Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Pharmacological Interventions for the Prevention and Treatment of Kidney Injury Induced by Radiotherapy: Molecular Mechanisms and Clinical Perspectives

Author(s): Adeleh Sahebnasagh, Fatemeh Saghafi, Saeed Azimi, Ebrahim Salehifar and Seyed Jalal Hosseinimehr*

Volume 15, Issue 4, 2022

Published on: 24 August, 2021

Article ID: e240821195803 Pages: 13

DOI: 10.2174/1874467214666210824123212

Price: $65

Abstract

More than half of cancer patients need radiotherapy during the course of their treatment. Despite the beneficial aspects, the destructive effects of radiation beams on normal tissues lead to oxidative stress, inflammation, and cell injury. Kidneys are affected during radiotherapy of abdominal malignancies. Radiation nephropathy eventually leads to the release of factors triggering systemic inflammation. Currently, there is no proven prophylactic or therapeutic intervention for the management of radiation-induced nephropathy. This article reviews the biomarkers involved in the pathophysiology of radiation-induced nephropathy and its underlying molecular mechanisms. The efficacy of compounds with potential radioprotective properties on amelioration of inflammation and oxidative stress is also discussed. By outlining the approaches for preventing and treating this critical side effect, we evaluate the potential treatment of radiation-induced nephropathy. Available preclinical and clinical studies on these compounds are also scrutinized.

Keywords: Radiation-induced kidney injury, radiation nephropathy, oxidative stress, antioxidant, prevention, pharmacological interventions.

Graphical Abstract

[1]
Cameron, M.G.; Kersten, C.; Guren, M.G.; Fosså, S.D.; Vistad, I. Palliative pelvic radiotherapy of symptomatic incurable prostate cancer - a systematic review. Radiother. Oncol., 2014, 110(1), 55-60.
[http://dx.doi.org/10.1016/j.radonc.2013.08.008] [PMID: 24044801]
[2]
Cameron, M.G.; Kersten, C.; Vistad, I.; Fosså, S.; Guren, M.G. Palliative pelvic radiotherapy of symptomatic incurable rectal cancer - a systematic review. Acta Oncol., 2014, 53(2), 164-173.
[http://dx.doi.org/10.3109/0284186X.2013.837582] [PMID: 24195692]
[3]
Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; Machtay, M.; Ensley, J.F.; Chao, K.S.; Schultz, C.J.; Lee, N.; Fu, K.K. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2004, 350(19), 1937-1944.
[http://dx.doi.org/10.1056/NEJMoa032646] [PMID: 15128893]
[4]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K-W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[5]
Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K-W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci., 2014, 1, 24.
[http://dx.doi.org/10.3389/fmolb.2014.00024] [PMID: 25988165]
[6]
Sahebnasagh, A.; Ghasemi, A.; Akbari, J.; Alipour, A.; Lashkardoost, H.; Ala, S.; Hosseinimehr, S.J.; Salehifar, E. Prevention of acute radiation-induced Proctitis by Aloe vera: a prospective randomized, double-blind, placebo controlled clinical trial in Pelvic Cancer patients. BMC Complement Med. Ther., 2020, 20(1), 146.
[http://dx.doi.org/10.1186/s12906-020-02935-2] [PMID: 32404169]
[7]
de Graeff, A.; de Leeuw, J.R.J.; Ros, W.J.; Hordijk, G.J.; Blijham, G.H.; Winnubst, J.A. Pretreatment factors predicting quality of life after treatment for head and neck cancer. Head Neck, 2000, 22(4), 398-407.
[http://dx.doi.org/10.1002/1097-0347(200007)22:4<398::AID-HED14>3.0.CO;2-V] [PMID: 10862025]
[8]
Holzner, B.; Kemmler, G.; Kopp, M.; Moschen, R.; Schweigkofler, H.; Dünser, M.; Margreiter, R.; Fleischhacker, W.W.; Sperner-Unterweger, B. Quality of life in breast cancer patients- not enough attention for long-term survivors? Psychosomatics, 2001, 42(2), 117-123.
[http://dx.doi.org/10.1176/appi.psy.42.2.117] [PMID: 11239124]
[9]
Ismail, A.F.; Zaher, N.H.; El-Hossary, E.M.; El-Gazzar, M.G. Modulatory effects of new curcumin analogues on gamma-irradiation - Induced nephrotoxicity in rats. Chem. Biol. Interact., 2016, 260, 141-153.
[http://dx.doi.org/10.1016/j.cbi.2016.11.010] [PMID: 27838230]
[10]
Moulder, J.; Cohen, E. Radiation-induced multi-organ involvement and failure: the contribution of radiation effects on the renal system. Br. J. Radiol., 2005, 78(1), 82-88.
[http://dx.doi.org/10.1259/bjr/18309193]
[11]
Talebpour Amiri, F.; Hamzeh, M.; Naeimi, R.A.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of atorvastatin against ionizing radiation-induced nephrotoxicity in mice. Int. J. Radiat. Biol., 2018, 94(2), 106-113.
[http://dx.doi.org/10.1080/09553002.2018.1420926] [PMID: 29268056]
[12]
Havasi, A.; Borkan, S.C. Apoptosis and acute kidney injury. Kidney Int., 2011, 80(1), 29-40.
[http://dx.doi.org/10.1038/ki.2011.120] [PMID: 21562469]
[13]
Wortel, R.C.; Incrocci, L.; Pos, F.J.; Lebesque, J.V.; Witte, M.G.; van der Heide, U.A.; van Herk, M.; Heemsbergen, W.D. Acute toxicity after image-guided intensity modulated radiation therapy compared to 3D conformal radiation therapy in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys., 2015, 91(4), 737-744.
[http://dx.doi.org/10.1016/j.ijrobp.2014.12.017] [PMID: 25752386]
[14]
Dawson, L.A.; Kavanagh, B.D.; Paulino, A.C.; Das, S.K.; Miften, M.; Li, X.A.; Pan, C.; Ten Haken, R.K.; Schultheiss, T.E. Radiation-associated kidney injury. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3)(Suppl.), S108-S115.
[http://dx.doi.org/10.1016/j.ijrobp.2009.02.089] [PMID: 20171504]
[15]
Schiffl, H.; Lang, S.M. Update on biomarkers of acute kidney injury: moving closer to clinical impact? Mol. Diagn. Ther., 2012, 16(4), 199-207.
[http://dx.doi.org/10.1007/BF03262209] [PMID: 22650449]
[16]
Elkady, A.A.; Ibrahim, I.M. Protective effects of erdosteine against nephrotoxicity caused by gamma radiation in male albino rats. Hum. Exp. Toxicol., 2016, 35(1), 21-28.
[http://dx.doi.org/10.1177/0960327115574919] [PMID: 25716170]
[17]
McBride, W.; Dougherty, G.; Milas, L. Molecular Mechanisms of Radiotherapy; Cancer Handbook, 2005.
[http://dx.doi.org/10.1002/0470025077.chap86]
[18]
Li, Q.; Zhang, Y.; Jiang, Q. SETD3 reduces KLC4 expression to improve the sensitization of cervical cancer cell to radiotherapy. Biochem. Biophys. Res. Commun., 2019, 516(3), 619-625.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.058] [PMID: 31235251]
[19]
Lomax, M.E.; Folkes, L.K.; O’Neill, P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2013, 25(10), 578-585.
[http://dx.doi.org/10.1016/j.clon.2013.06.007] [PMID: 23849504]
[20]
Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular mechanisms of Radiation-Induced cancer cell death: a primer. Front. Cell Dev. Biol., 2020, 8, 41.
[http://dx.doi.org/10.3389/fcell.2020.00041] [PMID: 32117972]
[21]
Tang, F.R.; Loke, W.K. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int. J. Radiat. Biol., 2015, 91(1), 13-27.
[http://dx.doi.org/10.3109/09553002.2014.937510] [PMID: 24975555]
[22]
Kirolikar, S.; Prasannan, P.; Raghuram, G.V.; Pancholi, N.; Saha, T.; Tidke, P.; Chaudhari, P.; Shaikh, A.; Rane, B.; Pandey, R.; Wani, H.; Khare, N.K.; Siddiqui, S.; D’souza, J.; Prasad, R.; Shinde, S.; Parab, S.; Nair, N.K.; Pal, K.; Mittra, I. Prevention of radiation-induced bystander effects by agents that inactivate cell-free chromatin released from irradiated dying cells. Cell Death Dis., 2018, 9(12), 1142.
[http://dx.doi.org/10.1038/s41419-018-1181-x] [PMID: 30442925]
[23]
Mothersill, C.; Seymour, C.B. Radiation-induced bystander effects- implications for cancer. Nat. Rev. Cancer, 2004, 4(2), 158-164.
[http://dx.doi.org/10.1038/nrc1277] [PMID: 14964312]
[24]
Marijnen, C.A.; Kapiteijn, E.; van de Velde, C.J.; Martijn, H.; Steup, W.H.; Wiggers, T.; Kranenbarg, E.K.; Leer, J.W. Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial. J. Clin. Oncol., 2002, 20(3), 817-825.
[http://dx.doi.org/10.1200/JCO.2002.20.3.817] [PMID: 11821466]
[25]
Nuyttens, J.J.; Milito, S.; Rust, P.F.; Turrisi, A.T. 3rd Dose-volume relationship for acute side effects during high dose conformal radiotherapy for prostate cancer. Radiother. Oncol., 2002, 64(2), 209-214.
[http://dx.doi.org/10.1016/S0167-8140(02)00185-8] [PMID: 12242132]
[26]
Bentzen, S.M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer, 2006, 6(9), 702-713.
[http://dx.doi.org/10.1038/nrc1950] [PMID: 16929324]
[27]
Bruheim, K.; Guren, M.G.; Skovlund, E.; Hjermstad, M.J.; Dahl, O.; Frykholm, G.; Carlsen, E.; Tveit, K.M. Late side effects and quality of life after radiotherapy for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(4), 1005-1011.
[http://dx.doi.org/10.1016/j.ijrobp.2009.03.010] [PMID: 19540058]
[28]
Krasin, M.J.; Constine, L.S.; Friedman, D.L.; Marks, L.B. Radiation-related treatment effects across the age spectrum: differences and similarities or what the old and young can learn from each other. Semin. Radiat. Oncol., 2010, 20(1), 21-29.
[http://dx.doi.org/10.1016/j.semradonc.2009.09.001] [PMID: 19959028]
[29]
Brown, K.R.; Rzucidlo, E. Acute and chronic radiation injury. J. Vasc. Surg., 2011, 53(1)(Suppl.), 15S-21S.
[http://dx.doi.org/10.1016/j.jvs.2010.06.175] [PMID: 20843630]
[30]
Durkin, S.R.; Roos, D.; Higgs, B.; Casson, R.J.; Selva, D. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol. Scand., 2007, 85(3), 240-250.
[http://dx.doi.org/10.1111/j.1600-0420.2006.00822.x] [PMID: 17488452]
[31]
Elyasi, S.; Hosseini, S.; Niazi Moghadam, M.R.; Aledavood, S.A.; Karimi, G. Effect of oral silymarin administration on prevention of radiotherapy induced mucositis: A randomized, double-blinded, placebo-controlled clinical trial. Phytother. Res., 2016, 30(11), 1879-1885.
[http://dx.doi.org/10.1002/ptr.5704] [PMID: 27555604]
[32]
Bhandare, N.; Jackson, A.; Eisbruch, A.; Pan, C.C.; Flickinger, J.C.; Antonelli, P.; Mendenhall, W.M. Radiation therapy and hearing loss. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3)(Suppl.), S50-S57.
[http://dx.doi.org/10.1016/j.ijrobp.2009.04.096] [PMID: 20171518]
[33]
Yamashita, H.; Takahashi, W.; Haga, A.; Nakagawa, K. Radiation pneumonitis after stereotactic radiation therapy for lung cancer. World J. Radiol., 2014, 6(9), 708-715.
[http://dx.doi.org/10.4329/wjr.v6.i9.708] [PMID: 25276313]
[34]
Zhuang, X.F.; Yang, Y.M.; Sun, X.L.; Liao, Z.K.; Huang, J. Late onset radiation-induced constrictive pericarditis and cardiomyopathy after radiotherapy: A case report. Medicine (Baltimore), 2017, 96(5), e5932.
[http://dx.doi.org/10.1097/MD.0000000000005932] [PMID: 28151876]
[35]
Murro, D.; Jakate, S. Radiation esophagitis. Arch. Pathol. Lab. Med., 2015, 139(6), 827-830.
[http://dx.doi.org/10.5858/arpa.2014-0111-RS] [PMID: 26030254]
[36]
Munoz-Schuffenegger, P.; Ng, S.; Dawson, L.A. In Radiation-induced liver toxicity. Semin. Radiat. Oncol., 2017, 27(4), 350-357.
[http://dx.doi.org/10.1016/j.semradonc.2017.04.002] [PMID: 28865518]
[37]
Zwaans, B.M.; Chancellor, M.B.; Lamb, L.E. Modeling and treatment of radiation cystitis. Urology, 2016, 88, 14-21.
[http://dx.doi.org/10.1016/j.urology.2015.11.001] [PMID: 26571081]
[38]
Sahebnasagh, A.; Ghasemi, A.; Akbari, J.; Alipour, A.; Lashkardoost, H.; Ala, S.; Salehifar, E. Successful treatment of acute radiation proctitis with aloe vera: a preliminary randomized controlled clinical trial. J. Altern. Complement. Med., 2017, 23(11), 858-865.
[http://dx.doi.org/10.1089/acm.2017.0047] [PMID: 28618234]
[39]
Xiao, C.; Beitler, J.J.; Higgins, K.A.; Conneely, K.; Dwivedi, B.; Felger, J.; Wommack, E.C.; Shin, D.M.; Saba, N.F.; Ong, L.Y.; Kowalski, J.; Bruner, D.W.; Miller, A.H. Fatigue is associated with inflammation in patients with head and neck cancer before and after intensity-modulated radiation therapy. Brain Behav. Immun., 2016, 52, 145-152.
[http://dx.doi.org/10.1016/j.bbi.2015.10.016] [PMID: 26515035]
[40]
Elicin, O.; Callaway, S.; Prior, J.O.; Bourhis, J.; Ozsahin, M.; Herrera, F.G. [(18)F]FDG-PET standard uptake value as a metabolic predictor of bone marrow response to radiation: impact on acute and late hematological toxicity in cervical cancer patients treated with chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2014, 90(5), 1099-1107.
[http://dx.doi.org/10.1016/j.ijrobp.2014.08.017] [PMID: 25442041]
[41]
Feyer, P.; Jahn, F.; Jordan, K. Radiation induced nausea and vomiting. Eur. J. Pharmacol., 2014, 722, 165-171.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.069] [PMID: 24157983]
[42]
Huang, W-Y.; Lai, S-F.; Chiu, H-Y.; Chang, M.; Plikus, M.V.; Chan, C-C.; Chen, Y-T.; Tsao, P-N.; Yang, T-L.; Lee, H-S.; Chi, P.; Lin, S.J. Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy. Cancer Res., 2017, 77(22), 6083-6096.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0667] [PMID: 28939680]
[43]
Burns, T.C.; Awad, A.J.; Li, M.D.; Grant, G.A. Radiation-induced brain injury: low-hanging fruit for neuroregeneration. Neurosurg. Focus, 2016, 40(5), E3.
[http://dx.doi.org/10.3171/2016.2.FOCUS161] [PMID: 27132524]
[44]
Weykamp, F.; Seidensaal, K.; Rieken, S.; Green, K.; Mende, S.; Zaoui, K.; Freier, K.; Adeberg, S.; Debus, J.; Welte, S.E. Age-dependent hemato- and nephrotoxicity in patients with head and neck cancer receiving chemoradiotherapy with weekly cisplatin. Strahlenther. Onkol., 2020, 196(6), 515-521.
[http://dx.doi.org/10.1007/s00066-019-01550-6] [PMID: 31784802]
[45]
Schiffl, H.; Lang, S.M.J.M. Therapy, Update on biomarkers of acute kidney injury. Mol. Diagn. Ther., 2012, 16(4), 199-207.
[http://dx.doi.org/10.1007/BF03262209] [PMID: 22650449]
[46]
Baerman, G.; Linser, P. Review of localized and general effects of radiation. Munch. Med. Wochenschr., 1904, 7, 996.
[47]
Edsall, D.L. The attitude of the clinician in regard to exposing patients to the x-ray. JAMA, 1906, 47(18), 1425-1429.
[http://dx.doi.org/10.1001/jama.1906.25210180001001]
[48]
Baradaran-Ghahfarokhi, M. Radiation-induced kidney injury. J. Renal Inj. Prev., 2012, 1(2), 49-50.
[PMID: 25340106]
[49]
Robbins, M.E.; Bonsib, S.M. Radiation nephropathy: a review. Scanning Microsc., 1995, 9(2), 535-560.
[PMID: 8714748]
[50]
Cohen, E.P. Radiation nephropathy after bone marrow transplantation. Kidney Int., 2000, 58(2), 903-918.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00241.x] [PMID: 10916120]
[51]
Baldwin, J.N.; Hagstrom, J.W. Acute radiation nephritis. Calif. Med., 1962, 97(6), 359-362.
[PMID: 13969336]
[52]
Cohen, E.P.; Robbins, M.E. Radiation nephropathy. Semin. Nephrol., 2003, 23(5), 486-499.
[http://dx.doi.org/10.1016/S0270-9295(03)00093-7] [PMID: 13680538]
[53]
Dawson, L.A.; Horgan, A.; Cohen, E.P. Kidney and Ureter. In: ALERT• Adverse Late Effects of Cancer Treatment; Springer, 2014; pp. 443-464.
[http://dx.doi.org/10.1007/978-3-540-75863-1_17]
[54]
Hoopes, P.J.; Gillette, E.L.; Cloran, J.A.; Benjamin, S.A. Radiation nephropathy in the dog. Br. J. Cancer Suppl., 1986, 7, 273-276.
[PMID: 3459526]
[55]
Hoopes, P.J.; Gillette, E.L.; Benjamin, S.A. The pathogenesis of radiation nephropathy in the dog. Radiat. Res., 1985, 104(3), 406-419.
[http://dx.doi.org/10.2307/3576600] [PMID: 4080983]
[56]
White, D.C. The histopathologic basis for functional decrements in late radiation injury in diverse organs. Cancer, 1976, 37(2)(Suppl.), 1126-1143.
[http://dx.doi.org/10.1002/1097-0142(197602)37:2+<1126::AID-CNCR2820370823>3.0.CO;2-T] [PMID: 1253127]
[57]
Cassady, J.R. Clinical radiation nephropathy. Int. J. Radiat. Oncol. Biol. Phys., 1995, 31(5), 1249-1256.
[http://dx.doi.org/10.1016/0360-3016(94)00428-N] [PMID: 7713786]
[58]
Verheij, M.; Dewit, L.G.; Valdés Olmos, R.A.; Arisz, L. Evidence for a renovascular component in hypertensive patients with late radiation nephropathy. Int. J. Radiat. Oncol. Biol. Phys., 1994, 30(3), 677-683.
[http://dx.doi.org/10.1016/0360-3016(92)90955-H] [PMID: 7928500]
[59]
Lopez-Gaitan, J.; Ebert, M.A.; Robins, P.; Boucek, J.; Leong, T.; Willis, D.; Bydder, S.; Podias, P.; Waters, G.; O’Mara, B.; Chu, J.; Faggian, J.; Williams, L.; Hofman, M.S.; Spry, N.A. Radiotherapy of abdomen with precise renal assessment with SPECT/CT imaging (RAPRASI): design and methodology of a prospective trial to improve the understanding of kidney radiation dose response. BMC Cancer, 2013, 13, 381.
[http://dx.doi.org/10.1186/1471-2407-13-381] [PMID: 23937668]
[60]
Gerlock, A.J., Jr; Goncharenko, V.A.; Ekelund, L. Radiation-induced stenosis of the renal artery causing hypertension: case report. J. Urol., 1977, 118(6), 1064-1065.
[http://dx.doi.org/10.1016/S0022-5347(17)58299-3] [PMID: 200766]
[61]
Hulbert, W.C., Jr; Ettinger, L.J.; Wood, B.P.; Anderson, V.M.; Putnam, T.C.; Rabinowitz, R. Hyperreninemic hypertension secondary to radiation nephritis in a child. Urology, 1985, 26(2), 153-156.
[http://dx.doi.org/10.1016/0090-4295(85)90049-4] [PMID: 3895709]
[62]
Kala, J. Radiation-induced kidney injury. J. Onco-Nephrol., 2019, 3(3), 160-167.
[http://dx.doi.org/10.1177/2399369319865271]
[63]
Long, D.A.; Price, K.L.; Herrera-Acosta, J.; Johnson, R.J. How does angiotensin II cause renal injury? Hypertension, 2004, 43(4), 722-723.
[http://dx.doi.org/10.1161/01.HYP.0000120964.22281.3e] [PMID: 14967828]
[64]
Remuzzi, G.; Ruggenenti, P.; Perico, N. Chronic renal diseases: renoprotective benefits of renin-angiotensin system inhibition. Ann. Intern. Med., 2002, 136(8), 604-615.
[http://dx.doi.org/10.7326/0003-4819-136-8-200204160-00010] [PMID: 11955029]
[65]
Andrade-Oliveira, V.; Foresto-Neto, O.; Watanabe, I.K.M.; Zatz, R.; Câmara, N.O.S. Inflammation in Renal Diseases: New and Old Players. Front. Pharmacol., 2019, 10, 1192.
[http://dx.doi.org/10.3389/fphar.2019.01192] [PMID: 31649546]
[66]
Basile, D.P. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int., 2007, 72(2), 151-156.
[http://dx.doi.org/10.1038/sj.ki.5002312] [PMID: 17495858]
[67]
Sureshbabu, A.; Ryter, S.W.; Choi, M.E. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol., 2015, 4, 208-214.
[http://dx.doi.org/10.1016/j.redox.2015.01.001] [PMID: 25613291]
[68]
Bosch, J.P.; Saccaggi, A.; Lauer, A.; Ronco, C.; Belledonne, M.; Glabman, S. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am. J. Med., 1983, 75(6), 943-950.
[http://dx.doi.org/10.1016/0002-9343(83)90873-2] [PMID: 6650549]
[69]
Waikar, S.S.; Betensky, R.A.; Bonventre, J.V. Creatinine as the gold standard for kidney injury biomarker studies? In: Nephrol Dial Transplant; Oxford University Press, 2009.
[70]
Wasung, M.E.; Chawla, L.S.; Madero, M. Biomarkers of renal function, which and when? Clin. Chim. Acta, 2015, 438, 350-357.
[http://dx.doi.org/10.1016/j.cca.2014.08.039] [PMID: 25195004]
[71]
Soni, S.S.; Ronco, C.; Katz, N.; Cruz, D.N. Early diagnosis of acute kidney injury: the promise of novel biomarkers. Blood Purif., 2009, 28(3), 165-174.
[http://dx.doi.org/10.1159/000227785] [PMID: 19590184]
[72]
Bolignano, D.; Donato, V.; Coppolino, G.; Campo, S.; Buemi, A.; Lacquaniti, A.; Buemi, M. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis., 2008, 52(3), 595-605.
[http://dx.doi.org/10.1053/j.ajkd.2008.01.020] [PMID: 18725016]
[73]
Devarajan, P.J.C.t. Neutrophil gelatinase-associated lipocalin: New paths for an old shuttle. Cancer Ther., 2007, 5(B), 463.
[74]
Ǻkerstrom, B.; Flower, D.R.; Salier, J-P.J.B.B.A. Lipocalins: unity in diversity. Biochim. Biophys. Acta, 2000, 1482(1-2), 1-8.
[http://dx.doi.org/10.1016/S0167-4838(00)00137-0] [PMID: 11058742]
[75]
Borregaard, N.; Cowland, J.B.J.B. Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals, 2006, 19(2), 211-215.
[http://dx.doi.org/10.1007/s10534-005-3251-7] [PMID: 16718606]
[76]
Bolignano, D.; Donato, V.; Lacquaniti, A.; Fazio, M.R.; Bono, C.; Coppolino, G.; Buemi, M. Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett., 2010, 288(1), 10-16.
[http://dx.doi.org/10.1016/j.canlet.2009.05.027] [PMID: 19540040]
[77]
Goetz, D.H.; Holmes, M.A.; Borregaard, N.; Bluhm, M.E.; Raymond, K.N.; Strong, R.K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell, 2002, 10(5), 1033-1043.
[http://dx.doi.org/10.1016/S1097-2765(02)00708-6] [PMID: 12453412]
[78]
Soni, S.S.; Cruz, D.; Bobek, I.; Chionh, C.Y.; Nalesso, F.; Lentini, P.; de Cal, M.; Corradi, V.; Virzi, G.; Ronco, C. NGAL: a biomarker of acute kidney injury and other systemic conditions. Int. Urol. Nephrol., 2010, 42(1), 141-150.
[http://dx.doi.org/10.1007/s11255-009-9608-z] [PMID: 19582588]
[79]
Shemin, D.; Dworkin, L.D. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for early acute kidney injury. Crit. Care Clin., 2011, 27(2), 379-389.
[http://dx.doi.org/10.1016/j.ccc.2010.12.003] [PMID: 21440207]
[80]
Levin, A.; Stevens, P.E.J.N.R.N. Early detection of CKD: the benefits, limitations and effects on prognosis. Nat. Rev. Nephrol., 2011, 7(8), 446-457.
[http://dx.doi.org/10.1038/nrneph.2011.86] [PMID: 21712852]
[81]
James, M.T.; Hemmelgarn, B.R.; Tonelli, M.J.T.L. Early recognition and prevention of chronic kidney disease. Lancet, 2013, 382(9887), 170-179.
[PMID: 23727171]
[82]
Arbea, L.; Ramos, L.I.; Martínez-Monge, R.; Moreno, M.; Aristu, J. Intensity-modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer (LARC): dosimetric comparison and clinical implications. Radiat. Oncol., 2010, 5, 17.
[http://dx.doi.org/10.1186/1748-717X-5-17] [PMID: 20187944]
[83]
Lukovic, J.; Patil, N.; D’souza, D.; Millman, B.; Yaremko, B.P.; Leung, E.; Whiston, F.; Hajdok, G.; Wong, E. Intensity-modulated radiation therapy versus 3d conformal radiotherapy for postoperative gynecologic cancer: Are they covering the same planning target volume? Cureus, 2016, 8(1), e467.
[http://dx.doi.org/10.7759/cureus.467] [PMID: 26973802]
[84]
Hatfield, D.L.; Berry, M.J.; Gladyshev, V.N. Selenium: its molecular biology and role in human health; Springer Science & Business Media, 2011.
[85]
Tinggi, U. Selenium: its role as antioxidant in human health. Environ. Health Prev. Med., 2008, 13(2), 102-108.
[http://dx.doi.org/10.1007/s12199-007-0019-4] [PMID: 19568888]
[86]
Karami, M.; Asri-Rezaei, S.; Dormanesh, B.; Nazarizadeh, A. Comparative study of radioprotective effects of selenium nanoparticles and sodium selenite in irradiation-induced nephropathy of mice model. Int. J. Radiat. Biol., 2018, 94(1), 17-27.
[http://dx.doi.org/10.1080/09553002.2018.1400709] [PMID: 29108452]
[87]
Sieber, F.; Muir, S.A.; Cohen, E.P.; North, P.E.; Fish, B.L.; Irving, A.A.; Mäder, M.; Moulder, J.E. High-dose selenium for the mitigation of radiation injury: a pilot study in a rat model. Radiat. Res., 2009, 171(3), 368-373.
[http://dx.doi.org/10.1667/0033-7587-171.3.368] [PMID: 19267564]
[88]
Sieber, F.; Muir, S.A.; Cohen, E.P.; Fish, B.L.; Mäder, M.; Schock, A.M.; Althouse, B.J.; Moulder, J.E. Dietary selenium for the mitigation of radiation injury: effects of selenium dose escalation and timing of supplementation. Radiat. Res., 2011, 176(3), 366-374.
[http://dx.doi.org/10.1667/RR2456.1] [PMID: 21867430]
[89]
Praga, M.; Gutiérrez, E.; González, E.; Morales, E.; Hernández, E. Treatment of IgA nephropathy with ACE inhibitors: a randomized and controlled trial. J. Am. Soc. Nephrol., 2003, 14(6), 1578-1583.
[http://dx.doi.org/10.1097/01.ASN.0000068460.37369.DC] [PMID: 12761258]
[90]
Moulder, J.E.; Cohen, E.P.; Fish, B.L. Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int. J. Radiat. Biol., 2014, 90(9), 762-768.
[http://dx.doi.org/10.3109/09553002.2014.938375] [PMID: 24991882]
[91]
Moulder, J.E.; Fish, B.L.; Cohen, E.P. Treatment of radiation nephropathy with ACE inhibitors. Int. J. Radiat. Oncol. Biol. Phys., 1993, 27(1), 93-99.
[http://dx.doi.org/10.1016/0360-3016(93)90425-U] [PMID: 8365947]
[92]
Siragy, H.M.; de Gasparo, M.; El-Kersh, M.; Carey, R.M. Angiotensin-converting enzyme inhibition potentiates angiotensin II type 1 receptor effects on renal bradykinin and cGMP. Hypertension, 2001, 38(2), 183-186.
[http://dx.doi.org/10.1161/01.HYP.38.2.183] [PMID: 11509473]
[93]
Chung, O.; Unger, T. Unopposed stimulation of the angiotensin AT2 receptor in the kidney. Nephrol. Dial. Transplant., 1998, 13(3), 537-540.
[http://dx.doi.org/10.1093/ndt/13.3.537] [PMID: 9550620]
[94]
Moulder, J.E.; Fish, B.L.; Cohen, E.P. Impact of angiotensin II type 2 receptor blockade on experimental radiation nephropathy. Radiat. Res., 2004, 161(3), 312-317.
[http://dx.doi.org/10.1667/RR3129] [PMID: 14982483]
[95]
Moulder, J.E.; Fish, B.L.; Regner, K.R.; Cohen, E.P. Angiotensin II blockade reduces radiation-induced proliferation in experimental radiation nephropathy. Radiat. Res., 2002, 157(4), 393-401.
[http://dx.doi.org/10.1667/0033-7587(2002)157[0393:AIBRRI]2.0.CO;2] [PMID: 11893241]
[96]
Moulder, J.E.; Fish, B.L.; Cohen, E.P. Radiation nephropathy is treatable with an angiotensin converting enzyme inhibitor or an angiotensin II type-1 (AT1) receptor antagonist. Radiother. Oncol., 1998, 46(3), 307-315.
[http://dx.doi.org/10.1016/S0167-8140(97)00175-8] [PMID: 9572624]
[97]
Moulder, J.E.; Fish, B.L.; Cohen, E.P. Angiotensin II receptor antagonists in the treatment and prevention of radiation nephropathy. Int. J. Radiat. Biol., 1998, 73(4), 415-421.
[http://dx.doi.org/10.1080/095530098142257] [PMID: 9587080]
[98]
Zhou, Q.; Liao, J.K. Pleiotropic effects of statins. - Basic research and clinical perspectives -. Circ. J., 2010, 74(5), 818-826.
[http://dx.doi.org/10.1253/circj.CJ-10-0110] [PMID: 20424337]
[99]
Wahane, V.D.; Kumar, V.L. Atorvastatin ameliorates inflammatory hyperalgesia in rat model of monoarticular arthritis. Pharmacol. Res., 2010, 61(4), 329-333.
[http://dx.doi.org/10.1016/j.phrs.2009.11.006] [PMID: 19931618]
[100]
Hasanpour, Z.; Nasri, H.; Rafieian-Kopaei, M.; Ahmadi, A.; Baradaran, A.; Nasri, P.; Nematbakhsh, M. Paradoxical effects of atorvastatin on renal tubular cells: an experimental investigation. Iran. J. Kidney Dis., 2015, 9(3), 215-220.
[PMID: 25957426]
[101]
Jaikumkao, K.; Pongchaidecha, A.; Thongnak, L.O.; Wanchai, K.; Arjinajarn, P.; Chatsudthipong, V.; Chattipakorn, N.; Lungkaphin, A. Amelioration of renal inflammation, endoplasmic reticulum stress and apoptosis underlies the protective effect of low dosage of atorvastatin in gentamicin-induced nephrotoxicity. PLoS One, 2016, 11(10), e0164528.
[http://dx.doi.org/10.1371/journal.pone.0164528] [PMID: 27727327]
[102]
El-Moselhy, M.A.; El-Sheikh, A.A. Protective mechanisms of atorvastatin against doxorubicin-induced hepato-renal toxicity. Biomed. Pharmacother., 2014, 68(1), 101-110.
[http://dx.doi.org/10.1016/j.biopha.2013.09.001] [PMID: 24268999]
[103]
Su, J.; Zou, W.; Cai, W.; Chen, X.; Wang, F.; Li, S.; Ma, W.; Cao, Y. Atorvastatin ameliorates contrast medium-induced renal tubular cell apoptosis in diabetic rats via suppression of Rho-kinase pathway. Eur. J. Pharmacol., 2014, 723, 15-22.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.025] [PMID: 24445019]
[104]
Gottmann, U.; Brinkkoetter, P.T.; Hoeger, S.; Gutermann, K.; Coutinho, Z.M.; Ruf, T.; Hui, S.; Liu, Z.; Schnuelle, P.; van der Woude, F.J.; Braun, C.; Yard, B.A. Atorvastatin donor pretreatment prevents ischemia/reperfusion injury in renal transplantation in rats: possible role for aldose-reductase inhibition. Transplantation, 2007, 84(6), 755-762.
[http://dx.doi.org/10.1097/01.tp.0000281410.85659.48] [PMID: 17893609]
[105]
Mose, F.H.; Larsen, T.; Jensen, J.M.; Hansen, A.B.; Bech, J.N.; Pedersen, E.B. Effects of atorvastatin on systemic and renal NO dependency in patients with non-diabetic stage II-III chronic kidney disease. Br. J. Clin. Pharmacol., 2014, 78(4), 789-799.
[http://dx.doi.org/10.1111/bcp.12390] [PMID: 24697877]
[106]
Naeimi, R.A.; Talebpour Amiri, F.; Khalatbary, A.R.; Ghasemi, A.; Zargari, M.; Ghesemi, M.; Hosseinimehr, S.J. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod. Toxicol., 2017, 72, 115-121.
[http://dx.doi.org/10.1016/j.reprotox.2017.06.052] [PMID: 28668617]
[107]
Hosseinimehr, S.J.; Izakmehri, M.; Ghasemi, A. In vitro protective effect of atorvastatin against ionizing radiation induced genotoxicity in human lymphocytes. Cell. Mol. Biol., 2015, 61(1), 68-71.
[PMID: 25817349]
[108]
Yucel, C.; Erdogan Yucel, E.; Arslan, F.D.; Ekmekci, S.; Kisa, E.; Ulker, V.; Ucar, M.; Ilbey, Y.O.; Celik, O.; Isbilen Basok, B.; Kozacioglu, Z. All-trans retinoic acid prevents cisplatin-induced nephrotoxicity in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(2), 159-164.
[http://dx.doi.org/10.1007/s00210-018-01603-0] [PMID: 30610249]
[109]
Sideras, K.; Hallemeier, C.L.; Loprinzi, C.L. 43 - Oral Complications. In: Abeloff's Clinical Oncology, Fifth Edition; Niederhuber, J.E.; Armitage, J.O.; Doroshow, J.H.; Kastan, M.B.; Tepper, J.E., Eds.; Content Repository Only Philadelphia, 2014; pp. 635-647.
[110]
Cosar, R.; Yurut-Caloglu, V.; Eskiocak, S.; Ozen, A.; Altaner, S.; Ibis, K.; Turan, N.; Denizli, B.; Uzal, C.; Saynak, M.; Parlar, S.; Caloglu, M.; Uregen, B.; Kocak, Z. Radiation-induced chronic oxidative renal damage can be reduced by amifostine. Med. Oncol., 2012, 29(2), 768-775.
[http://dx.doi.org/10.1007/s12032-011-9870-7] [PMID: 21347716]
[111]
Yürekli, Y.; Ünak, P.; Ertay, T.; Müftüler, F.Z.B.; Medine, E.İ.; Acar, Ç. Radiopharmaceutical model using 99mtc-DMSA to evaluate amifostine protection against cisplatin nephrotoxicity in rats. Turk. J. Nucl. Med., 2010, 19(3), 105-109.
[112]
Kim, J.; Seok, Y.M.; Jung, K-J.; Park, K.M. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am. J. Physiol. Renal Physiol., 2009, 297(2), F461-F470.
[http://dx.doi.org/10.1152/ajprenal.90735.2008] [PMID: 19458120]
[113]
Ki, Y.; Kim, W.; Kim, Y.H.; Kim, D.; Bae, J.S.; Park, D.; Jeon, H.; Lee, J.H.; Lee, J.; Nam, J. Effect of coenzyme Q10 on radiation nephropathy in rats. J. Korean Med. Sci., 2017, 32(5), 757-763.
[http://dx.doi.org/10.3346/jkms.2017.32.5.757] [PMID: 28378548]
[114]
van Kleef, E.M.; Te Poele, J.A.; Oussoren, Y.G.; van der Wal, A.; Dewit, L.G.; Stewart, F.A. Influence of acetylsalicylic acid on development of radiation-induced nephropathy. Int. J. Radiat. Biol., 2000, 76(11), 1565-1573.
[http://dx.doi.org/10.1080/09553000050176324] [PMID: 11098859]
[115]
Abdel-Magied, N.; Elkady, A.A. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp. Mol. Pathol., 2019, 111, 104299.
[http://dx.doi.org/10.1016/j.yexmp.2019.104299] [PMID: 31442446]
[116]
Farrell, F.; Lee, A. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist, 2004, 9(Suppl. 5), 18-30.
[http://dx.doi.org/10.1634/theoncologist.9-90005-18] [PMID: 15591419]
[117]
Andratschke, N.; Schnaiter, A.; Weber, W.A.; Cai, L.; Schill, S.; Wiedenmann, N.; Schwaiger, M.; Molls, M.; Nieder, C. Preclinical evaluation of erythropoietin administration in a model of radiation-induced kidney dysfunction. Int. J. Radiat. Oncol. Biol. Phys., 2006, 64(5), 1513-1518.
[http://dx.doi.org/10.1016/j.ijrobp.2005.11.042] [PMID: 16580501]
[118]
Kucuktulu, E.; Yavuz, A.A.; Cobanoglu, U.; Yenilmez, E.; Eminagaoglu, S.; Karahan, C.; Topbas, M.; Kucuktulu, U. Protective effect of melatonin against radiation induced nephrotoxicity in rats. Asian Pac. J. Cancer Prev., 2012, 13(8), 4101-4105.
[http://dx.doi.org/10.7314/APJCP.2012.13.8.4101] [PMID: 23098524]
[119]
Hormati, A.; Ahmadpour, S.; Afkhami Ardekani, M.; Khodadust, F.; Refahi, S. Radioprotective effects of montelukast, a selective leukotriene CysLT1 receptor antagonist, against nephrotoxicity induced by gamma radiation in mice. J. Biochem. Mol. Toxicol., 2020, 34(6), e22479.
[http://dx.doi.org/10.1002/jbt.22479] [PMID: 32125029]
[120]
Rossini, M.; Naito, T.; Yang, H.; Freeman, M.; Donnert, E.; Ma, L-J.; Dunn, S.R.; Sharma, K.; Fogo, A.B. Sulodexide ameliorates early but not late kidney disease in models of radiation nephropathy and diabetic nephropathy. Nephrol. Dial. Transplant., 2010, 25(6), 1803-1810.
[http://dx.doi.org/10.1093/ndt/gfp724] [PMID: 20061322]
[121]
Yurut-Caloglu, V.; Caloglu, M.; Deniz-Yalta, T.; Aktoz, T.; Nurlu, D.; Kilic-Durankus, N.; Arda, E.; Turkkan, G.; Ýnci, O. Radiation-induced acute kidney toxicity: Protective effect of L-carnitine versus amifostine. Int. J. Radiat. Res., 2015, 13(4), 317.
[122]
Cohen, E.P.; Hussain, S.; Moulder, J.E. Successful treatment of radiation nephropathy with angiotensin II blockade. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(1), 190-193.
[http://dx.doi.org/10.1016/S0360-3016(02)03793-8] [PMID: 12504053]
[123]
Cohen, E.P.; Irving, A.A.; Drobyski, W.R.; Klein, J.P.; Passweg, J.; Talano, J-A.M.; Juckett, M.B.; Moulder, J.E. Captopril to mitigate chronic renal failure after hematopoietic stem cell transplantation: a randomized controlled trial. Int. J. Radiat. Oncol. Biol. Phys., 2008, 70(5), 1546-1551.
[http://dx.doi.org/10.1016/j.ijrobp.2007.08.041] [PMID: 18029109]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy