Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

DFT Study and Synthesis of Novel Bioactive Bispyrazole using Mg/Al-LDH as a Solid Base Catalyst

Author(s): Soufiane Akhramez, Youness Achour, Mustapha Dib, Lahoucine Bahsis*, Hajiba Ouchetto, Abderrafia Hafid, Mostafa Khouili* and Mohammadine El Haddad

Volume 14, Issue 4, 2020

Page: [240 - 249] Pages: 10

DOI: 10.2174/2212796814999200918175018

Price: $65

Abstract

Objective: To synthesize novel bispyrazole heterocyclic molecules may have important biological activities and thus can serve as good candidates for pharmaceutical applications.

Methods: The bispyrazole derivatives 3a-m were prepared by the condensation reaction of substituted aromatic aldehydes with 1,3-diketo-N-phenylpyrazole by using Mg/Al-LDH as a heterogeneous catalyst under THF solvent at the refluxing temperature.

Results: This protocol describes the synthesis of bioactive compounds under mild reaction conditions, with good yields, and easiness of the catalyst separation from the reaction mixture. Furthermore, a mechanistic study has been performed by using DFT calculations to explain the observed selectivity of the condensation reaction between aryl aldehyde and 1,3- diketo-N-phenylpyrazole via Knoevenagel reaction. The local electrophilicity/ nucleophilicity explains correctly the experimental finding.

Conclusion: In summary, the pharmacologically interesting bis-pyrazole derivatives were synthesized through Mg/Al-LDH as a solid base catalyst, in THF as a solvent. The synthesized bioactive compounds containing the pyrazole ring may have important biological activities and thus can serve as good candidates for pharmaceutical applications. Therefore, the catalyst Mg/Al-LDH showed high catalytic activity. Besides, a series of bispyrazole molecules were synthesized with a good yield and easy separation of the catalyst by simple filtration. Moreover, DFT calculations and reactivity indexes were used to explain the selectivity of the condensation reaction between aryl benzaldehyde and 1,3-diketo-N-phenylpyrazole via Knoevenagel reaction, and the results were in good agreement with the experimental finding.

Keywords: Kneovenagel condensation, bioactive molecules, Bis-pyrazole, Mg/Al (LDH), heterogeneous catalyst, DFT calculations, global and local reactivity indexes.

Graphical Abstract

[1]
Kumar V, Kaur K, Gupta GK, Sharma AK. Pyrazole containing natural products: synthetic preview and biological significance Eur J Med Chem 2013; 69: 735-53.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.053] [PMID: 24099993]
[2]
Olga OA, Mahadevan A, Wiley JL, et al. Synthesis of novel 5-substituted pyrazole derivatives as cannabinoid antagonists. Tetrahedron Lett 2005; 46(21): 2159-61.
[3]
Gogoi S, Zhao C-G. Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles Tetrahedron Lett 2009; 50(19): 2252-5.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.210] [PMID: 19915654]
[4]
Faisal M, Saeed A, Hussain S, et al. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives J Chem Sci 2019; 131: 70.
[http://dx.doi.org/10.1007/s12039-019-1646-1]
[5]
Mandha SR, Siliveri S, Alla M, Bommena VR, Bommineni MR, Balasubramanian S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles Bioorg Med Chem Lett 2012; 22(16): 5272-8.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.055] [PMID: 22818081]
[6]
Kidwai M, Saxena S, Khan MK, Thukral SS. Aqua mediated synthesis of substituted 2-amino-4Hchromenes and in vitro study as antibacterial agents Bioorg Med Chem Lett 2005; 15(19): 4295-8.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
[7]
Kumar A, Lohan P, Aneja DK, Gupta GK, Kaushik D, Prakash O. Design, synthesis, computational and biological evaluation of some new hydrazino derivatives of DHA and pyranopyrazoles Eur J Med Chem 2012; 50: 81-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.042] [PMID: 22357113]
[8]
Daştan A, Kulkarnia A, Torok B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches Green Chem 2012; 14: 17-37.
[http://dx.doi.org/10.1039/C1GC15837F]
[9]
Arora S, Joshi G, Kalra S, et al. Knoevenagel/Tandem Knoevenagel and Michael Adducts of Cyclohexane-1,3-dione and Aryl Aldehydes: Synthesis, DFT Studies, Xanthine Oxidase Inhibitory Potential, and Molecular Modeling ACS Omega 2019; 4: 4604-14.
[http://dx.doi.org/10.1021/acsomega.8b03060]
[10]
Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery Eur J Med Chem 2018; 158: 917-36.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[11]
Ramesh P, Shalini B, Fadnavis NW. Knoevenagel condensation of diethylmalonate with aldehydes catalyzed by immobilized bovine serum albumin (BSA).RSC Advances 2014; 4: 7368-73.
[http://dx.doi.org/10.1039/c3ra45273e]
[12]
Manasa K L, Visweswara Sastry KN, et al. Tandem synthesis of 3,4-disubstituted pyrroles from aldehydes, 1,3-diketones and TosMIC under metal-free conditions Chemistry select communications 2018; 3: 2730-3.
[13]
Dalessandro EV, Collin HP, Guimarães LGL, Valle MS, Pliego JR Jr. Mechanism of the piperidinecatalyzed knoevenagel condensation reaction in methanol: the role of iminium and enolate ions J Phys Chem B 2017; 121(20): 5300-7.
[http://dx.doi.org/10.1021/acs.jpcb.7b03191] [PMID: 28471675]
[14]
Schijndel JV, Canalle LA, Molendijk D, Meuldijk J. The green Knoevenagel condensation: Solvent-free condensation of benzaldehydes Green Chem Lett Rev 2017; 10: 404-11.
[http://dx.doi.org/10.1080/17518253.2017.1391881]
[15]
Xu Q, Niu Y, Wang G, et al. Polyoxoniobates as a superior Lewis base efficiently catalyzed Knoevenagel condensation Molecular Catal 2018; 453: 93-.
[http://dx.doi.org/10.1016/j.mcat.2018.05.002]
[16]
Honarmand M. Green synthesis of a nano salt and its application as multifunctional organocatalyst for Knoevenagel condensation Res Chem Intermed 2017; 43: 6421-32.
[http://dx.doi.org/10.1007/s11164-017-2998-0]
[17]
João Batista M, de Resende F, Pires GP, et al. Knoevenagel condensation of aldehydes and ketones with malononitrile catalyzed by amine compoundstethered Fe3O4@SiO2 nanoparticles Catal Lett 2017; 147: 167-80.
[http://dx.doi.org/10.1007/s10562-016-1916-1]
[18]
Ying A, Wang L, Qiu F, et al. Magnetic nanoparticle supported amine: An efficient and environmental benign catalyst for versatile Knoevenagel condensation under ultrasound irradiation JYangComptes R C 2015; 18: 223-32.
[http://dx.doi.org/10.1016/j.crci.2014.05.012]
[19]
Delgado-Gómez FJ, Calvino-Casilda V. Alkaline-doped multiwall carbon nanotubes as efficient catalysts for the Knoevenagel condensation Molecular Catalysis 2017; 443: 101-9.
[http://dx.doi.org/10.1016/j.mcat.2017.09.016]
[20]
Jia H, Zhao Y, Niu P, et al. Amine-functionalized MgAl LDH nanosheets as efficient solid base catalysts for Knoevenagel condensation Molecular Catalysis 2018; 449: 31-7.
[http://dx.doi.org/10.1016/j.mcat.2018.02.004]
[21]
Abass M, Ismail MM. Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4-pyrido[1,2-]pyrimidine-3 carbaldehyde in nucleophilic condensation reactions. Chem Pap 2009; 64(1): 72-83.
[22]
Shahbazi F, Amani K. Synthesis, characterization and heterogeneous catalytic activity of diaminemodified silica-coated magnetite-polyoxometalate nanoparticles as a novel magnetically-recoverable nanocatalyst Cat Com 2014; 55: 57-64.
[http://dx.doi.org/10.1016/j.catcom.2014.06.006]
[23]
Li Q, Ji S, Jiang S, et al. Synthesis of magnetically recyclable ZIF-8@SiO2@Fe3O4 catalysts and their catalytic performance for Knoevenagel reaction J Solid State Chem 2015; 223: 65-72.
[http://dx.doi.org/10.1016/j.jssc.2014.06.017]
[24]
Saeed B, Morteza B, Hekmat S, et al. Novel, efficient, and green procedure for the knoevenagel condensation catalyzed by diammonium hydrogen phosphate in water Syn Com 2006; 36: 3703-11.
[http://dx.doi.org/10.1080/10916460600946113]
[25]
Han J, Xu Y, Su Y, et al. Guanidine-catalyzed Henry reaction and Knoevenagel condensation Cat Com 2008; 9: 2077-9.
[http://dx.doi.org/10.1016/j.catcom.2008.04.006]
[26]
Phillip P, Timo S, Oestreiche M, et al. Direct acetophenone–acetophenone crossed aldol reaction and aldol self-reaction promoted by a tethered Ru–S Complex. Eur J Org Chem 2018; 19: 2290-3.
[http://dx.doi.org/10.1002/ejoc.201800132]
[27]
Kantam ML, Prakash V, Reddy VC, et al. Efficient synthesis of chalcones by a solid base catalyst Synth Commun 2005; 35: 1971-8.
[http://dx.doi.org/v10.1081/SCC-200065006]
[28]
Abdelssadek Z, Bachari K, Saadi A, et al. Study of the catalytic activity of calcined hydrotalcites for Friedel–Crafts reactions Res Chem Intermed 2015; 41: 1757-64.
[http://dx.doi.org/10.1007/s11164-013-1309-7]
[29]
Said S, Elhossieny M, Riad M, Mikhail S. Pristine Cu(Co)/Fe layered double hydroxides (Co (Cu)/Fe-LDH) as active catalysts for the transalkylation of toluene to Trimethylbenzenes Molecular Catalysis 2018; 445: 213-2.
[http://dx.doi.org/10.1016/j.mcat.2017.11.038]
[30]
Magda HA, Mokhtar M. MgAl-layered double hydroxide solid base catalysts for henry reaction: A Green Protocol Catalysts 2018; 8: 133.
[31]
Antonyraj CA, Kannan S. Hantzsch pyridine synthesis using hydrotalcites or hydrotalcite-like materials as solid base catalysts Appl Catal A Gen 2008; 338: 121-9.
[http://dx.doi.org/10.1016/j.apcata.2007.12.028]
[32]
Maliyappa MR, Keshavayya J, Mahanthappa M, Shivaraj Y, Basavarajappa KV. 6-Substituted benzothiazole based dispersed azo dyes having pyrazole moiety: Synthesis, characterization, electrochemical and DFT studies J Mol Struct 2020.1199126959
[http://dx.doi.org/10.1016/j.molstruc.2019.126959]
[33]
Farag AM, Fahim AM. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives J Mol Struct 2019; 1179: 304-14.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.008]
[34]
Magubane MN, Nyamato GS, Ojwach SO, Munro QO. Structural, kinetic, and DFT studies of the transfer hydrogenation of ketones mediated by (pyrazole) pyridine iron(II) and nickel(II) complexes RSC Advances 2016; 6: 65205-21.
[http://dx.doi.org/10.1039/C6RA12788F]
[35]
Dib M, Ouchetto H, Akhramez S, et al. Preparation of Mg/Al-LDH nanomaterials and its application in the condensation of 3-amino-1-phenyl-2-pyrazolin-5-one with aromatic aldehyde Materials-Today-Proceedings 2020; 22: 104-7.
[http://dx.doi.org/10.1016/j.matpr.2019.08.106]
[36]
Gelin S, Chantegrel B, Ai Nadi. Synthesis of 4-(acylacetyl)-1-phenyl-2-pyrazolin-5-ones from 3-acyl-2H-pyran-2,4(3H)-diones Their synthetic applications to functionalized 4-oxopyrano[2,3-c]pyrazole derivativesJ Org Chem 1983; 48: 4078-82.
[http://dx.doi.org/10.1021/jo00170a041]
[37]
Frisch MJ, Trucks GW. Gaussian 09 Wallingford, CT: Gaussian Inc. 2009.
[38]
Becke AD. Density-functional thermochemistry III The role of exact exchange J Chem Phys 1993; 98: 5648-2.
[http://dx.doi.org/10.1063/1.464913]
[39]
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys Rev B Condens Matter 1988; 37(2): 785-9.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[40]
Reed AE, Weinstock RB, Weinhold F. Natural population analysis J Chem Phys 1985; 83: 735-46.
[http://dx.doi.org/10.1063/1.449486]
[41]
Dennington R, Keith T, Weinhold F. GaussView, Version 508 Shawnee Mission, KS Semichem Inc. 2009.
[42]
Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory Chem Rev 2003; 103(5): 1793-873.
[http://dx.doi.org/10.1021/cr990029p] [PMID: 12744694]
[43]
Domingo LR, Ríos-Gutiérrez M, Pérez P. Applications of the conceptual density functional theory indices to organic chemistry reactivity Molecules 2016; 21(6): 748.
[http://dx.doi.org/10.3390/molecules21060748] [PMID: 27294896]
[44]
Domingo LR. A new C–C bond formation model based on the quantum chemical topology of electron density RSC Advances 2014; 4: 32415-28.
[http://dx.doi.org/10.1039/C4RA04280H]
[45]
Domingo LR, Aurell MJ, Contreras R, Perez P. Quantitative characterizationof the global electrophilicity power of common diene/dienophile pairs in Diels- Alder reactions Tetrahedron 2002; 58: 4417-23.
[http://dx.doi.org/10.1016/S0040-4020(02)00410-6]
[46]
Ayers PW ans Parr R G, Variational principles for describing chemical reactions: The fukui function and chemical hardness revisited J Am Chem Soc 2000; 122: 2010-8.
[http://dx.doi.org/10.1021/ja9924039]
[47]
Domingo LR, Pérez P. The nucleophilicity N index in organic chemistry Org Biomol Chem 2011; 9(20): 7168-5.
[http://dx.doi.org/10.1039/c1ob05856h] [PMID: 21842104]
[48]
Parr RG, Szentpály LV, Liu S. Electrophilicity index J Am Chem Soc 1999; 121: 1922-4.
[http://dx.doi.org/10.1021/ja983494x]
[49]
Zhao S. A novel 3D MOF with rich lewis basic sites as a base catalysis toward knoevenagel condensation reaction J Mol Struct 2018; 1167: 11-5.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.078]
[50]
Mather DB, Viswanathan K, Miller KM, Long TE. Michael addition reactions in macromolecular design for emerging technologies Long Prog Polym Sci 2006; 31: 487-531.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.03.001]
[51]
Domingo LR, Chamorro E, Pérez P. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 2008; 73(12): 4615-24.
[http://dx.doi.org/10.1021/jo800572a] [PMID: 18484771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy