Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Guiding Lineage Specific Differentiation of SHED for Target Tissue/Organ Regeneration

Author(s): Yuanyuan Han, Lili Zhang, Chengfei Zhang and Waruna L. Dissanayaka*

Volume 16, Issue 5, 2021

Published on: 29 September, 2020

Page: [518 - 534] Pages: 17

DOI: 10.2174/1574888X15666200929125840

Price: $65

Abstract

Stem cells from Human Exfoliated Deciduous teeth (SHED) are considered one of the most attractive cell sources for tissue engineering due to their easy acquisition with no donor morbidity, ready availability, ability to self-renew with high proliferation, capacity for multilineage differentiation and immunomodulatory functions. To date, SHED are able to differentiate into odonto-/ osteoblasts, neuronal cells, endothelial cells, hepatocyte-like cells, chondrocytes, epidermal cells among many other cell types. Accordingly, SHED possess a promising potential to be used in the cell-based therapy for various diseases, including reversible pulpitis, orofacial bone defects, neurodevelopmental disease and ischemic injury. Despite this potential, it has been a concern that tissue specific stem cells do not differentiate with the same efficacy into all the different lineages as they may have an inherent tendency to differentiate toward the tissues from which they were originally derived. Furthermore, stem cell niche comprises of a complex microenvironment where various cells, soluble signals, extracellular matrix and physical cues interplay to maintain the stemness of SHED and modulate their differentiation. Therefore, it is of significant importance to identify the specific microenvironmental cues that regulate lineage specific differentiation of SHED, which could inspire to develop functional approaches in target tissue regeneration. In this review, we highlight the recent studies that demonstrated multilineage differentiation capacity of SHED, focusing on how the microenvironment could be modified using different cues in order to achieve tissue specific regeneration.

Keywords: SHED, multipotency, neurogenic, osteogenic, endothelial cells, tissue engineering, cell differentiation, mesenchymal stem cells.

[1]
Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13(1): 81-8.
[http://dx.doi.org/10.1016/8756-3282(92)90364-3] [PMID: 1581112]
[2]
Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Hole N, Jahoda CA. Cultured cells from the adult human hair follicle dermis can be directed toward adipogenic and osteogenic differentiation. J Invest Dermatol 2005; 124(5): 1090-1.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23734.x] [PMID: 15854060]
[3]
Čamernik K, Mihelič A, Mihalič R, et al. Skeletal-muscle-derived mesenchymal stem/stromal cells from patients with osteoarthritis show superior biological properties compared to bone-derived cells. Stem Cell Res (Amst) 2019; 38: 101465.
[http://dx.doi.org/10.1016/j.scr.2019.101465] [PMID: 31132579]
[4]
Dicker A, Le Blanc K, Aström G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 2005; 308(2): 283-90.
[http://dx.doi.org/10.1016/j.yexcr.2005.04.029] [PMID: 15925364]
[5]
Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81(8): 531-5.
[http://dx.doi.org/10.1177/154405910208100806] [PMID: 12147742]
[6]
Martacić JD, Francuski J, Luzajić T, et al. Characterization of deciduous teeth stem cells isolated from crown dental pulp. Vojnosanit Pregl 2014; 71(8): 735-41.
[http://dx.doi.org/10.2298/VSP1408735D] [PMID: 25181832]
[7]
Nada OA, El Backly RM. Stem Cells From the Apical Papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol 2018; 6: 103.
[http://dx.doi.org/10.3389/fbioe.2018.00103] [PMID: 30087893]
[8]
Tomasello L, Mauceri R, Coppola A, et al. Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: A potential application for bone formation. Stem Cell Res Ther 2017; 8(1): 179.
[http://dx.doi.org/10.1186/s13287-017-0633-z] [PMID: 28764802]
[9]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
[10]
Mori G, Ballini A, Carbone C, et al. Osteogenic differentiation of dental follicle stem cells. Int J Med Sci 2012; 9(6): 480-7.
[http://dx.doi.org/10.7150/ijms.4583] [PMID: 22927773]
[11]
Rojewski MT, Weber BM, Schrezenmeier H. Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 2008; 35(3): 168-84.
[http://dx.doi.org/10.1159/000129013] [PMID: 21547115]
[12]
Wang X, Sha XJ, Li GH, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 2012; 57(9): 1231-40.
[http://dx.doi.org/10.1016/j.archoralbio.2012.02.014] [PMID: 22455989]
[13]
Lee S, An S, Kang TH, et al. Comparison of mesenchymal-like stem/progenitor cells derived from supernumerary teeth with stem cells from human exfoliated deciduous teeth. Regen Med 2011; 6(6): 689-99.
[http://dx.doi.org/10.2217/rme.11.95] [PMID: 22050521]
[14]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[15]
Perry BC, Zhou D, Wu X, et al. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 2008; 14(2): 149-56.
[http://dx.doi.org/10.1089/ten.tec.2008.0031] [PMID: 18489245]
[16]
Collart-Dutilleul PY, Chaubron F, De Vos J, Cuisinier FJ. Allogenic banking of dental pulp stem cells for innovative therapeutics. World J Stem Cells 2015; 7(7): 1010-21.
[PMID: 26328017]
[17]
Arora V, Arora P, Munshi AK. Banking stem cells from human exfoliated deciduous teeth (SHED): Saving for the future. J Clin Pediatr Dent 2009; 33(4): 289-94.
[http://dx.doi.org/10.17796/jcpd.33.4.y887672r0j703654] [PMID: 19725233]
[18]
Ohkoshi S, Hirono H, Nakahara T, Ishikawa H. Dental pulp cell bank as a possible future source of individual hepatocytes. World J Hepatol 2018; 10(10): 702-7.
[http://dx.doi.org/10.4254/wjh.v10.i10.702] [PMID: 30386463]
[19]
Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005; 80(6): 836-42.
[http://dx.doi.org/10.1097/01.tp.0000173794.72151.88] [PMID: 16210973]
[20]
Cheng PH, Snyder B, Fillos D, Ibegbu CC, Huang AH, Chan AW. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee. BMC Cell Biol 2008; 9: 20.
[http://dx.doi.org/10.1186/1471-2121-9-20] [PMID: 18430234]
[21]
Zhang Z, Nör F, Oh M, Cucco C, Shi S, Nör JE. Wnt/β-Catenin signaling determines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016; 34(6): 1576-87.
[http://dx.doi.org/10.1002/stem.2334] [PMID: 26866635]
[22]
Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs (Print) 2006; 184(3-4): 105-16.
[http://dx.doi.org/10.1159/000099617] [PMID: 17409736]
[23]
Alge DL, Zhou D, Adams LL, et al. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 2010; 4(1): 73-81.
[PMID: 19842108]
[24]
Seonwoo H, Jang KJ, Lee D, et al. Neurogenic differentiation of human dental pulp stem cells on graphene-polycaprolactone hybrid nanofibers. Nanomaterials 2018; 8(7): E554.
[http://dx.doi.org/10.3390/nano8070554] [PMID: 30037100]
[25]
Mehrazarin S, Oh JE, Chung CL, et al. Impaired odontogenic differentiation of senescent dental mesenchymal stem cells is associated with loss of Bmi-1 expression. J Endod 2011; 37(5): 662-6.
[http://dx.doi.org/10.1016/j.joen.2011.02.009] [PMID: 21496667]
[26]
Jeon B-G, Jang S-J, Park J-S, et al. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Anim Cells Syst 2015; 19(5): 321-31.
[http://dx.doi.org/10.1080/19768354.2015.1087430]
[27]
Zhang W, Walboomers XF, Van Kuppevelt TH, et al. In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. J Tissue Eng Regen Med 2008; 2(2-3): 117-25.
[http://dx.doi.org/10.1002/term.71] [PMID: 18338838]
[28]
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: Function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015; 9(11): 1205-16.
[http://dx.doi.org/10.1002/term.1899] [PMID: 24850632]
[29]
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017; 8: 2041731417702531.
[http://dx.doi.org/10.1177/2041731417702531] [PMID: 28616151]
[30]
Nourbakhsh N, Soleimani M, Taghipour Z, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55(2): 189-95.
[http://dx.doi.org/10.1387/ijdb.103090nn] [PMID: 21671222]
[31]
Bento LW, Zhang Z, Imai A, et al. Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res 2013; 92(1): 51-7.
[http://dx.doi.org/10.1177/0022034512466263] [PMID: 23114032]
[32]
Ishkitiev N, Yaegaki K, Imai T, et al. Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Eng Part A 2015; 21(3-4): 586-93.
[http://dx.doi.org/10.1089/ten.tea.2014.0162] [PMID: 25234861]
[33]
Tsai CL, Chuang PC, Kuo HK, Chen YH, Su WH, Wu PC. Differentiation of stem cells from human exfoliated deciduous teeth toward a phenotype of corneal epithelium in vitro. Cornea 2015; 34(11): 1471-7.
[http://dx.doi.org/10.1097/ICO.0000000000000532] [PMID: 26165791]
[34]
Li X, Xie J, Zhai Y, et al. Differentiation of stem cells from human exfoliated deciduous teeth into retinal photoreceptor-like cells and their sustainability in vivo. Stem Cells Int 2019; 2019: 2562981.
[http://dx.doi.org/10.1155/2019/2562981] [PMID: 30906327]
[35]
Ishkitiev N, Yaegaki K, Kozhuharova A, et al. Pancreatic differentiation of human dental pulp CD117⁺ stem cells. Regen Med 2013; 8(5): 597-612.
[http://dx.doi.org/10.2217/rme.13.42] [PMID: 23998753]
[36]
Tran HleB, Doan VN, Le HT, Ngo LT. Various methods for isolation of multipotent human periodontal ligament cells for regenerative medicine. In Vitro Cell Dev Biol Anim 2014; 50(7): 597-602.
[http://dx.doi.org/10.1007/s11626-014-9748-z] [PMID: 24719182]
[37]
Yang N, Li Y, Wang G, Ding Y, Jin Y, Xu Y. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 functional axis. Differentiation 2017; 97: 33-43.
[http://dx.doi.org/10.1016/j.diff.2017.08.004] [PMID: 28946056]
[38]
Choi S, Cho TJ, Kwon SK, Lee G, Cho J. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. Int J Oral Sci 2013; 5(1): 7-13.
[http://dx.doi.org/10.1038/ijos.2013.19] [PMID: 23579467]
[39]
Fortino VR, Chen RS, Pelaez D, Cheung HS. Neurogenesis of neural crest-derived periodontal ligament stem cells by EGF and bFGF. J Cell Physiol 2014; 229(4): 479-88.
[http://dx.doi.org/10.1002/jcp.24468] [PMID: 24105823]
[40]
Yang X, Xiong X, Zhou W, et al. Effects of human urine-derived stem cells on the cementogenic differentiation of indirectly-cocultured periodontal ligament stem cells. Am J Transl Res 2020; 12(2): 361-78.
[PMID: 32194889]
[41]
Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 2006; 1: e79.
[http://dx.doi.org/10.1371/journal.pone.0000079] [PMID: 17183711]
[42]
Abe S, Yamaguchi S, Amagasa T. Multilineage cells from apical pulp of human tooth with immature apex. Oral Sci Int 2007; 4(1): 45-58.
[http://dx.doi.org/10.1016/S1348-8643(07)80011-5]
[43]
Yamanishi H, Fujiwara S, Soma T. Perivascular localization of dermal stem cells in human scalp. Exp Dermatol 2012; 21(1): 78-80.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01407.x] [PMID: 22151396]
[44]
Patil R, Kumar BM, Lee WJ, et al. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp Cell Res 2014; 320(1): 92-107.
[http://dx.doi.org/10.1016/j.yexcr.2013.10.005] [PMID: 24162002]
[45]
Du L, Yang P, Ge S. Isolation and characterization of human gingiva-derived mesenchymal stem cells using limiting dilution method. J Dent Sci 2016; 11(3): 304-14.
[http://dx.doi.org/10.1016/j.jds.2016.03.010] [PMID: 30894989]
[46]
Kémoun P, Laurencin-Dalicieux S, Rue J, et al. Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 2007; 329(2): 283-94.
[http://dx.doi.org/10.1007/s00441-007-0397-3] [PMID: 17443352]
[47]
Ge S, Mrozik KM, Menicanin D, Gronthos S, Bartold PM. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: Potential use for clinical therapy. Regen Med 2012; 7(6): 819-32.
[http://dx.doi.org/10.2217/rme.12.61] [PMID: 23164082]
[48]
Heng BC, Jiang S, Yi B, Gong T, Lim LW, Zhang C. Small molecules enhance neurogenic differentiation of dental-derived adult stem cells. Arch Oral Biol 2019; 102: 26-38.
[http://dx.doi.org/10.1016/j.archoralbio.2019.03.024] [PMID: 30954806]
[49]
Gao Y, Zhao G, Li D, Chen X, Pang J, Ke J. Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int J Mol Sci 2014; 15(11): 20982-96.
[http://dx.doi.org/10.3390/ijms151120982] [PMID: 25405732]
[50]
Kadkhoda Z, Rafiei SC, Derakhshan B, et al. Assessment of human periodontal ligament stem cell surface molecules and wisdom tooth follicle stem cell surface molecules. Journal of Craniomaxillofacial Research 2017; 4(2): 352-9.
[51]
Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24(2): 155-65.
[http://dx.doi.org/10.1016/j.matbio.2004.12.004] [PMID: 15890265]
[52]
Völlner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation 2009; 77(5): 433-41.
[http://dx.doi.org/10.1016/j.diff.2009.03.002] [PMID: 19394129]
[53]
Sebastian AA, Kannan TP, Norazmi MN, Nurul AA. Interleukin-17A promotes osteogenic differentiation by increasing OPG/RANKL ratio in stem cells from human exfoliated deciduous teeth (SHED). J Tissue Eng Regen Med 2018; 12(8): 1856-66.
[http://dx.doi.org/10.1002/term.2706] [PMID: 29774992]
[54]
Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89(8): 791-6.
[http://dx.doi.org/10.1177/0022034510368647] [PMID: 20395410]
[55]
Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2013; 4(5): 117.
[http://dx.doi.org/10.1186/scrt328] [PMID: 24073831]
[56]
Xu JG, Zhu SY, Heng BC, Dissanayaka WL, Zhang CF. TGF-β1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res Ther 2017; 8(1): 10 [Reproduced and published under Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)].
[http://dx.doi.org/10.1186/s13287-016-0459-0] [PMID: 28114966]
[57]
Jeon M, Song JS, Choi BJ, et al. In vitro and in vivo characteristics of stem cells from human exfoliated deciduous teeth obtained by enzymatic disaggregation and outgrowth. Arch Oral Biol 2014; 59(10): 1013-23.
[http://dx.doi.org/10.1016/j.archoralbio.2014.06.002] [PMID: 24960116]
[58]
Viale-Bouroncle S, Gosau M, Küpper K, et al. Rigid matrix supports osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Differentiation 2012; 84(5): 366-70.
[http://dx.doi.org/10.1016/j.diff.2012.08.005] [PMID: 23142732]
[59]
Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör JE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res 2010; 89(6): 603-8.
[http://dx.doi.org/10.1177/0022034510364487] [PMID: 20351355]
[60]
Koyama N, Okubo Y, Nakao K, Bessho K. Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 2009; 67(3): 501-6.
[http://dx.doi.org/10.1016/j.joms.2008.09.011] [PMID: 19231772]
[61]
Nowwarote N, Sukarawan W, Pavasant P, Osathanon T. Basic fibroblast growth factor regulates REX1 expression via IL-6 in stem cells isolated from human exfoliated deciduous teeth. J Cell Biochem 2017; 118(6): 1480-8.
[http://dx.doi.org/10.1002/jcb.25807] [PMID: 27883224]
[62]
Li B, Qu C, Chen C, et al. Basic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signaling. Oral Dis 2012; 18(3): 285-92.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01878.x] [PMID: 22151351]
[63]
Osathanon T, Nowwarote N, Manokawinchoke J, Pavasant P. bFGF and JAGGED1 regulate alkaline phosphatase expression and mineralization in dental tissue-derived mesenchymal stem cells. J Cell Biochem 2013; 114(11): 2551-61.
[http://dx.doi.org/10.1002/jcb.24602] [PMID: 23749297]
[64]
Nowwarote N, Sukarawan W, Pavasant P, Foster BL, Osathanon T. Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth. Stem Cell Res Ther 2018; 9(1): 345.
[http://dx.doi.org/10.1186/s13287-018-1093-9] [PMID: 30526676]
[65]
Kim J, Park JC, Kim SH, et al. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis 2014; 20(2): 191-204.
[http://dx.doi.org/10.1111/odi.12089] [PMID: 23496287]
[66]
Novais A, Lesieur J, Sadoine J, et al. Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor-2 enhances mineralization within tissue-engineered constructs implanted in craniofacial bone defects. Stem Cells Transl Med 2019; 8(8): 844-57.
[http://dx.doi.org/10.1002/sctm.18-0182] [PMID: 31016898]
[67]
Dernowsek JA, Pereira MC, Fornari TA, et al. Posttranscriptional interaction between miR-450a-5p and miR-28-5p and STAT1 mRNA triggers osteoblastic differentiation of human mesenchymal stem cells. J Cell Biochem 2017; 118(11): 4045-62.
[http://dx.doi.org/10.1002/jcb.26060] [PMID: 28407302]
[68]
Ishiy FAA, Fanganiello RD, Kobayashi GS, Kague E, Kuriki PS, Passos-Bueno MR. CD105 is regulated by hsa-miR-1287 and its expression is inversely correlated with osteopotential in SHED. Bone 2018; 106: 112-20.
[http://dx.doi.org/10.1016/j.bone.2017.10.014] [PMID: 29033380]
[69]
Lee JY, Nam H, Park YJ, et al. The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentiation of human dental stem cells. In Vitro Cell Dev Biol Anim 2011; 47(2): 157-64.
[http://dx.doi.org/10.1007/s11626-010-9364-5] [PMID: 21082281]
[70]
Wen J, Li HT, Li SH, Li X, Duan JM. Investigation of modified platelet-rich plasma (mPRP) in promoting the proliferation and differentiation of dental pulp stem cells from deciduous teeth. Braz J Med Biol Res 2016; 49(10): e5373.
[http://dx.doi.org/10.1590/1414-431x20165373] [PMID: 27599200]
[71]
Nowwarote N, Sukarawan W, Kanjana K, Pavasant P, Fournier BPJ, Osathanon T. Interleukin 6 promotes an in vitro mineral deposition by stem cells isolated from human exfoliated deciduous teeth. R Soc Open Sci 2018; 5(10): 180864.
[http://dx.doi.org/10.1098/rsos.180864] [PMID: 30473835]
[72]
Liu Y, Chen C, Liu S, et al. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J Dent Res 2015; 94(1): 209-18.
[http://dx.doi.org/10.1177/0022034514557672] [PMID: 25394850]
[73]
Han X, Nonaka K, Kato H, et al. Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a child with Leigh syndrome. Biochem Biophys Rep 2018; 17: 32-7.
[http://dx.doi.org/10.1016/j.bbrep.2018.11.003] [PMID: 30533535]
[74]
Chadipiralla K, Yochim JM, Bahuleyan B, et al. Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth. Cell Tissue Res 2010; 340(2): 323-33.
[http://dx.doi.org/10.1007/s00441-010-0953-0] [PMID: 20309582]
[75]
Mojarad F, Amiri I, Rafatjou R, Janeshin A, Farhadian M. The Effect of 1α, 25(OH)2D3 on osteogenic differentiation of stem cells from dental pulp of exfoliated deciduous teeth. J Dent 2016; 17(4): 348-53.
[PMID: 27942551]
[76]
Liu YJ, Su WT, Chen PH. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro. J Biomater Appl 2018; 32(6): 765-74.
[http://dx.doi.org/10.1177/0885328217740730] [PMID: 29119879]
[77]
Yang X, Zhao Q, Chen Y, et al. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Artif Cells Nanomed Biotechnol 2019; 47(1): 822-32.
[http://dx.doi.org/10.1080/21691401.2019.1576706] [PMID: 30873880]
[78]
Zhai Y, Wang Y, Rao N, et al. Activation and biological properties of human β defensin 4 in stem cells derived from human exfoliated deciduous teeth. Front Physiol 2019; 10: 1304.
[http://dx.doi.org/10.3389/fphys.2019.01304] [PMID: 31695620]
[79]
Su WT, Wu PS, Ko CS, Huang TY. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold. Mater Sci Eng C 2014; 41: 152-60.
[http://dx.doi.org/10.1016/j.msec.2014.04.048] [PMID: 24907748]
[80]
Farea M, Husein A, Halim AS, et al. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 2014; 59(12): 1400-11.
[http://dx.doi.org/10.1016/j.archoralbio.2014.08.015] [PMID: 25222336]
[81]
Huang TY, Su WT, Chen PH. Comparing the effects of chitosan scaffolds containing various divalent metal phosphates on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Biol Trace Elem Res 2018; 185(2): 316-26.
[http://dx.doi.org/10.1007/s12011-018-1256-7] [PMID: 29399740]
[82]
Khoroushi M, Foroughi MR, Karbasi S, Hashemibeni B, Khademi AA. Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Mater Sci Eng C 2018; 89: 128-39.
[http://dx.doi.org/10.1016/j.msec.2018.03.028] [PMID: 29752081]
[83]
Coyac BR, Chicatun F, Hoac B, et al. Mineralization of dense collagen hydrogel scaffolds by human pulp cells. J Dent Res 2013; 92(7): 648-54.
[http://dx.doi.org/10.1177/0022034513488599] [PMID: 23632809]
[84]
Su WT, Chou WL, Chou CM. Osteoblastic differentiation of stem cells from human exfoliated deciduous teeth induced by thermosensitive hydrogels with strontium phosphate. Mater Sci Eng C 2015; 52: 46-53.
[http://dx.doi.org/10.1016/j.msec.2015.03.025] [PMID: 25953539]
[85]
Su WT, Wu PS, Huang TY. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Mater Sci Eng C 2015; 46: 427-34.
[http://dx.doi.org/10.1016/j.msec.2014.10.076] [PMID: 25492007]
[86]
Su WT, Chiou WL, Yu HH, Huang TY. Differentiation potential of SHEDs using biomimetic periosteum containing dexamethasone. Mater Sci Eng C 2016; 58: 1036-45.
[http://dx.doi.org/10.1016/j.msec.2015.09.077] [PMID: 26478401]
[87]
Prahasanti C, Subrata LH, Saskianti T, Suardita K, Ernawati DS. Combined hydroxyapatite scaffold and stem cell from human exfoliated deciduous teeth modulating alveolar bone regeneration via regulating receptor activator of nuclear factor-Κb and osteoprotegerin system. Iran J Med Sci 2019; 44(5): 415-21.
[PMID: 31582866]
[88]
Athanasiadou E, Paschalidou M, Theocharidou A, Kontoudakis N, Arapostathis K, Bakopoulou A. Biological interactions of a calcium silicate based cement (Biodentine™) with stem cells from human exfoliated deciduous teeth. Dent Mater 2018; 34(12): 1797-813.
[http://dx.doi.org/10.1016/j.dental.2018.09.014] [PMID: 30316525]
[89]
Subhi H, Reza F, Husein A, Al Shehadat SA, Nurul AA. Gypsum-based material for dental pulp capping: effect of chitosan and BMP-2 on physical, mechanical, and cellular properties. Int J Biomater 2018; 2018: 3804293.
[http://dx.doi.org/10.1155/2018/3804293] [PMID: 30147725]
[90]
Rafatjou R, Amiri I, Janeshin A. Effect of Calcium-enriched Mixture (CEM) cement on increasing mineralization in stem cells from the dental pulps of human exfoliated deciduous teeth. J Dent Res Dent Clin Dent Prospect 2018; 12(4): 233-7.
[http://dx.doi.org/10.15171/jpid.2018.036] [PMID: 30774787]
[91]
Araújo LB, Cosme-Silva L, Fernandes AP, et al. Effects of mineral trioxide aggregate, Biodentine™ and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 2018; 26: e20160629.
[http://dx.doi.org/10.1590/1678-7757-2016-0629] [PMID: 29412365]
[92]
Farea M, Husein A, Halim AS, et al. Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2016; 20(6): 1181-91.
[http://dx.doi.org/10.1007/s00784-015-1601-6] [PMID: 26392396]
[93]
Turrioni AP, Basso FG, Montoro LA, Almeida LdeF, Costa CA, Hebling J. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth. J Dent 2014; 42(10): 1292-9.
[http://dx.doi.org/10.1016/j.jdent.2014.07.014] [PMID: 25064041]
[94]
Paschalidou M, Athanasiadou E, Arapostathis K, et al. Biological effects of low-level laser irradiation (LLLI) on stem cells from human exfoliated deciduous teeth (SHED). Clin Oral Investig 2020; 24(1): 167-80.
[http://dx.doi.org/10.1007/s00784-019-02874-4] [PMID: 31069538]
[95]
Vakhrushev IV, Antonov EN, Popova AV, et al. Design of tissue engineering implants for bone tissue regeneration of the basis of new generation polylactoglycolide scaffolds and multipotent mesenchymal stem cells from human exfoliated deciduous teeth (SHED cells). Bull Exp Biol Med 2012; 153(1): 143-7.
[http://dx.doi.org/10.1007/s10517-012-1663-2] [PMID: 22808514]
[96]
Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical- size calvarial defects in mice. Oral Dis 2008; 14(5): 428-34.
[http://dx.doi.org/10.1111/j.1601-0825.2007.01396.x] [PMID: 18938268]
[97]
Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88(3): 249-54.
[http://dx.doi.org/10.1177/0022034509333804] [PMID: 19329459]
[98]
Alkaisi A, Ismail AR, Mutum SS, et al. Transplantation of human dental pulp stem cells: Enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg 2013; 71-10.1758.
[http://dx.doi.org/10.1016/j.joms.2013.05.016]
[99]
Lee JM, Kim HY, Park JS, et al. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med 2019; 13(2): 319-27.
[http://dx.doi.org/10.1002/term.2811] [PMID: 30644640]
[100]
Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013; 92(11): 970-5.
[http://dx.doi.org/10.1177/0022034513505772] [PMID: 24056227]
[101]
Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics 2019; 9(9): 2694-711.
[http://dx.doi.org/10.7150/thno.31801] [PMID: 31131062]
[102]
Wang M, Li J, Ye Y, He S, Song J. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation 2020; 111: 1-11.
[http://dx.doi.org/10.1016/j.diff.2019.10.003] [PMID: 31630077]
[103]
Omori M, Tsuchiya S, Hara K, et al. A new application of cell-free bone regeneration: immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Res Ther 2015; 6: 124.
[http://dx.doi.org/10.1186/s13287-015-0114-1] [PMID: 26088364]
[104]
Prasad MGS, Ramakrishna J, Babu DN. Allogeneic stem cells derived from human exfoliated deciduous teeth (SHED) for the management of periapical lesions in permanent teeth: Two case reports of a novel biologic alternative treatment. J Dent Res Dent Clin Dent Prospect 2017; 11(2): 117-22.
[http://dx.doi.org/10.15171/joddd.2017.021] [PMID: 28748053]
[105]
Ghana Shyam Prasad M, Juvva R, Babu Duvvi N. Towards a new era in the management of large periapical lesion in permanent tooth using stemcells: A 2-year clinical application report. J Dent 2019; 20(2): 137-40.
[PMID: 31214643]
[106]
Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Cell culture. Progenitor cells from human brain after death. Nature 2001; 411(6833): 42-3.
[http://dx.doi.org/10.1038/35075141] [PMID: 11333968]
[107]
Mitsiadis TA, Graf D. Cell fate determination during tooth development and regeneration. Birth Defects Res C Embryo Today 2009; 87(3): 199-211.
[http://dx.doi.org/10.1002/bdrc.20160] [PMID: 19750524]
[108]
Morsczeck C, Völlner F, Saugspier M, et al. Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 2010; 14(4): 433-40.
[http://dx.doi.org/10.1007/s00784-009-0310-4] [PMID: 19590907]
[109]
Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 2014; 6(3): 305-11.
[http://dx.doi.org/10.4252/wjsc.v6.i3.305] [PMID: 25126380]
[110]
Wang J, Wang X, Sun Z, et al. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19(9): 1375-83.
[http://dx.doi.org/10.1089/scd.2009.0258] [PMID: 20131979]
[111]
Taghipour Z, Karbalaie K, Kiani A, et al. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 2012; 21(10): 1794-802.
[http://dx.doi.org/10.1089/scd.2011.0408] [PMID: 21970342]
[112]
Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 2010; 58(8): 721-30.
[http://dx.doi.org/10.1369/jhc.2010.955609] [PMID: 20421592]
[113]
Islam MO, Kanemura Y, Tajria J, et al. Functional expression of ABCG2 transporter in human neural stem/progenitor cells. Neurosci Res 2005; 52(1): 75-82.
[http://dx.doi.org/10.1016/j.neures.2005.01.013] [PMID: 15811555]
[114]
Liyang G, Abdullah S, Rosli R, Nordin N. Neural commitment of embryonic stem cells through the formation of embryoid bodies (EBs). Malays J Med Sci 2014; 21(5): 8-16.
[PMID: 25977628]
[115]
Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21(2): 183-6.
[http://dx.doi.org/10.1038/nbt780] [PMID: 12524553]
[116]
Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001; 30(1): 65-78.
[http://dx.doi.org/10.1016/S0896-6273(01)00263-X] [PMID: 11343645]
[117]
Feng X, Xing J, Feng G, et al. Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol 2013; 33(8): 1023-31.
[http://dx.doi.org/10.1007/s10571-013-9965-0] [PMID: 24043508]
[118]
Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 2015; 1613: 59-72.
[http://dx.doi.org/10.1016/j.brainres.2015.04.001] [PMID: 25863132]
[119]
Hirofuji S, Hirofuji Y, Kato H, et al. Mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous tooth-derived pulp stem cells of a child with Rett syndrome. Biochem Biophys Res Commun 2018; 498(4): 898-904.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.077] [PMID: 29534967]
[120]
Jarmalavičiūtė A, Tunaitis V, Strainienė E, et al. A new experimental model for neuronal and glial differentiation using stem cells derived from human exfoliated deciduous teeth. J Mol Neurosci 2013; Epub ahead of print..
[http://dx.doi.org/10.1007/s12031-013-0046-0] [PMID: 23797732]
[121]
Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A. Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 2014; 6(1): 21-6.
[PMID: 24551431]
[122]
de Hemptinne I, Vermeiren C, Maloteaux JM, Hermans E. Induction of glial glutamate transporters in adult mesenchymal stem cells. J Neurochem 2004; 91(1): 155-66.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02709.x] [PMID: 15379896]
[123]
Vetter D, Thorn W, Brunner H, König WA. Directed enzymatic synthesis of linear and branched gluco-oligosaccharides, using cyclodextrin-glucanosyltransferase. Carbohydr Res 1992; 223: 61-9.
[http://dx.doi.org/10.1016/0008-6215(92)80006-M] [PMID: 1534513]
[124]
Hu F, Wang X, Liang G, et al. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogram 2013; 15(3): 224-32.
[http://dx.doi.org/10.1089/cell.2012.0077] [PMID: 23713433]
[125]
Dutton R, Yamada T, Turnley A, Bartlett PF, Murphy M. Sonic hedgehog promotes neuronal differentiation of murine spinal cord precursors and collaborates with neurotrophin 3 to induce Islet-1. J Neurosci 1999; 19(7): 2601-8.
[http://dx.doi.org/10.1523/JNEUROSCI.19-07-02601.1999] [PMID: 10087073]
[126]
Chang CC, Chang KC, Tsai SJ, Chang HH, Lin CP. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J Formos Med Assoc 2014; 113(12): 956-65.
[http://dx.doi.org/10.1016/j.jfma.2014.09.003] [PMID: 25438878]
[127]
Majumdar D, Kanafi M, Bhonde R, Gupta P, Datta I. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopaminergic neurons. J Cell Physiol 2016; 231(9): 2048-63.
[http://dx.doi.org/10.1002/jcp.25314] [PMID: 26773559]
[128]
Shao M, Liu C, Song Y, et al. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro. J Mol Cell Biol 2015; 7(5): 441-54.
[http://dx.doi.org/10.1093/jmcb/mjv052] [PMID: 26243590]
[129]
Aigner L, Bogdahn U. TGF-beta in neural stem cells and in tumors of the central nervous system. Cell Tissue Res 2008; 331(1): 225-41.
[http://dx.doi.org/10.1007/s00441-007-0466-7] [PMID: 17710437]
[130]
Barde YA. Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 1994; 390: 45-56.
[PMID: 7724649]
[131]
Zhang N, Lu X, Wu S, et al. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20(5): 670-86.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.371] [PMID: 29576501]
[132]
Pereira LV, Bento RF, Cruz DB, et al. Stem cells from human exfoliated deciduous teeth (SHED) differentiate in vivo and promote facial nerve regeneration. Cell Transplant 2019; 28(1): 55-64.
[http://dx.doi.org/10.1177/0963689718809090] [PMID: 30380914]
[133]
Su WT, Shih YA, Ko CS. Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells. J Tissue Eng Regen Med 2016; 10(6): 507-17.
[http://dx.doi.org/10.1002/term.1783] [PMID: 24130037]
[134]
Hsu SH, Huang GS, Ho TT, Feng F. Efficient gene silencing in mesenchymal stem cells by substrate-mediated RNA interference. Tissue Eng Part C Methods 2014; 20(11): 916-30.
[http://dx.doi.org/10.1089/ten.tec.2013.0780] [PMID: 24624901]
[135]
Liu J, Zhang ZY, Yu H, et al. Long noncoding RNA C21orf121/bone morphogenetic protein 2/microRNA-140-5p gene network promotes directed differentiation of stem cells from human exfoliated deciduous teeth to neuronal cells. J Cell Biochem 2018; Epub ahead of print.
[PMID: 30317665]
[136]
Goorha S, Reiter LT. Culturing and Neuronal Differentiation of Human Dental Pulp Stem Cells Curr Protoc Hum Genet 2017.
[http://dx.doi.org/10.1002/cphg.28]
[137]
Gonmanee T, Thonabulsombat C, Vongsavan K, Sritanaudomchai H. Differentiation of stem cells from human deciduous and permanent teeth into spiral ganglion neuron-like cells. Arch Oral Biol 2018; 88: 34-41.
[http://dx.doi.org/10.1016/j.archoralbio.2018.01.011] [PMID: 29407749]
[138]
Gonmanee T, Sritanaudomchai H, Vongsavan K, et al. Neuronal differentiation of dental pulp stem cells from human permanent and deciduous teeth following coculture with rat auditory brainstem slices. Anat Rec 2020; 303(11): 2931-46.
[http://dx.doi.org/10.1002/ar.24368]
[139]
Wang C, Li Y, Yang M, et al. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg 2018; 55(2): 257-65.
[http://dx.doi.org/10.1016/j.ejvs.2017.10.012] [PMID: 29208350]
[140]
Marchionni C, Bonsi L, Alviano F, et al. Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 2009; 22(3): 699-706.
[http://dx.doi.org/10.1177/039463200902200315] [PMID: 19822086]
[141]
Iohara K, Zheng L, Wake H, et al. A novel stem cell source for vasculogenesis in ischemia: Subfraction of side population cells from dental pulp. Stem Cells 2008; 26(9): 2408-18.
[http://dx.doi.org/10.1634/stemcells.2008-0393] [PMID: 18583536]
[142]
Bakopoulou A, Kritis A, Andreadis D, et al. Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells Dev 2015; 24(21): 2496-512.
[http://dx.doi.org/10.1089/scd.2015.0197] [PMID: 26203919]
[143]
Loo ZX, Kunasekaran W, Govindasamy V, Musa S, Abu Kasim NH. Comparative analysis of cardiovascular development related genes in stem cells isolated from deciduous pulp and adipose tissue. ScientificWorldJournal 2014; 2014: 186508.
[http://dx.doi.org/10.1155/2014/186508] [PMID: 25548778]
[144]
Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9(6): 669-76.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[145]
Xu JG, Gong T, Wang YY, et al. Inhibition of TGF-β signaling in SHED enhances endothelial differentiation. J Dent Res 2018; 97(2): 218-25.
[http://dx.doi.org/10.1177/0022034517733741] [PMID: 28972822]
[146]
Gong T, Heng BC, Xu J, et al. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth. J Biomed Mater Res A 2017; 105(4): 1083-93.
[http://dx.doi.org/10.1002/jbm.a.36003] [PMID: 28076902]
[147]
Bai K, Huang Y, Jia X, Fan Y, Wang W. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. J Biomech 2010; 43(6): 1176-81.
[http://dx.doi.org/10.1016/j.jbiomech.2009.11.030] [PMID: 20022602]
[148]
Wang P, Zhu S, Yuan C, Wang L, Xu J, Liu Z. Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling. Int J Mol Med 2018; 42(4): 1827-36.
[http://dx.doi.org/10.3892/ijmm.2018.3761] [PMID: 30015843]
[149]
Han Y, Gong T, Zhang C, Dissanayaka WL. HIF-1α stabilization enhances angio-/vasculogenic properties of SHED. J Dent Res 2020; 99(7): 804-12.
[http://dx.doi.org/10.1177/0022034520912190] [PMID: 32298193]
[150]
Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161(6): 1163-77.
[http://dx.doi.org/10.1083/jcb.200302047] [PMID: 12810700]
[151]
Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A 2015; 21(3-4): 550-63.
[http://dx.doi.org/10.1089/ten.tea.2014.0154] [PMID: 25203774]
[152]
Suchting S, Freitas C, le Noble F, et al. The notch ligand delta- like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 2007; 104(9): 3225-30.
[http://dx.doi.org/10.1073/pnas.0611177104] [PMID: 17296941]
[153]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[154]
Yamaguchi S, Shibata R, Yamamoto N, et al. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep 2015; 5: 16295.
[http://dx.doi.org/10.1038/srep16295] [PMID: 26542315]
[155]
Su WT, Chen XW. Stem cells from human exfoliated deciduous teeth differentiate into functional hepatocyte-like cells by herbal medicine. Biomed Mater Eng 2014; 24(6): 2243-7.
[http://dx.doi.org/10.3233/BME-141036] [PMID: 25226923]
[156]
Yamaza T, Alatas FS, Yuniartha R, et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 2015; 6: 171.
[http://dx.doi.org/10.1186/s13287-015-0154-6] [PMID: 26358689]
[157]
Yokoyama T, Yagi Mendoza H, Tanaka T, et al. Regulation of CCl4-induced liver cirrhosis by hepatically differentiated human dental pulp stem cells. Hum Cell 2019; 32(2): 125-40.
[http://dx.doi.org/10.1007/s13577-018-00234-0] [PMID: 30637566]
[158]
Fujiyoshi J, Yamaza H, Sonoda S, et al. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci Rep 2019; 9(1): 1535 [Reproduced and published under Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)].
[http://dx.doi.org/10.1038/s41598-018-38275-y] [PMID: 30733544]
[159]
Hirata M, Ishigami M, Matsushita Y, et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl Med 2016; 5(10): 1416-24.
[http://dx.doi.org/10.5966/sctm.2015-0353] [PMID: 27280796]
[160]
Matsushita Y, Ishigami M, Matsubara K, et al. Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. J Tissue Eng Regen Med 2017; 11(6): 1888-96.
[http://dx.doi.org/10.1002/term.2086] [PMID: 28586545]
[161]
Takahashi Y, Yuniartha R, Yamaza T, et al. Therapeutic potential of spheroids of stem cells from human exfoliated deciduous teeth for chronic liver fibrosis and hemophilia A. Pediatr Surg Int 2019; 35(12): 1379-88.
[http://dx.doi.org/10.1007/s00383-019-04564-4] [PMID: 31552493]
[162]
Chen K, Xiong H, Xu N, Shen Y, Huang Y, Liu C. Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo. Acta Odontol Scand 2014; 72(8): 664-72.
[http://dx.doi.org/10.3109/00016357.2014.888756] [PMID: 24580092]
[163]
Wang H, Shore EM, Pignolo RJ, Kaplan FS. Activin A amplifies dysregulated BMP signaling and induces chondro-osseous differentiation of primary connective tissue progenitor cells in patients with fibrodysplasia ossificans progressiva (FOP). Bone 2018; 109: 218-24.
[http://dx.doi.org/10.1016/j.bone.2017.11.014] [PMID: 29170109]
[164]
Nishino Y, Yamada Y, Ebisawa K, et al. Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy 2011; 13(5): 598-605.
[http://dx.doi.org/10.3109/14653249.2010.542462] [PMID: 21341975]
[165]
Lv Y, Ge L, Zhao Y. Effect and mechanism of SHED on ulcer wound healing in Sprague-Dawley rat models with diabetic ulcer. Am J Transl Res 2017; 9(2): 489-98.
[PMID: 28337277]
[166]
Ueda M, Nishino Y. Cell-based cytokine therapy for skin rejuvenation. J Craniofac Surg 2010; 21(6): 1861-6.
[http://dx.doi.org/10.1097/SCS.0b013e3181f43f0a] [PMID: 21119440]
[167]
Huang TY, Wang GS, Tseng CC, Su WT. Epidermal cells differentiated from stem cells from human exfoliated deciduous teeth and seeded onto polyvinyl alcohol/silk fibroin nanofiber dressings accelerate wound repair. Mater Sci Eng C 2019; 104: 109986.
[http://dx.doi.org/10.1016/j.msec.2019.109986] [PMID: 31499995]
[168]
Hattori Y, Kim H, Tsuboi N, et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One 2015; 10(10): e0140121.
[http://dx.doi.org/10.1371/journal.pone.0140121] [PMID: 26509261]
[169]
Rao N, Wang X, Xie J, et al. Stem cells from human exfoliated deciduous teeth ameliorate diabetic nephropathy in vivo and in vitro by inhibiting advanced glycation end product-activated epithelial-mesenchymal transition. Stem Cells Int 2019; 2019: 2751475.
[http://dx.doi.org/10.1155/2019/2751475] [PMID: 31871464]
[170]
Esper GV, Pignatari GC, Rodrigues MN, et al. Aquapuncture using stem cell therapy to treat Mdx mice. Evid Based Complement Alternat Med 2015; 2015: 132706.
[http://dx.doi.org/10.1155/2015/132706] [PMID: 26074983]
[171]
Griesi-Oliveira K, Sunaga DY, Alvizi L, Vadasz E, Passos-Bueno MR. Stem cells as a good tool to investigate dysregulated biological systems in autism spectrum disorders. Autism Res 2013; 6(5): 354-61.
[http://dx.doi.org/10.1002/aur.1296] [PMID: 23801657]
[172]
Wakayama H, Hashimoto N, Matsushita Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 2015; 17(8): 1119-29.
[http://dx.doi.org/10.1016/j.jcyt.2015.04.009] [PMID: 26031744]
[173]
Tseng LS, Chen SH, Lin MT, Lin YC. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice. Cell Transplant 2015; 24(5): 921-37.
[http://dx.doi.org/10.3727/096368914X678580] [PMID: 24612725]
[174]
Kanafi MM, Rajeshwari YB, Gupta S, et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15(10): 1228-36.
[http://dx.doi.org/10.1016/j.jcyt.2013.05.008] [PMID: 23845187]
[175]
Li XX, Yuan XJ, Zhai Y, et al. Treatment with stem cells from human exfoliated deciduous teeth and their derived conditioned medium improves retinal visual function and delays the degeneration of photoreceptors. Stem Cells Dev 2019; 28(22): 1514-26.
[http://dx.doi.org/10.1089/scd.2019.0158] [PMID: 31544584]
[176]
Luo P, Jiang C, Ji P, Wang M, Xu J. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Res Ther 2019; 10(1): 216.
[http://dx.doi.org/10.1186/s13287-019-1341-7] [PMID: 31358056]
[177]
Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol 2014; 15(11): 1009-16.
[http://dx.doi.org/10.1038/ni.3002] [PMID: 25329189]
[178]
Li Z, Jiang CM, An S, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis 2014; 20(1): 25-34.
[http://dx.doi.org/10.1111/odi.12086] [PMID: 23463961]
[179]
Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010; 1(1): 5.
[http://dx.doi.org/10.1186/scrt5] [PMID: 20504286]
[180]
Alipour R, Adib M, Hashemi-Beni B, Sadeghi F. The effect of stem cell from human exfoliated deciduous teeth on T lymphocyte proliferation. Adv Biomed Res 2014; 3: 202.
[http://dx.doi.org/10.4103/2277-9175.142312] [PMID: 25337532]
[181]
Alipour R, Masoumi Karimi M, Hashemi-Beni B, Adib M, Sereshki N, Sadeghi F. Indoleamine 2,3-Dioxygenase is dispensable for the immunomodulatory function of stem cells from human exfoliated deciduous teeth. Cell J 2017; 18(4): 597-608.
[PMID: 28042544]
[182]
Yildirim S, Zibandeh N, Genc D, Ozcan EM, Goker K, Akkoc T. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles. Stem Cells Int 2016; 2016: 4682875.
[http://dx.doi.org/10.1155/2016/4682875] [PMID: 26770205]
[183]
Silva FdeS, Ramos RN, de Almeida DC, et al. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) induce immune modulatory profile in monocyte-derived dendritic cells. PLoS One 2014; 9(5): e98050.
[http://dx.doi.org/10.1371/journal.pone.0098050] [PMID: 24846008]
[184]
Ma L, Makino Y, Yamaza H, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 2012; 7(12): e51777.
[http://dx.doi.org/10.1371/journal.pone.0051777] [PMID: 23251621]
[185]
Dai YY, Ni SY, Ma K, Ma YS, Wang ZS, Zhao XL. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res Ther 2019; 10(1): 39.
[http://dx.doi.org/10.1186/s13287-019-1134-z] [PMID: 30670101]
[186]
Shimojima C, Takeuchi H, Jin S, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol 2016; 196(10): 4164-71.
[http://dx.doi.org/10.4049/jimmunol.1501457] [PMID: 27053763]
[187]
Liu Y, Wang L, Liu S, et al. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J Dent Res 2014; 93(11): 1124-32.
[http://dx.doi.org/10.1177/0022034514552675] [PMID: 25252877]
[188]
Rossato C, Brandão WN, Castro SBR, et al. Stem cells from human-exfoliated deciduous teeth reduce tissue-infiltrating inflammatory cells improving clinical signs in experimental autoimmune encephalomyelitis. Biologicals 2017; 49: 62-8.
[http://dx.doi.org/10.1016/j.biologicals.2017.06.007] [PMID: 28666719]
[189]
Jonavičė U, Tunaitis V, Kriaučiūnaitė K, Jarmalavičiūtė A, Pivoriūnas A. Extracellular vesicles can act as a potent immunomodulators of human microglial cells. J Tissue Eng Regen Med 2019; 13(2): 309-18.
[http://dx.doi.org/10.1002/term.2810] [PMID: 30650469]
[190]
Gao X, Shen Z, Guan M, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Eng Part A 2018; 24(17-18): 1341-53.
[http://dx.doi.org/10.1089/ten.tea.2018.0016] [PMID: 29652608]
[191]
Grafe I, Alexander S, Peterson JR, et al. TGF-β family signaling in mesenchymal differentiation. Cold Spring Harb Perspect Biol 2018; 10(5): a022202.
[http://dx.doi.org/10.1101/cshperspect.a022202] [PMID: 28507020]
[192]
Li W, Li K, Wei W, Ding S. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 2013; 13(3): 270-83.
[http://dx.doi.org/10.1016/j.stem.2013.08.002] [PMID: 24012368]
[193]
Huang B, Li G, Jiang XH. Fate determination in mesenchymal stem cells: A perspective from histone-modifying enzymes. Stem Cell Res Ther 2015; 6: 35.
[http://dx.doi.org/10.1186/s13287-015-0018-0] [PMID: 25890062]
[194]
Wu H, Gordon JA, Whitfield TW, et al. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochim Biophys Acta Gene Regul Mech 2017; 1860(4): 438-49.
[http://dx.doi.org/10.1016/j.bbagrm.2017.01.003] [PMID: 28077316]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy