Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Systematic Review Article

Prognostic Value of MiRNAs in Patients with Laryngeal Cancer: A Systematic Review and Meta-Analysis

Author(s): Wujun Zou, Xiaoyan Hu, Dingting Wang and Liang Jiang*

Volume 20, Issue 10, 2020

Page: [802 - 810] Pages: 9

DOI: 10.2174/1568009620666200806094709

Price: $65

Abstract

Background: Many studies have explored the relationship between the expression level of miRNAs and the prognosis of patients with laryngeal cancer (LC). However, the prognostic value of miRNA in LC patients has not been comprehensively evaluated.

Methods: PubMed, Web of Science, Embase, and Cochrane Database of Systematic Reviews were extensively searched for all studies published before the end of February 2020 that investigated the correlation between miRNA expression level and clinical prognosis in patients with LC.

Results: Twenty-one studies involving 1784 patients were included in our meta-analysis. The survival endpoints of OS and DFS were 1.69 (95% CI 1.45-1.98; p < 0.05) and 3.62 (95% CI 2.34–5.62; p < 0.05), respectively. Both OS and DFS results were statistically significant. Subgroup analyses were performed by evaluating the effects of miR-196b, miR-375, and miR-21 on OS and the effects of miR-34c-5p on DFS. The results obtained for miR-196b and miR-34c-5p were statistically significant.

Conclusion: The results indicate that miRNAs, as prognostic biomarkers for LC, play an important role in clinical value. In particular, miR-196b and miR-34c-5p have the potential to be used as prognostic biomarkers. However, further large-scale cohort studies based on these miRNAs are urgently needed to validate their clinical value and help determine the direction of future clinical work in the area.

Keywords: MicroRNAs, laryngeal cancer, prognosis, systematic review, meta-analysis, prognostic biomarkers.

Graphical Abstract

[1]
Plaça, J.R.; Bueno, Rde.B; Pinheiro, D.G.; de Araújo, L.F.; Mamede, R.C.; Figueiredo, D.L.; Silva, W.A. Jr Gene expression analysis of laryngeal squamous cell carcinoma. Genom. Data, 2015, 5, 9-12.
[http://dx.doi.org/10.1016/j.gdata.2015.04.024] [PMID: 26484211]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Lewis, J.S., Jr Not your usual cancer case: variants of laryngeal squamous cell carcinoma. Head Neck Pathol., 2011, 5(1), 23-30.
[http://dx.doi.org/10.1007/s12105-010-0232-0] [PMID: 21165725]
[4]
Thompson, L.D. Laryngeal dysplasia, squamous cell carcinoma, and variants. Surg. Pathol. Clin., 2017, 10(1), 15-33.
[http://dx.doi.org/10.1016/j.path.2016.10.003] [PMID: 28153131]
[5]
Hashibe, M.; Li, Q.; Chen, C.J.; Hsu, W.L.; Lou, P.J.; Zhu, C.; Pan, J.; Shen, H.; Ma, H.; Cai, L.; He, B.; Wang, Y.; Zhou, X.; Ji, Q.; Zhou, B.; Wu, W.; Ma, J.; Boffetta, P.; Zhang, Z.F.; Dai, M.; Lee, Y.A. Involuntary smoking and the risk of head and neck cancer in an East Asian population. Cancer Epidemiol., 2019, 59, 173-177.
[http://dx.doi.org/10.1016/j.canep.2019.01.020] [PMID: 30785070]
[6]
Lee, Y.A.; Li, S.; Chen, Y.; Li, Q.; Chen, C.J.; Hsu, W.L.; Lou, P.J.; Zhu, C.; Pan, J.; Shen, H.; Ma, H.; Cai, L.; He, B.; Wang, Y.; Zhou, X.; Ji, Q.; Zhou, B.; Wu, W.; Ma, J.; Boffetta, P.; Zhang, Z.F.; Dai, M.; Hashibe, M. Tobacco smoking, alcohol drinking, betel quid chewing, and the risk of head and neck cancer in an East Asian population. Head Neck, 2019, 41(1), 92-102.
[PMID: 30552826]
[7]
Obid, R.; Redlich, M.; Tomeh, C. The Treatment of laryngeal cancer. Oral Maxillofac. Surg. Clin. North Am., 2019, 31(1), 1-11.
[http://dx.doi.org/10.1016/j.coms.2018.09.001] [PMID: 30449522]
[8]
Zhang, C.; Zhu, M.; Chen, D.; Chen, S.; Zheng, H. Organ preservation surgery for patients with T4a laryngeal cancer. Eur. Arch. Otorhinolaryngol., 2018, 275(6), 1601-1606.
[http://dx.doi.org/10.1007/s00405-018-4952-1] [PMID: 29610957]
[9]
Gupta, P.; Bhalla, A.S.; Thulkar, S.; Kumar, A.; Mohanti, B.K.; Thakar, A.; Sharma, A.; Vishnubhatla, S. Neoadjuvant intra-arterial chemotherapy in advanced laryngeal and hypopharyngeal cancer. Asia Pac. J. Clin. Oncol., 2016, 12(1), e97-e104.
[http://dx.doi.org/10.1111/ajco.12123] [PMID: 24175975]
[10]
Ghi, M.G.; Paccagnella, A.; Ferrari, D.; Foa, P.; Alterio, D.; Codecà, C.; Nolè, F.; Verri, E.; Orecchia, R.; Morelli, F.; Parisi, S.; Mastromauro, C.; Mione, C.A.; Rossetto, C.; Polsinelli, M.; Koussis, H.; Loreggian, L.; Bonetti, A.; Campostrini, F.; Azzarello, G.; D’Ambrosio, C.; Bertoni, F.; Casanova, C.; Emiliani, E.; Guaraldi, M.; Bunkheila, F.; Bidoli, P.; Niespolo, R.M.; Gava, A.; Massa, E.; Frattegiani, A.; Valduga, F.; Pieri, G.; Cipani, T.; Da Corte, D.; Chiappa, F.; Rulli, E.; Group, G.I.S. GSTTC (Gruppo di Studio Tumori della Testa e del Collo) Italian Study Group. Induction TPF followed by concomitant treatment versus concomitant treatment alone in locally advanced head and neck cancer. A phase II-III trial. Ann. Oncol., 2017, 28(9), 2206-2212.
[http://dx.doi.org/10.1093/annonc/mdx299] [PMID: 28911070]
[11]
Macfarlane, L.A.; Murphy, P.R.; Micro, R.N.A. MicroRNA: biogenesis, function and role in cancer. Curr. Genomics, 2010, 11(7), 537-561.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[12]
Kim, V.N.; Nam, J.W. Genomics of microRNA. Trends Genet., 2006, 22(3), 165-173.
[http://dx.doi.org/10.1016/j.tig.2006.01.003] [PMID: 16446010]
[13]
Graves, P.; Zeng, Y. Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics, 2012, 10(5), 239-245.
[http://dx.doi.org/10.1016/j.gpb.2012.06.004] [PMID: 23200133]
[14]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[15]
Kumarasamy, C.; Madhav, M.R.; Sabarimurugan, S.; Krishnan, S.; Baxi, S.; Gupta, A.; Gothandam, K.M.; Jayaraj, R. Prognostic Value of miRNAs in Head and Neck Cancers: A Comprehensive Systematic and Meta-Analysis. Cells, 2019, 8(8), E772.
[http://dx.doi.org/10.3390/cells8080772] [PMID: 31349668]
[16]
Sabarimurugan, S.; Kumarasamy, C.; Baxi, S.; Devi, A.; Jayaraj, R. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS One, 2019, 14(2), e0209760.
[17]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med., 2009, 3(3), e123-e130.
[PMID: 21603045]
[18]
National Heart. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
[19]
Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[20]
Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med., 2002, 21(11), 1539-1558.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[21]
Jayaraj, R.; Kumarasamy, C. Systematic review and meta-analysis of cancer studies evaluating diagnostic test accuracy and prognostic values: approaches to improve clinical interpretation of results. Cancer Manag. Res., 2018, 10, 4669-4670.
[http://dx.doi.org/10.2147/CMAR.S183181] [PMID: 30410400]
[22]
Wang, S.; Guo, D.; Li, C. Downregulation of miRNA-26b inhibits cancer proliferation of laryngeal carcinoma through autophagy by targeting ULK2 and inactivation of the PTEN/AKT pathway. Oncol. Rep., 2017, 38(3), 1679-1687.
[http://dx.doi.org/10.3892/or.2017.5804] [PMID: 28713931]
[23]
Zhao, X.; Zhang, W.; Ji, W. miR-196b is a prognostic factor of human laryngeal squamous cell carcinoma and promotes tumor progression by targeting SOCS2. Biochem. Biophys. Res. Commun., 2018, 501(2), 584-592.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.052] [PMID: 29753737]
[24]
Zhang, X.W.; Liu, N.; Chen, S.; Wang, Y.; Zhang, Z.X.; Sun, Y.Y.; Qiu, G.B.; Fu, W.N. High microRNA-23a expression in laryngeal squamous cell carcinoma is associated with poor patient prognosis. Diagn. Pathol., 2015, 10, 22.
[http://dx.doi.org/10.1186/s13000-015-0256-6] [PMID: 25879432]
[25]
Luo, M.; Sun, G.; Sun, J.W. MiR-196b affects the progression and prognosis of human LSCC through targeting PCDH-17. Auris Nasus Larynx, 2019, 46(4), 583-592.
[http://dx.doi.org/10.1016/j.anl.2018.10.020] [PMID: 30454973]
[26]
Wu, T.Y.; Zhang, T.H.; Qu, L.M.; Feng, J.P.; Tian, L.L.; Zhang, B.H.; Li, D.D.; Sun, Y.N.; Liu, M. MiR-19a is correlated with prognosis and apoptosis of laryngeal squamous cell carcinoma by regulating TIMP-2 expression. Int. J. Clin. Exp. Pathol., 2013, 7(1), 56-63.
[PMID: 24427326]
[27]
Hu, A.; Huang, J.J.; Xu, W.H.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Sun, G.B.; Li, R.L.; Duan, J.L. MiR-21/miR-375 ratio is an independent prognostic factor in patients with laryngeal squamous cell carcinoma. Am. J. Cancer Res., 2015, 5(5), 1775-1785.
[PMID: 26175945]
[28]
Hu, A.; Huang, J.J.; Xu, W.H.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Sun, G.B. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival. Am. J. Transl. Res., 2014, 6(5), 604-613.
[PMID: 25360224]
[29]
Guo, L.; Cai, X.; Hu, W.; Hua, W.; Yan, W.; Lin, Y.; Yin, S.; Chen, Y. Expression and clinical significance of miRNA-145 and miRNA-218 in laryngeal cancer. Oncol. Lett., 2019, 18(1), 764-770.
[PMID: 31289552] [http://dx.doi.org/10.3892/ol.2019.10353]
[30]
Shuang, Y.; Li, C.; Zhou, X.; Huang, Y.W.; Zhang, L. Expression of miR-195 in laryngeal squamous cell carcinoma and its effect on proliferation and apoptosis of Hep-2. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(14), 3232-3238.
[PMID: 28770960]
[31]
Re, M.; Magliulo, G.; Gioacchini, F.M.; Bajraktari, A.; Bertini, A.; Çeka, A.; Rubini, C.; Ferrante, L.; Procopio, A.D.; Olivieri, F. Expression Levels and Clinical Significance of miR-21-5p, miR-let-7a, and miR-34c-5p in laryngeal squamous cell carcinoma. BioMed Res. Int., 2017, 20173921258
[http://dx.doi.org/10.1155/2017/3921258] [PMID: 29082244]
[32]
Niu, J.T.; Zhang, L.J.; Huang, Y.W.; Li, C.; Jiang, N.; Niu, Y.J. MiR-154 inhibits the growth of laryngeal squamous cell carcinoma by targeting GALNT7. Biochem. Cell Biol., 2018, 96(6), 752-760.
[http://dx.doi.org/10.1139/bcb-2018-0047] [PMID: 29874469]
[33]
Tian, L.; Li, M.; Ge, J.; Guo, Y.; Sun, Y.; Liu, M.; Xiao, H. MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours. Tumour Biol., 2014, 35(6), 5953-5963.
[http://dx.doi.org/10.1007/s13277-014-1790-7] [PMID: 24682952]
[34]
Li, Y.; Liu, J.; Hu, W.; Zhang, Y.; Sang, J.; Li, H.; Ma, T.; Bo, Y.; Bai, T.; Guo, H.; Lu, Y.; Xue, X.; Niu, M.; Ge, S.; Wen, S.; Wang, B.; Gao, W.; Wu, Y. miR-424-5p promotes proliferation, migration and invasion of laryngeal squamous cell carcinoma. OncoTargets Ther., 2019, 12, 10441-10453.
[http://dx.doi.org/10.2147/OTT.S224325] [PMID: 31819525]
[35]
Xu, Y.; Lin, Y.P.; Yang, D.; Zhang, G.; Zhou, H.F. Clinical significance of miR-149 in the survival of patients with laryngeal squamous cell carcinoma. BioMed Res. Int., 2016, 20168561251
[http://dx.doi.org/10.1155/2016/8561251] [PMID: 27403438]
[36]
He, F.Y.; Liu, H.J.; Guo, Q.; Sheng, J.L. Reduced miR-300 expression predicts poor prognosis in patients with laryngeal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(4), 760-764.
[PMID: 28272707]
[37]
Li, M.; Tian, L.; Ren, H.; Chen, X.; Wang, Y.; Ge, J.; Wu, S.; Sun, Y.; Liu, M.; Xiao, H. MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8. J. Transl. Med., 2015, 13, 271.
[http://dx.doi.org/10.1186/s12967-015-0626-6] [PMID: 26286725]
[38]
Gao, W.; Zhang, C.; Li, W.; Li, H.; Sang, J.; Zhao, Q.; Bo, Y.; Luo, H.; Zheng, X.; Lu, Y.; Shi, Y.; Yang, D.; Zhang, R.; Li, Z.; Cui, J.; Zhang, Y.; Niu, M.; Li, J.; Wu, Z.; Guo, H.; Xiang, C.; Wang, J.; Hou, J.; Zhang, L.; Thorne, R.F.; Cui, Y.; Wu, Y.; Wen, S.; Wang, B. Promoter Methylation-Regulated miR-145-5p inhibits laryngeal squamous cell carcinoma progression by targeting FSCN1. Mol. Ther., 2019, 27(2), 365-379.
[http://dx.doi.org/10.1016/j.ymthe.2018.09.018] [PMID: 30341010]
[39]
Li, P.; Lin, X.J.; Yang, Y.; Yang, A.K.; Di, J.M.; Jiang, Q.W.; Huang, J.R.; Yuan, M.L.; Xing, Z.H.; Wei, M.N.; Li, Y.; Yuan, X.H.; Shi, Z.; Liu, H.; Ye, J. Reciprocal regulation of miR-1205 and E2F1 modulates progression of laryngeal squamous cell carcinoma. Cell Death Dis., 2019, 10(12), 916.
[40]
Li, P.; Yang, Y.; Liu, H.; Yang, A.K.; Di, J.M.; Tan, G.M.; Wang, H.F.; Qiu, J.G.; Zhang, W.J.; Jiang, Q.W.; Zheng, D.W.; Chen, Y.; Wei, M.N.; Huang, J.R.; Wang, K.; Shi, Z.; Ye, J. MiR-194 functions as a tumor suppressor in laryngeal squamous cell carcinoma by targeting Wee1. J. Hematol. Oncol., 2017, 10(1), 32.
[http://dx.doi.org/10.1186/s13045-017-0402-6] [PMID: 28122647]
[41]
Re, M.; Çeka, A.; Rubini, C.; Ferrante, L.; Zizzi, A.; Gioacchini, F.M.; Tulli, M.; Spazzafumo, L.; Sellari-Franceschini, S.; Procopio, A.D.; Olivieri, F. MicroRNA-34c-5p is related to recurrence in laryngeal squamous cell carcinoma. Laryngoscope, 2015, 125(9), E306-E312.
[http://dx.doi.org/10.1002/lary.25475] [PMID: 26153151]
[42]
Shen, Z.; Zhan, G.; Deng, H.; Ren, Y.; Ye, D.; Xiao, B.; Guo, J. MicroRNA-519a demonstrates significant tumour suppressive activity in laryngeal squamous cells by targeting anti-carcinoma HuR gene. J. Laryngol. Otol., 2013, 127(12), 1194-1202.
[http://dx.doi.org/10.1017/S0022215113003174] [PMID: 24300127]
[43]
Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315(7109), 629-634.
[44]
Sabarimurugan, S.; Madhav, M.R.; Kumarasamy, C.; Gupta, A.; Baxi, S.; Krishnan, S.; Jayaraj, R. Prognostic value of microRNAs in stage ii colorectal cancer patients: a systematic review and meta-analysis. Mol. Diagn. Ther., 2020, 24(1), 15-30.
[http://dx.doi.org/10.1007/s40291-019-00440-y] [PMID: 32020560]
[45]
Shi, H.B.; Yu, J.X.; Yu, J.X.; Feng, Z.; Zhang, C.; Li, G.Y.; Zhao, R.N.; Yang, X.B. Diagnostic significance of microRNAs as novel biomarkers for bladder cancer: a meta-analysis of ten articles. World J. Surg. Oncol., 2017, 15(1), 147.
[http://dx.doi.org/10.1186/s12957-017-1201-9] [PMID: 28774300]
[46]
Ouyang, H.; Zhou, Y.; Zhang, L.; Shen, G. Diagnostic value of micrornas for urologic cancers: A systematic review and meta-analysis. Medicine (Baltimore), 2015, 94(37), e1272.
[http://dx.doi.org/10.1097/MD.0000000000001272] [PMID: 26376375]
[47]
Wang, R.H.; He, L.Y.; Zhou, S.H. The role of gene sculptor microRNAs in human precancerous lesions. OncoTargets Ther., 2018, 11, 5667-5675.
[http://dx.doi.org/10.2147/OTT.S171241] [PMID: 30254459]
[48]
Zhu, X.; Rao, X.; Yao, W.; Zou, X. Downregulation of MiR-196b-5p impedes cell proliferation and metastasis in breast cancer through regulating COL1A1. Am. J. Transl. Res., 2018, 10(10), 3122-3132.
[PMID: 30416655]
[49]
Li, H.; Feng, C.; Shi, S. miR-196b promotes lung cancer cell migration and invasion through the targeting of GATA6. Oncol. Lett., 2018, 16(1), 247-252.
[http://dx.doi.org/10.3892/ol.2018.8671] [PMID: 29928408]
[50]
Zedan, A.H.; Osther, P.J.S.; Assenholt, J.; Madsen, J.S.; Hansen, T.F. Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Sci. Rep., 2020, 10(1), 227.
[http://dx.doi.org/10.1038/s41598-019-57101-7] [PMID: 31937854]
[51]
Liu, Z.H.; Chen, L.D.; He, Y.B.; Xu, B.; Wang, K.B.; Sun, G.X.; Zhang, Z.H. Study of expression levels and clinical significance of miR-503 and miR-375 in patients with esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(9), 3799-3805.
[PMID: 31115006]
[52]
Lin, F.; Yin, H.B.; Li, X.Y.; Zhu, G.M.; He, W.Y.; Gou, X. Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int. J. Oncol., 2020, 56(1), 151-164.
[PMID: 31814034]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy