Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Review Article

Peaceful Existence of Tumor Cells with Their Non-malignant Neighbors: The Trade of Tumor Cells with Tumor Microenvironment

Author(s): Amirhosein Maali, Mohammad Sarfi, Mohammad Mirzakhani, Golnaz Goodarzi, Hosein Maghsoudi, Mahmood Maniati, Sadra Samavarchi Tehrani* and Durdi Qujeq*

Volume 14, Issue 4, 2020

Page: [228 - 239] Pages: 12

DOI: 10.2174/2212796814999200925162943

Price: $65

Abstract

Tumor cell growth and survival are the outcomes of communication between tumor cells and tumor microenvironment (TME). In other words, tumor cell growth and survival are greatly affected by the interaction between adjacent cells and tumor cells. In this paper, we review the recent advances in studies of TME, including metabolic interplays between tumor cells and their non-malignant neighbors (peaceful interaction and autophagy), trades of signaling pathways (approach to most important ones; cytokine pathway, NF-kB pathway, intra-tumoral hypoxia, oxidative stress, and nitric oxide-depended pathways), miRNAs (as the regulatory molecules which are present in TME), and Tumor-associated Exosomes (TAEs). Characterization of TME bio-molecules, nutrient changes, and cellular and molecular interactions help to clarify the progression of cancer and find novel targets for the treatment of cancer.

Keywords: Tumor microenvironment, miRNA, signaling pathways, cancer biochemistry, cross-talk. tumor cells, tumor-associated exosomes.

Graphical Abstract

[1]
Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy Exp Mol Med 2017; 49(1): e285
[http://dx.doi.org/10.1038/emm.2016.153] [PMID: 28104913]
[2]
Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship Cancer Lett 2018; 413: 102-9.
[http://dx.doi.org/10.1016/j.canlet.2017.10.037] [PMID: 29111350]
[3]
Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host Cancer Metastasis Rev 2008; 27(4): 691-705.
[http://dx.doi.org/10.1007/s10555-008-9146-7] [PMID: 18542844]
[4]
Aghcheli K, Parsian H, Qujeq D, et al. Serum hyaluronic acid and laminin as potential tumor markers for upper gastrointestinal cancers Eur J Intern 23 Med 2012; 23(1): 58-64.
[http://dx.doi.org/10.1016/j.ejim.2011.07.018] [PMID: 22153533]
[5]
Xing C, Zhang R, Cui J, et al. Pathway crosstalk analysis of non-small cell lung cancer based on microarray gene expression profiling Tumori 2015; 101(1): 111-6.
[http://dx.doi.org/10.5301/tj.5000225] [PMID: 25702679]
[6]
Yuneva MO, Fan TW, Allen TD, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type Cell Metab 2012; 15(2): 157-70.
[http://dx.doi.org/10.1016/j.cmet.2011.12.015] [PMID: 22326218]
[7]
Andersen AP, Moreira JM, Pedersen SF. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment Philos Trans R Soc Lond B Biol Sci 2014; 369(1638)20130098
[http://dx.doi.org/10.1098/rstb.2013.0098] [PMID: 24493746]
[8]
Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 2016; 41(3): 211-8.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[9]
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle Nat Rev Cancer 2013; 13(8): 572-83.
[http://dx.doi.org/10.1038/nrc3557] [PMID: 23822983]
[10]
Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis Nat Rev Cancer 2008; 8(1): 56-61.
[http://dx.doi.org/10.1038/nrc2255] [PMID: 18059462]
[11]
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4(11): 891-9.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[12]
Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology Semin Radiat Oncol 2004; 14(3): 198-206.
[http://dx.doi.org/10.1016/j.semradonc.2004.04.008] [PMID: 15254862]
[13]
Vaupel P, Multhoff G. Hypoxia-/HIF-1alpha-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression Adv Exp Med Biol 2018; 1072: 171-5.
[http://dx.doi.org/10.1007/978-3-319-91287-5_27] [PMID: 30178341]
[14]
Gholipour H, Abroun S, Noruzinia M, et al. Methylation status of smg1 gene promoter in multiple myeloma. Iranian J Blood Cancer 2018; 10(4): 114-6.
[15]
Kamphorst JJ, Nofal M, Commisso C, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein Cancer Res 2015; 75(3): 544-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2211] [PMID: 25644265]
[16]
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body J Gen Physiol 1927; 8(6): 519-30.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[17]
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism Nat Rev Cancer 2011; 11(2): 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[18]
Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF. Metabolic Imaging of Glutamine in Cancer J Nucl Med 2017; 58(4): 533-7.
[http://dx.doi.org/10.2967/jnumed.116.182345] [PMID: 28232608]
[19]
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation Science 2009; 324(5930): 1029-33.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[20]
Nakazawa MS, Keith B, Simon MC. Oxygen availability and metabolic adaptations Nat Rev Cancer 2016; 16(10): 663-73.
[http://dx.doi.org/10.1038/nrc.2016.84] [PMID: 27658636]
[21]
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth Semin Cancer Biol 2014; 25: 47-60.
[http://dx.doi.org/10.1016/j.semcancer.2014.01.005] [PMID: 24486645]
[22]
Tehrani SS, Karimian A, Parsian H, Majidinia M, Yousefi B. Multiple functions of long non‐coding RNAs in oxidative stress, DNA damage response and cancer progression J Cell Biochem 2018; 119(1): 223-36.
[http://dx.doi.org/10.1002/jcb.26217] [PMID: 28608608]
[23]
Arcucci A, Ruocco MR, Granato G, Sacco AM, Montagnani S. Cancer: An oxidative crosstalk between solid tumor cells and cancer associated fibroblasts BioMed Res Int 2016.20164502846
[http://dx.doi.org/10.1155/2016/4502846] [PMID: 27595103]
[24]
Ganz T. Macrophages and systemic iron homeostasis J Innate Immun 2012; 4(5-6): 446-53.
[http://dx.doi.org/10.1159/000336423] [PMID: 22441209]
[25]
Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T, et al. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer J Cell Biochem 2018; 120(2): 1080-5.
[http://dx.doi.org/10.1002/jcb.27617] [PMID: 30378148]
[26]
Dong D, Zhang G, Yang J, et al. The role of iron metabolism in cancer therapy focusing on tumorassociated macrophages J Cell Physiol 2019; 234(6): 8082-39.
[http://dx.doi.org/10.1002/jcp.27569] [PMID: 30362549]
[27]
Zhao H, Yang L, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism Elife 2016.5e10250
[http://dx.doi.org/10.7554/eLife.10250] [PMID: 26920219]
[28]
Janji B, Berchem G, Chouaib S. Targeting autophagy in the tumor microenvironment: new challenges and opportunities for regulating tumor immunity Front Immunol 2018; 9: 887.
[http://dx.doi.org/10.3389/fimmu.2018.00887] [PMID: 29922284]
[29]
Carew JS, Medina EC, Esquivel JA II, et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation J Cell Mol Med 2010; 14(10): 2448-59.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00832.x] [PMID: 19583815]
[30]
Allam A, Thomsen AR, Gothwal M, Saha D, Maurer J, Brunner TB. Pancreatic stellate cells in pancreatic cancer: In focus Pancreatology 2017; 17(4): 514-22.
[http://dx.doi.org/10.1016/j.pan.2017.05.390] [PMID: 28601475]
[31]
Gaude E, Frezza C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival Nat Commun 2016; 7: 13041
[http://dx.doi.org/10.1038/ncomms13041] [PMID: 27721378]
[32]
Khajehdehi MM, Qujeq D, Peirovi H, et al. Function of rat diabetic islets improved by coculturing with pancreatic mesenchymal stromal cells. J Stem Cell Res Transplant 2015; 2(1): 1016.
[33]
Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia J Biol Chem 2008; 283(16): 10892-903.
[http://dx.doi.org/10.1074/jbc.M800102200] [PMID: 18281291]
[34]
Viry E, Paggetti J, Baginska J, et al. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity Biochem Pharmacol 2014; 92(1): 31-42.
[http://dx.doi.org/10.1016/j.bcp.2014.07.006] [PMID: 25044308]
[35]
Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease Annu Rev Pathol 2008; 3: 427-55.
[http://dx.doi.org/10.1146/annurev.pathmechdis.2.010506.091842] [PMID: 18039129]
[36]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease Cell 2008; 132(1): 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[37]
Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism Annu Rev Nutr 2007; 27: 19-40.
[http://dx.doi.org/10.1146/annurev.nutr.27.061406.093749] [PMID: 17311494]
[38]
Kim G, Jun JB, Elkon KB. Necessary role of phosphatidylinositol 3-kinase in transforming growth factor beta-mediated activation of Akt in normal and rheumatoid arthritis synovial fibroblasts Arthritis Rheum 2002; 46(6): 1504-1.
[http://dx.doi.org/10.1002/art.10314] [PMID: 12115180]
[39]
Ruzicka K, Grskovic B, Pavlovic V, Qujeq D, Karimi A, Mueller MM. Differentiation of human umbilical cord blood CD133+ stem cells towards myelomonocytic lineage Clin Chim Acta 2004; 343(1-2): 85-92.
[http://dx.doi.org/10.1016/j.cccn.2003.11.019] [PMID: 15115679]
[40]
Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y. 3-methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions Plant Cell Physiol 2004; 45(3): 265-74.
[http://dx.doi.org/10.1093/pcp/pch031] [PMID: 15047874]
[41]
Glaumann H, Ahlberg J. Comparison of different autophagic vacuoles with regard to ultrastructure, enzymatic composition, and degradation capacity--formation of crinosomes Exp Mol Pathol 1987; 47(3): 346-62.
[http://dx.doi.org/10.1016/0014-4800(87)90018-9] [PMID: 3678466]
[42]
Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer Pathobiology 2015; 82(3-4): 142-52.
[http://dx.doi.org/10.1159/000430499] [PMID: 26330355]
[43]
Yang X, Lin Y, Shi Y, et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling Cancer Res 2016; 76(14): 4124-35.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2973] [PMID: 27216177]
[44]
Hayakawa F, Naoe T. SFK-STAT pathway: an alternative and important way to malignancies Ann N Y Acad Sci 2006; 1086: 213-.
[http://dx.doi.org/10.1196/annals.1377.002] [PMID: 17185518]
[45]
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies Cell Mol Life Sci 2014; 71(11): 2083-102.
[http://dx.doi.org/10.1007/s00018-013-1545-4] [PMID: 24419302]
[46]
Dehghanifard A, Kaviani S, Abroun S, et al. Various signaling pathways in multiple myeloma cells and effects of treatment on these pathways Clin Lymphoma Myeloma Leuk 2018; 18(5): 311-20.
[http://dx.doi.org/10.1016/j.clml.2018.03.007] [PMID: 29606369]
[47]
Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion Br J Cancer 2010; 102(2): 351-60.
[http://dx.doi.org/10.1038/sj.bjc.6605486] [PMID: 20010940]
[48]
Ohnishi Y, Inoue H, Furukawa M, Kakudo K, Nozaki M. Heparin-binding epidermal growth factor-like growth factor is a potent regulator of invasion activity in oral squamous cell carcinoma Oncol Rep 2012; 27(4): 954-8.
[http://dx.doi.org/10.3892/or.2011.1616] [PMID: 22209887]
[49]
Gill JG, Piskounova E, Morrison SJ. cancer, oxidative stress, and metastasis Cold Spring Harb Symp Quant Biol 2016; 81: 163-75.
[http://dx.doi.org/10.1101/sqb.2016.81.030791] [PMID: 28082378]
[50]
Tran AN, Boyd NH, Walker K, Hjelmeland AB. NOS expression and no function in glioma and implications for patient therapies Antioxid Redox Signal 2017; 26(17): 986-9.
[http://dx.doi.org/10.1089/ars.2016.6820] [PMID: 27411305]
[51]
Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L. Nitric oxide in cancer metastasis Cancer Lett 2014; 353(1): 1-7.
[http://dx.doi.org/10.1016/j.canlet.2014.07.014] [PMID: 25079686]
[52]
Heydari N, Nikbakhsh N, Sadeghi F, et al. Overexpression of serum MicroRNA-140-3p in premenopausal women with newly diagnosed breast cancer Gene 2018; 655: 25-9.
[http://dx.doi.org/10.1016/j.gene.2018.02.032] [PMID: 29474861]
[53]
Abbastabar M, Kheyrollah M, Azizian K, et al. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein DNA Repair (Amst) 2018; 69: 63-72.
[http://dx.doi.org/10.1016/j.dnarep.2018.07.008] [PMID: 30075372]
[54]
Maniati MS, Maniati M, Yousefi T, Ahmadi-Ahangar A, Tehrani SS. New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases J Cell Biochem 2019; 120(6): 8908-18.
[http://dx.doi.org/10.1002/jcb.28361] [PMID: 30663117]
[55]
Mirhosseini SA, Sarfi M, Samavarchi Tehrani S, Mirazakhani M, Maniati M, Amani J. Modulation of cancer cell signaling by long noncoding RNAs J Cell Biochem 2019; 120(8): 12224-46.
[http://dx.doi.org/10.1002/jcb.28847] [PMID: 31069841]
[56]
Goodarzi G, Maniati M, Qujeq D. The role of microRNAs in the healing of diabetic ulcers Int Wound J 2019; 16(3): 621-33.
[http://dx.doi.org/10.1111/iwj.13070] [PMID: 30821119]
[57]
Glaser B, Landau H, Smilovici A, Nesher R. Persistent hyperinsulinaemic hypoglycaemia of infancy: long-term treatment with the somatostatin analogue Sandostatin Clin Endocrinol (Oxf) 1989; 31(1): 71-80.
[http://dx.doi.org/10.1111/j.1365-2265.1989.tb00455.x] [PMID: 2688998]
[58]
Ma H, Liang C, Wang G, et al. MicroRNA-mediated cancer metastasis regulation via heterotypic signals in the microenvironment Curr Pharm Biotechnol 2014; 15(5): 455-8.
[http://dx.doi.org/10.2174/1389201015666140516112042] [PMID: 24846069]
[59]
Maali A, Atashi A, Ghaffari S, Kouchaki R, Abdolmaleki F, Azad M. A review on leukemia and ipsc technology: Application in Novel Treatment and Future Curr Stem Cell Res Ther 2018; 13(8): 665-75.
[http://dx.doi.org/10.2174/1574888X13666180731155038] [PMID: 30068283]
[60]
Abolghasemi M, Tehrani SS, Yousefi T, et al. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions J Cell Physiol 2020; 235(6): 5008-29.
[http://dx.doi.org/10.1002/jcp.29396] [PMID: 31724738]
[61]
De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion J Pathol 2003; 200(4): 429-7.
[http://dx.doi.org/10.1002/path.1398] [PMID: 12845611]
[62]
Aprelikova O, Palla J, Hibler B, et al. Silencing of miR-148a in cancer-associated fibroblasts results in WNT10B-mediated stimulation of tumor cell motility Oncogene 2013; 32(27): 3246-53.
[http://dx.doi.org/10.1038/onc.2012.351] [PMID: 22890324]
[63]
Doldi V, Callari M, Giannoni E, et al. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation Oncotarget 2015; 6(31): 31441-60.
[http://dx.doi.org/10.18632/oncotarget.5056] [PMID: 26375444]
[64]
Min A, Zhu C, Peng S, et al. Downregulation of Microrna-148a in cancer-associated fibroblasts from oral cancer promotes cancer cell migration and invasion by targeting Wnt10b J Biochem Mol Toxicol 2016; 30(4): 186-91.
[http://dx.doi.org/10.1002/jbt.21777] [PMID: 26709120]
[65]
Li P, Shan JX, Chen XH, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment Cell Res 2015; 25(5): 588-603.
[http://dx.doi.org/10.1038/cr.2015.51] [PMID: 25916550]
[66]
Yang TS, Yang XH, Chen X, et al. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN FEBS Lett 2014; 588(13): 2162-9.
[http://dx.doi.org/10.1016/j.febslet.2014.04.050] [PMID: 24842611]
[67]
Zhao L, Sun Y, Hou Y, et al. MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer Int J Biochem Cell Biol 2012; 44(11): 2051-9.
[http://dx.doi.org/10.1016/j.biocel.2012.08.005] [PMID: 22964023]
[68]
Curtale G. MiRNAs at the Crossroads between Innate Immunity and Cancer: Focus on Macrophages Cells 2018; 7(2)E12
[http://dx.doi.org/10.3390/cells7020012] [PMID: 29419779]
[69]
Korabecna M, Koutova L, Tesarova P. The potential roles of vesicle-enclosed miRNAs in communication between macrophages and cancer cells in tumor microenvironment Neoplasma 2017; 64(3): 406-11.
[http://dx.doi.org/10.4149/neo_2017_311] [PMID: 28253720]
[70]
Squadrito ML, Etzrodt M, De Palma M, Pittet MJ. MicroRNA-mediated control of macrophages and its implications for cancer Trends Immunol 2013; 34(7): 350-9.
[http://dx.doi.org/10.1016/j.it.2013.02.003] [PMID: 23498847]
[71]
Ni F, Guo C, Sun R, et al. MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as an essential regulator of NK cell function Sci Rep 2015; 5: 9993
[http://dx.doi.org/10.1038/srep09993] [PMID: 25909817]
[72]
Baginska J, Viry E, Paggetti J, et al. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity Front Immunol 2013; 4: 490.
[http://dx.doi.org/10.3389/fimmu.2013.00490] [PMID: 24400010]
[73]
Sun X, Zhang J, Hou Z, Han Q, Zhang C, Tian Z. miR-146a is directly regulated by STAT3 in human hepatocellular carcinoma cells and involved in antitumor immune suppression Cell Cycle 2015; 14(2): 243-52.
[http://dx.doi.org/10.4161/15384101.2014.977112] [PMID: 25607648]
[74]
Donatelli SS, Zhou JM, Gilvary DL, et al. TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells Proc Natl Acad Sci USA 2014; 111(11): 4203-8.
[http://dx.doi.org/10.1073/pnas.1319269111] [PMID: 24586048]
[75]
Espinoza JL, Takami A, Yoshioka K, et al. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2Dmediated functions Haematologica 2012; 97(9): 1295-303.
[http://dx.doi.org/10.3324/haematol.2011.058529] [PMID: 22491735]
[76]
Huffaker TB, Lee SH, Tang WW, et al. Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade J Biol Chem 2017; 292(45): 18530-41.
[http://dx.doi.org/10.1074/jbc.M117.808121] [PMID: 28912267]
[77]
Dou R, Nishihara R, Cao Y, et al. MicroRNA let-7, T Cells, and patient survival in colorectal cancer Cancer Immunol Res 2016; 4(11): 927-35.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0112] [PMID: 27737877]
[78]
Mima K, Nishihara R, Nowak JA, et al. MicroRNA MIR21 and T Cells in colorectal cancer Cancer Immunol Res 2016; 4(1): 33-40.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0084] [PMID: 26419959]
[79]
Gaziel-Sovran A, Segura MF, Di Micco R, et al. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis Cancer Cel 2011; 20(1): 104-8.
[http://dx.doi.org/10.1016/j.ccr.2011.05.027] [PMID: 21741600]
[80]
Kuninty PR, Schnittert J, Storm G, Prakash J. MicroRNA targeting to modulate tumor microenvironment Front Oncol 2016; 6: 3.
[http://dx.doi.org/10.3389/fonc.2016.00003] [PMID: 26835418]
[81]
Muramatsu F, Kidoya H, Naito H, Sakimoto S, Takakura N. microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin Oncogene 2013; 32(4): 414-21.
[http://dx.doi.org/10.1038/onc.2012.68] [PMID: 22391569]
[82]
Korde A, Jin L, Zhang JG, et al. Lung endothelial MicroRNA-1 regulates tumor growth and angiogenesis Am J Respir Crit Care Med 2017; 196(11): 1443-55.
[http://dx.doi.org/10.1164/rccm.201610-2157OC] [PMID: 28853613]
[83]
Ghosh A, Dasgupta D, Ghosh A, et al. MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2 Cell Death Dis 2017; 8(3)e2706
[http://dx.doi.org/10.1038/cddis.2017.123] [PMID: 28358369]
[84]
Mirzakhani M, Shahbazi M, Oliaei F, Mohammadnia-Afrouzi M. Immunological biomarkers of tolerance in human kidney transplantation: An updated literature review J Cell Physiol 2019; 234(5): 5762-74.
[http://dx.doi.org/10.1002/jcp.27480] [PMID: 30362556]
[85]
Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 2005; 11(3): 1010-20.
[PMID: 15709166]
[86]
Wang Z, Chen JQ, Liu JL, Tian L. Exosomes in tumor microenvironment: novel transporters and biomarkers J Transl Med 2016; 14(1): 297.
[http://dx.doi.org/10.1186/s12967-016-1056-9] [PMID: 27756426]
[87]
Wan Z, Gao X, Dong Y, et al. Exosome-mediated cell-cell communication in tumor progression. Am J Cancer Res 2018; 8(9): 1661-73.
[PMID: 30323961]
[88]
Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care Nat Rev Clin Oncol 2018; 15(10): 617-38.
[http://dx.doi.org/10.1038/s41571-018-0036-9] [PMID: 29795272]
[89]
Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis J Mol Med (Berl) 2013; 91(4): 431-7.
[http://dx.doi.org/10.1007/s00109-013-1020-6] [PMID: 23519402]
[90]
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis Cancer Cell 2016; 30(6): 836-48.
[http://dx.doi.org/10.1016/j.ccell.2016.10.009] [PMID: 27960084]
[91]
Meehan K, Vella LJ. The contribution of tumour-derived exosomes to the hallmarks of cancer Crit Rev Clin Lab Sci 2016; 53(2): 121-31.
[http://dx.doi.org/10.3109/10408363.2015.1092496] [PMID: 26479834]
[92]
Whiteside TL. Exosomes and tumor-mediated immune suppression J Clin Invest 2016; 126(4): 1216-23.
[http://dx.doi.org/10.1172/JCI81136] [PMID: 26927673]
[93]
Shen Z, Zhou R, Liu C, et al. MicroRNA-105 is involved in TNF-α-related tumor microenvironment enhanced colorectal cancer progression. Cell Death Dis 2017; 8(12): 3213.
[http://dx.doi.org/10.1038/s41419-017-0048-x] [PMID: 29238068]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy