3727/096504015X14452563486011]
[73]
Tabatabaei Mirakabad, F.S.; Akbarzadeh, A.; Milani, M.; Zarghami, N.; Taheri-Anganeh, M.; Zeighamian, V.; Badrzadeh, F.; Rahmati-Yamchi, M. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 423-430.
[http://dx.doi.org/10.3109/21691401.2014.955108] [PMID: 25229832]
[74]
Mahmud, M.; Piwoni, A.; Filipczak, N.; Janicka, M.; Gubernator, J. Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro. PLoS One, 2016, 11(12), e0167787.
[http://dx.doi.org/10.1371/journal.pone.0167787] [PMID: 27936114]
[75]
Madane, R.G.; Mahajan, H.S. Curcumin-loaded Nanostructured Lipid Carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv., 2016, 23(4), 1326-1334.
[http://dx.doi.org/10.3109/10717544.2014.975382] [PMID: 25367836]
[76]
De Porras, V.R. Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway. Sci. Rep., 2016, 6(1), 1-17.
[http://dx.doi.org/10.1038/srep24675] [PMID: 28442746]
[77]
Hesari, A.; Azizian, M.; Sheikhi, A.; Nesaei, A.; Sanaei, S.; Mahinparvar, N.; Derakhshani, M.; Hedayt, P.; Ghasemi, F.; Mirzaei, H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int. J. Cancer, 2019, 144(6), 1215-1226.
[http://dx.doi.org/10.1002/ijc.31947] [PMID: 30362511]
[78]
Chen, Y.; Pan, L.; Jiang, M.; Li, D.; Jin, L. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo. Drug Deliv., 2016, 23(4), 1383-1392.
[http://dx.doi.org/10.3109/10717544.2015.1049719] [PMID: 26066035]
[79]
Rodrigues, F.C.; Anil Kumar, N.V.; Thakur, G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur. J. Med. Chem., 2019, 177, 76-104.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.058] [PMID: 31129455]
[80]
Khor, P.Y.; Mohd Aluwi, M.F.F.; Rullah, K.; Lam, K.W. Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur. J. Med. Chem., 2019, 183, 111704.
[http://dx.doi.org/10.1016/j.ejmech.2019.111704] [PMID: 31557608]
[81]
Somers-Edgar, T.J.; Taurin, S.; Larsen, L.; Chandramouli, A.; Nelson, M.A.; Rosengren, R.J. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines. Invest. New Drugs, 2011, 29(1), 87-97.
[http://dx.doi.org/10.1007/s10637-009-9339-0] [PMID: 19816657]
[82]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[83]
Sa, G. Curcumin: From exotic spice to modern anticancer drug. Al Ameen J. Med. Sci., 2010, 3, 21-37.
[84]
Zhang, Q. Potential anticancer activity of curcumin analogs containing sulfone on human cancer cells. Arch. Biol. Sci., 2016, 68(1), 125-133.
[http://dx.doi.org/10.2298/ABS150323134Z]
[85]
Shi, M.; Cai, Q.; Yao, L.; Mao, Y.; Ming, Y.; Ouyang, G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol. Int., 2006, 30(3), 221-226.
[http://dx.doi.org/10.1016/j.cellbi.2005.10.024] [PMID: 16376585]
[86]
Koroth, J.; Nirgude, S.; Tiwari, S.; Gopalakrishnan, V.; Mahadeva, R.; Kumar, S.; Karki, S.S.; Choudhary, B. Investigation of anti-cancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. BMC Complement. Altern. Med., 2019, 19(1), 273.
[http://dx.doi.org/10.1186/s12906-019-2685-3] [PMID: 31638975]
[87]
Terlikowska, K.M.; Witkowska, A.M.; Zujko, M.E.; Dobrzycka, B.; Terlikowski, S.J. Potential application of curcumin and its analogues in the treatment strategy of patients with primary epithelial ovarian cancer. Int. J. Mol. Sci., 2014, 15(12), 21703-21722.
[http://dx.doi.org/10.3390/ijms151221703] [PMID: 25429431]
[88]
Noureddin, S.A.; El-Shishtawy, R.M.; Al-Footy, K.O. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur. J. Med. Chem., 2019, 182, 111631.
[http://dx.doi.org/10.1016/j.ejmech.2019.111631] [PMID: 31479974]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy