Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Systematic Review Article

MiRNAs在喉癌患者中的预后价值:一项系统回顾和荟萃分析

卷 20, 期 10, 2020

页: [802 - 810] 页: 9

弟呕挨: 10.2174/1568009620666200806094709

价格: $65

摘要

背景:许多研究探讨了miRNAs的表达水平与喉癌患者预后的关系。然而,miRNA在LC患者中的预后价值尚未得到全面评估。 方法:广泛检索PubMed、Web of Science、Embase和Cochrane系统综述数据库,检索2020年2月底之前发表的所有研究LC患者miRNA表达水平与临床预后之间的相关性的研究。 结果:我们的荟萃分析纳入了21项涉及1784名患者的研究。生存终点OS和DFS分别为1.69 (95% CI 1.45-1.98;p < 0.05)和3.62 (95% CI 2.34-5.62;p < 0.05)。OS和DFS结果均具有统计学意义。通过评估miR-196b、miR-375和miR-21对OS的影响以及miR-34c-5p对DFS的影响,进行亚组分析。miR-196b和miR-34c-5p的结果具有统计学意义。 结论:结果表明,miRNAs作为LC的预后生物标志物,在临床中发挥着重要的作用。特别是,miR-196b和miR-34c-5p有可能被用作预后生物标志物。然而,迫切需要进一步基于这些miRNA的大规模队列研究来验证其临床价值,并帮助确定该领域未来临床工作的方向。

关键词: 微小RNA,喉癌,预后,系统评价,荟萃分析,预后生物标志物

图形摘要

[1]
Plaça, J.R.; Bueno, Rde.B; Pinheiro, D.G.; de Araújo, L.F.; Mamede, R.C.; Figueiredo, D.L.; Silva, W.A. Jr Gene expression analysis of laryngeal squamous cell carcinoma. Genom. Data, 2015, 5, 9-12.
[http://dx.doi.org/10.1016/j.gdata.2015.04.024] [PMID: 26484211]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Lewis, J.S., Jr Not your usual cancer case: variants of laryngeal squamous cell carcinoma. Head Neck Pathol., 2011, 5(1), 23-30.
[http://dx.doi.org/10.1007/s12105-010-0232-0] [PMID: 21165725]
[4]
Thompson, L.D. Laryngeal dysplasia, squamous cell carcinoma, and variants. Surg. Pathol. Clin., 2017, 10(1), 15-33.
[http://dx.doi.org/10.1016/j.path.2016.10.003] [PMID: 28153131]
[5]
Hashibe, M.; Li, Q.; Chen, C.J.; Hsu, W.L.; Lou, P.J.; Zhu, C.; Pan, J.; Shen, H.; Ma, H.; Cai, L.; He, B.; Wang, Y.; Zhou, X.; Ji, Q.; Zhou, B.; Wu, W.; Ma, J.; Boffetta, P.; Zhang, Z.F.; Dai, M.; Lee, Y.A. Involuntary smoking and the risk of head and neck cancer in an East Asian population. Cancer Epidemiol., 2019, 59, 173-177.
[http://dx.doi.org/10.1016/j.canep.2019.01.020] [PMID: 30785070]
[6]
Lee, Y.A.; Li, S.; Chen, Y.; Li, Q.; Chen, C.J.; Hsu, W.L.; Lou, P.J.; Zhu, C.; Pan, J.; Shen, H.; Ma, H.; Cai, L.; He, B.; Wang, Y.; Zhou, X.; Ji, Q.; Zhou, B.; Wu, W.; Ma, J.; Boffetta, P.; Zhang, Z.F.; Dai, M.; Hashibe, M. Tobacco smoking, alcohol drinking, betel quid chewing, and the risk of head and neck cancer in an East Asian population. Head Neck, 2019, 41(1), 92-102.
[PMID: 30552826]
[7]
Obid, R.; Redlich, M.; Tomeh, C. The Treatment of laryngeal cancer. Oral Maxillofac. Surg. Clin. North Am., 2019, 31(1), 1-11.
[http://dx.doi.org/10.1016/j.coms.2018.09.001] [PMID: 30449522]
[8]
Zhang, C.; Zhu, M.; Chen, D.; Chen, S.; Zheng, H. Organ preservation surgery for patients with T4a laryngeal cancer. Eur. Arch. Otorhinolaryngol., 2018, 275(6), 1601-1606.
[http://dx.doi.org/10.1007/s00405-018-4952-1] [PMID: 29610957]
[9]
Gupta, P.; Bhalla, A.S.; Thulkar, S.; Kumar, A.; Mohanti, B.K.; Thakar, A.; Sharma, A.; Vishnubhatla, S. Neoadjuvant intra-arterial chemotherapy in advanced laryngeal and hypopharyngeal cancer. Asia Pac. J. Clin. Oncol., 2016, 12(1), e97-e104.
[http://dx.doi.org/10.1111/ajco.12123] [PMID: 24175975]
[10]
Ghi, M.G.; Paccagnella, A.; Ferrari, D.; Foa, P.; Alterio, D.; Codecà, C.; Nolè, F.; Verri, E.; Orecchia, R.; Morelli, F.; Parisi, S.; Mastromauro, C.; Mione, C.A.; Rossetto, C.; Polsinelli, M.; Koussis, H.; Loreggian, L.; Bonetti, A.; Campostrini, F.; Azzarello, G.; D’Ambrosio, C.; Bertoni, F.; Casanova, C.; Emiliani, E.; Guaraldi, M.; Bunkheila, F.; Bidoli, P.; Niespolo, R.M.; Gava, A.; Massa, E.; Frattegiani, A.; Valduga, F.; Pieri, G.; Cipani, T.; Da Corte, D.; Chiappa, F.; Rulli, E.; Group, G.I.S. GSTTC (Gruppo di Studio Tumori della Testa e del Collo) Italian Study Group. Induction TPF followed by concomitant treatment versus concomitant treatment alone in locally advanced head and neck cancer. A phase II-III trial. Ann. Oncol., 2017, 28(9), 2206-2212.
[http://dx.doi.org/10.1093/annonc/mdx299] [PMID: 28911070]
[11]
Macfarlane, L.A.; Murphy, P.R.; Micro, R.N.A. MicroRNA: biogenesis, function and role in cancer. Curr. Genomics, 2010, 11(7), 537-561.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[12]
Kim, V.N.; Nam, J.W. Genomics of microRNA. Trends Genet., 2006, 22(3), 165-173.
[http://dx.doi.org/10.1016/j.tig.2006.01.003] [PMID: 16446010]
[13]
Graves, P.; Zeng, Y. Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics, 2012, 10(5), 239-245.
[http://dx.doi.org/10.1016/j.gpb.2012.06.004] [PMID: 23200133]
[14]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[15]
Kumarasamy, C.; Madhav, M.R.; Sabarimurugan, S.; Krishnan, S.; Baxi, S.; Gupta, A.; Gothandam, K.M.; Jayaraj, R. Prognostic Value of miRNAs in Head and Neck Cancers: A Comprehensive Systematic and Meta-Analysis. Cells, 2019, 8(8), E772.
[http://dx.doi.org/10.3390/cells8080772] [PMID: 31349668]
[16]
Sabarimurugan, S.; Kumarasamy, C.; Baxi, S.; Devi, A.; Jayaraj, R. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS One, 2019, 14(2), e0209760.
[17]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med., 2009, 3(3), e123-e130.
[PMID: 21603045]
[18]
National Heart. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
[19]
Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[20]
Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med., 2002, 21(11), 1539-1558.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[21]
Jayaraj, R.; Kumarasamy, C. Systematic review and meta-analysis of cancer studies evaluating diagnostic test accuracy and prognostic values: approaches to improve clinical interpretation of results. Cancer Manag. Res., 2018, 10, 4669-4670.
[http://dx.doi.org/10.2147/CMAR.S183181] [PMID: 30410400]
[22]
Wang, S.; Guo, D.; Li, C. Downregulation of miRNA-26b inhibits cancer proliferation of laryngeal carcinoma through autophagy by targeting ULK2 and inactivation of the PTEN/AKT pathway. Oncol. Rep., 2017, 38(3), 1679-1687.
[http://dx.doi.org/10.3892/or.2017.5804] [PMID: 28713931]
[23]
Zhao, X.; Zhang, W.; Ji, W. miR-196b is a prognostic factor of human laryngeal squamous cell carcinoma and promotes tumor progression by targeting SOCS2. Biochem. Biophys. Res. Commun., 2018, 501(2), 584-592.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.052] [PMID: 29753737]
[24]
Zhang, X.W.; Liu, N.; Chen, S.; Wang, Y.; Zhang, Z.X.; Sun, Y.Y.; Qiu, G.B.; Fu, W.N. High microRNA-23a expression in laryngeal squamous cell carcinoma is associated with poor patient prognosis. Diagn. Pathol., 2015, 10, 22.
[http://dx.doi.org/10.1186/s13000-015-0256-6] [PMID: 25879432]
[25]
Luo, M.; Sun, G.; Sun, J.W. MiR-196b affects the progression and prognosis of human LSCC through targeting PCDH-17. Auris Nasus Larynx, 2019, 46(4), 583-592.
[http://dx.doi.org/10.1016/j.anl.2018.10.020] [PMID: 30454973]
[26]
Wu, T.Y.; Zhang, T.H.; Qu, L.M.; Feng, J.P.; Tian, L.L.; Zhang, B.H.; Li, D.D.; Sun, Y.N.; Liu, M. MiR-19a is correlated with prognosis and apoptosis of laryngeal squamous cell carcinoma by regulating TIMP-2 expression. Int. J. Clin. Exp. Pathol., 2013, 7(1), 56-63.
[PMID: 24427326]
[27]
Hu, A.; Huang, J.J.; Xu, W.H.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Sun, G.B.; Li, R.L.; Duan, J.L. MiR-21/miR-375 ratio is an independent prognostic factor in patients with laryngeal squamous cell carcinoma. Am. J. Cancer Res., 2015, 5(5), 1775-1785.
[PMID: 26175945]
[28]
Hu, A.; Huang, J.J.; Xu, W.H.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Sun, G.B. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival. Am. J. Transl. Res., 2014, 6(5), 604-613.
[PMID: 25360224]
[29]
Guo, L.; Cai, X.; Hu, W.; Hua, W.; Yan, W.; Lin, Y.; Yin, S.; Chen, Y. Expression and clinical significance of miRNA-145 and miRNA-218 in laryngeal cancer. Oncol. Lett., 2019, 18(1), 764-770.
[PMID: 31289552] [http://dx.doi.org/10.3892/ol.2019.10353]
[30]
Shuang, Y.; Li, C.; Zhou, X.; Huang, Y.W.; Zhang, L. Expression of miR-195 in laryngeal squamous cell carcinoma and its effect on proliferation and apoptosis of Hep-2. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(14), 3232-3238.
[PMID: 28770960]
[31]
Re, M.; Magliulo, G.; Gioacchini, F.M.; Bajraktari, A.; Bertini, A.; Çeka, A.; Rubini, C.; Ferrante, L.; Procopio, A.D.; Olivieri, F. Expression Levels and Clinical Significance of miR-21-5p, miR-let-7a, and miR-34c-5p in laryngeal squamous cell carcinoma. BioMed Res. Int., 2017, 20173921258
[http://dx.doi.org/10.1155/2017/3921258] [PMID: 29082244]
[32]
Niu, J.T.; Zhang, L.J.; Huang, Y.W.; Li, C.; Jiang, N.; Niu, Y.J. MiR-154 inhibits the growth of laryngeal squamous cell carcinoma by targeting GALNT7. Biochem. Cell Biol., 2018, 96(6), 752-760.
[http://dx.doi.org/10.1139/bcb-2018-0047] [PMID: 29874469]
[33]
Tian, L.; Li, M.; Ge, J.; Guo, Y.; Sun, Y.; Liu, M.; Xiao, H. MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours. Tumour Biol., 2014, 35(6), 5953-5963.
[http://dx.doi.org/10.1007/s13277-014-1790-7] [PMID: 24682952]
[34]
Li, Y.; Liu, J.; Hu, W.; Zhang, Y.; Sang, J.; Li, H.; Ma, T.; Bo, Y.; Bai, T.; Guo, H.; Lu, Y.; Xue, X.; Niu, M.; Ge, S.; Wen, S.; Wang, B.; Gao, W.; Wu, Y. miR-424-5p promotes proliferation, migration and invasion of laryngeal squamous cell carcinoma. OncoTargets Ther., 2019, 12, 10441-10453.
[http://dx.doi.org/10.2147/OTT.S224325] [PMID: 31819525]
[35]
Xu, Y.; Lin, Y.P.; Yang, D.; Zhang, G.; Zhou, H.F. Clinical significance of miR-149 in the survival of patients with laryngeal squamous cell carcinoma. BioMed Res. Int., 2016, 20168561251
[http://dx.doi.org/10.1155/2016/8561251] [PMID: 27403438]
[36]
He, F.Y.; Liu, H.J.; Guo, Q.; Sheng, J.L. Reduced miR-300 expression predicts poor prognosis in patients with laryngeal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(4), 760-764.
[PMID: 28272707]
[37]
Li, M.; Tian, L.; Ren, H.; Chen, X.; Wang, Y.; Ge, J.; Wu, S.; Sun, Y.; Liu, M.; Xiao, H. MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8. J. Transl. Med., 2015, 13, 271.
[http://dx.doi.org/10.1186/s12967-015-0626-6] [PMID: 26286725]
[38]
Gao, W.; Zhang, C.; Li, W.; Li, H.; Sang, J.; Zhao, Q.; Bo, Y.; Luo, H.; Zheng, X.; Lu, Y.; Shi, Y.; Yang, D.; Zhang, R.; Li, Z.; Cui, J.; Zhang, Y.; Niu, M.; Li, J.; Wu, Z.; Guo, H.; Xiang, C.; Wang, J.; Hou, J.; Zhang, L.; Thorne, R.F.; Cui, Y.; Wu, Y.; Wen, S.; Wang, B. Promoter Methylation-Regulated miR-145-5p inhibits laryngeal squamous cell carcinoma progression by targeting FSCN1. Mol. Ther., 2019, 27(2), 365-379.
[http://dx.doi.org/10.1016/j.ymthe.2018.09.018] [PMID: 30341010]
[39]
Li, P.; Lin, X.J.; Yang, Y.; Yang, A.K.; Di, J.M.; Jiang, Q.W.; Huang, J.R.; Yuan, M.L.; Xing, Z.H.; Wei, M.N.; Li, Y.; Yuan, X.H.; Shi, Z.; Liu, H.; Ye, J. Reciprocal regulation of miR-1205 and E2F1 modulates progression of laryngeal squamous cell carcinoma. Cell Death Dis., 2019, 10(12), 916.
[40]
Li, P.; Yang, Y.; Liu, H.; Yang, A.K.; Di, J.M.; Tan, G.M.; Wang, H.F.; Qiu, J.G.; Zhang, W.J.; Jiang, Q.W.; Zheng, D.W.; Chen, Y.; Wei, M.N.; Huang, J.R.; Wang, K.; Shi, Z.; Ye, J. MiR-194 functions as a tumor suppressor in laryngeal squamous cell carcinoma by targeting Wee1. J. Hematol. Oncol., 2017, 10(1), 32.
[http://dx.doi.org/10.1186/s13045-017-0402-6] [PMID: 28122647]
[41]
Re, M.; Çeka, A.; Rubini, C.; Ferrante, L.; Zizzi, A.; Gioacchini, F.M.; Tulli, M.; Spazzafumo, L.; Sellari-Franceschini, S.; Procopio, A.D.; Olivieri, F. MicroRNA-34c-5p is related to recurrence in laryngeal squamous cell carcinoma. Laryngoscope, 2015, 125(9), E306-E312.
[http://dx.doi.org/10.1002/lary.25475] [PMID: 26153151]
[42]
Shen, Z.; Zhan, G.; Deng, H.; Ren, Y.; Ye, D.; Xiao, B.; Guo, J. MicroRNA-519a demonstrates significant tumour suppressive activity in laryngeal squamous cells by targeting anti-carcinoma HuR gene. J. Laryngol. Otol., 2013, 127(12), 1194-1202.
[http://dx.doi.org/10.1017/S0022215113003174] [PMID: 24300127]
[43]
Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315(7109), 629-634.
[44]
Sabarimurugan, S.; Madhav, M.R.; Kumarasamy, C.; Gupta, A.; Baxi, S.; Krishnan, S.; Jayaraj, R. Prognostic value of microRNAs in stage ii colorectal cancer patients: a systematic review and meta-analysis. Mol. Diagn. Ther., 2020, 24(1), 15-30.
[http://dx.doi.org/10.1007/s40291-019-00440-y] [PMID: 32020560]
[45]
Shi, H.B.; Yu, J.X.; Yu, J.X.; Feng, Z.; Zhang, C.; Li, G.Y.; Zhao, R.N.; Yang, X.B. Diagnostic significance of microRNAs as novel biomarkers for bladder cancer: a meta-analysis of ten articles. World J. Surg. Oncol., 2017, 15(1), 147.
[http://dx.doi.org/10.1186/s12957-017-1201-9] [PMID: 28774300]
[46]
Ouyang, H.; Zhou, Y.; Zhang, L.; Shen, G. Diagnostic value of micrornas for urologic cancers: A systematic review and meta-analysis. Medicine (Baltimore), 2015, 94(37), e1272.
[http://dx.doi.org/10.1097/MD.0000000000001272] [PMID: 26376375]
[47]
Wang, R.H.; He, L.Y.; Zhou, S.H. The role of gene sculptor microRNAs in human precancerous lesions. OncoTargets Ther., 2018, 11, 5667-5675.
[http://dx.doi.org/10.2147/OTT.S171241] [PMID: 30254459]
[48]
Zhu, X.; Rao, X.; Yao, W.; Zou, X. Downregulation of MiR-196b-5p impedes cell proliferation and metastasis in breast cancer through regulating COL1A1. Am. J. Transl. Res., 2018, 10(10), 3122-3132.
[PMID: 30416655]
[49]
Li, H.; Feng, C.; Shi, S. miR-196b promotes lung cancer cell migration and invasion through the targeting of GATA6. Oncol. Lett., 2018, 16(1), 247-252.
[http://dx.doi.org/10.3892/ol.2018.8671] [PMID: 29928408]
[50]
Zedan, A.H.; Osther, P.J.S.; Assenholt, J.; Madsen, J.S.; Hansen, T.F. Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Sci. Rep., 2020, 10(1), 227.
[http://dx.doi.org/10.1038/s41598-019-57101-7] [PMID: 31937854]
[51]
Liu, Z.H.; Chen, L.D.; He, Y.B.; Xu, B.; Wang, K.B.; Sun, G.X.; Zhang, Z.H. Study of expression levels and clinical significance of miR-503 and miR-375 in patients with esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(9), 3799-3805.
[PMID: 31115006]
[52]
Lin, F.; Yin, H.B.; Li, X.Y.; Zhu, G.M.; He, W.Y.; Gou, X. Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int. J. Oncol., 2020, 56(1), 151-164.
[PMID: 31814034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy