Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel

Author(s): Shiyu Chen, Zhimei Song and Runliang Feng*

Volume 20, Issue 18, 2020

Page: [2169 - 2189] Pages: 21

DOI: 10.2174/1871520620666200719001038

Price: $65

Abstract

Background: Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse pharmacokinetic property limit its clinical application.

Objective: To review the recent progress on the PTX delivery systems.

Methods: In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent progress on the nano-drug delivery system for PTX since 2011.

Results: The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its activities against cancer are also comparable or high when compared with the commercial formulation.

Conclusion: Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping or enhancing its activity and improving its pharmacokinetic property.

Keywords: Paclitaxel, delivery system, recent development, anticancer, copolymer, nanodrug.

Graphical Abstract

[1]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[2]
Wang, T.H.; Wang, H.S.; Soong, Y.K. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer, 2000, 88(11), 2619-2628.
[http://dx.doi.org/10.1002/1097-0142(20000601)88:11<2619:AID-CNCR26>3.0.CO;2-J] [PMID: 10861441]
[3]
Wang, F.; Cao, Y.; Liu, H-Y.; Xu, S-F.; Han, R. Anti-invasion and anti-angiogenesis effect of taxol and camptothecin on melanoma cells. J. Asian Nat. Prod. Res., 2003, 5(2), 121-129.
[http://dx.doi.org/10.1080/1028602021000054973] [PMID: 12765196]
[4]
Chen, Y.; Yue, Q.; De, G.; Wang, J.; Li, Z.; Xiao, S.; Yu, H.; Ma, H.; Sui, F.; Zhao, Q. Inhibition of breast cancer metastasis by paclitaxel-loaded pH responsive poly(β-amino ester) copolymer micelles. Nanomedicine (Lond.), 2017, 12(2), 147-164.
[http://dx.doi.org/10.2217/nnm-2016-0335] [PMID: 27854565]
[5]
Merkher, Y.; Alvarez-Elizondo, M.B.; Weihs, D. Taxol reduces synergistic, mechanobiological invasiveness of metastatic cells. Converg. Sci. Phys. Oncol., 2017, 3(4)044002
[http://dx.doi.org/10.1088/2057-1739/aa8c0b]
[6]
Ismail, I.A.; El-Sokkary, G.H.; Saber, S.H. Low doses of Paclitaxel repress breast cancer invasion through DJ-1/KLF17 signalling pathway. Clin. Exp. Pharmacol. Physiol., 2018, 45(9), 961-968.
[http://dx.doi.org/10.1111/1440-1681.12960] [PMID: 29701902]
[7]
Du, X.; Khan, A.R.; Fu, M.; Ji, J.; Yu, A.; Zhai, G. Current development in the formulations of non-injection administration of paclitaxel. Int. J. Pharm., 2018, 542(1-2), 242-252.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.030] [PMID: 29555439]
[8]
Green, M.R.; Manikhas, G.M.; Orlov, S.; Afanasyev, B.; Makhson, A.M.; Bhar, P.; Hawkins, M.J. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol., 2006, 17(8), 1263-1268.
[http://dx.doi.org/10.1093/annonc/mdl104] [PMID: 16740598]
[9]
Singh, S.; Dash, A.K. Paclitaxel in cancer treatment: Perspectives and prospects of its delivery challenges. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(4), 333-372.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i4.10] [PMID: 20001890]
[10]
Wang, F.; Porter, M.; Konstantopoulos, A.; Zhang, P.; Cui, H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J. Control. Release, 2017, 267, 100-118.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.026] [PMID: 28958854]
[11]
Xu, X.; Wang, L.; Xu, H-Q.; Huang, X-E.; Qian, Y-D.; Xiang, J. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac. J. Cancer Prev., 2013, 14(4), 2591-2594.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2591] [PMID: 23725180]
[12]
Kim, S-C.; Chang, E-O.; Song, I-S.; Pai, C-M. Biodegradable polymeric micelle-type drug composition and method for the preparation thereof. US Patent 20,000,547,545 2000.
[13]
Zhang, Z.; Mei, L.; Feng, S-S. Paclitaxel drug delivery systems. Expert Opin. Drug Deliv., 2013, 10(3), 325-340.
[http://dx.doi.org/10.1517/17425247.2013.752354] [PMID: 23289542]
[14]
ElBayoumi, T.A.; Torchilin, V.P. Current trends in liposome research. In:Liposomes; Weissig, V., Ed.; Springer: New York, 2010, Vol. 1, pp. 1-27.
[http://dx.doi.org/10.1007/978-1-60327-360-2_1]
[15]
Lindner, L.H.; Hossann, M. Factors affecting drug release from liposomes. Curr. Opin. Drug Discov. Devel., 2010, 13(1), 111-123.
[PMID: 20047152]
[16]
Koudelka, S.; Turánek, J. Liposomal paclitaxel formulations. J. Control. Release, 2012, 163(3), 322-334.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.006] [PMID: 22989535]
[17]
Uriarte-Pinto, M.; Escolano-Pueyo, Á.; Gimeno-Ballester, V.; Pascual-Martínez, O.; Abad-Sazatornil, M.R.; Agustín-Ferrández, M.J. Trastuzumab, non-pegylated liposomal-encapsulated doxorubicin and paclitaxel in the neoadjuvant setting of HER-2 positive breast cancer. Int. J. Clin. Pharm., 2016, 38(2), 446-453.
[http://dx.doi.org/10.1007/s11096-016-0278-5] [PMID: 26951122]
[18]
Jain, S.; Kumar, D.; Swarnakar, N.K.; Thanki, K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials, 2012, 33(28), 6758-6768.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.026] [PMID: 22748771]
[19]
Ingle, S.G.; Pai, R.V.; Monpara, J.D.; Vavia, P.R. Liposils: An effective strategy for stabilizing Paclitaxel loaded liposomes by surface coating with silica. Eur. J. Pharm. Sci., 2018, 122, 51-63.
[http://dx.doi.org/10.1016/j.ejps.2018.06.025] [PMID: 29936087]
[20]
Bhatt, P.; Lalani, R.; Vhora, I.; Patil, S.; Amrutiya, J.; Misra, A.; Mashru, R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int. J. Pharm., 2018, 536(1), 95-107.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.048] [PMID: 29175440]
[21]
Okamoto, Y.; Taguchi, K.; Imoto, S.; Giam Chuang, V.T.; Yamasaki, K.; Otagiri, M. Cell uptake and anti-tumor effect of liposomes containing encapsulated paclitaxel-bound albumin against breast cancer cells in 2D and 3D cultured models. J. Drug Deliv. Sci. Technol., 2020, 55101381
[http://dx.doi.org/10.1016/j.jddst.2019.101381]
[22]
Movahedi, F.; Hu, R.G.; Becker, D.L.; Xu, C. Stimuli-responsive liposomes for the delivery of nucleic acid therapeutics. Nanomedicine (Lond.), 2015, 11(6), 1575-1584.
[http://dx.doi.org/10.1016/j.nano.2015.03.006] [PMID: 25819885]
[23]
Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. WIREs Nanomed. Nanobiotechnol., 2017, 9(5)e1450
[http://dx.doi.org/10.1002/wnan.1450]
[24]
Wang, Z.; Ling, L.; Du, Y.; Yao, C.; Li, X. Reduction responsive liposomes based on paclitaxel-ss-lysophospholipid with high drug loading for intracellular delivery. Int. J. Pharm., 2019, 564, 244-255.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.060] [PMID: 31022499]
[25]
Chen, D.; Jiang, X.; Huang, Y.; Zhang, C.; Ping, Q. pH-sensitive mPEG-Hz-cholesterol conjugates as a liposome delivery system. J. Bioact. Compat. Polym., 2010, 25(5), 527-542.
[http://dx.doi.org/10.1177/0883911510379996]
[26]
Shi, K.; Li, J.; Cao, Z.; Yang, P.; Qiu, Y.; Yang, B.; Wang, Y.; Long, Y.; Liu, Y.; Zhang, Q.; Qian, J.; Zhang, Z.; Gao, H.; He, Q. A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin αvβ3 for the treatment of melanoma. J. Control. Release, 2015, 217, 138-150.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.009] [PMID: 26368312]
[27]
Zhang, L.; Wang, Y.; Yang, Y.; Liu, Y.; Ruan, S.; Zhang, Q.; Tai, X.; Chen, J.; Xia, T.; Qiu, Y.; Gao, H.; He, Q. High tumor penetration of paclitaxel loaded pH sensitive cleavable liposomes by depletion of tumor Collagen I in breast cancer. ACS Appl. Mater. Interfaces, 2015, 7(18), 9691-9701.
[http://dx.doi.org/10.1021/acsami.5b01473] [PMID: 25845545]
[28]
Jiang, L.; Li, L.; He, X.; Yi, Q.; He, B.; Cao, J.; Pan, W.; Gu, Z. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials, 2015, 52, 126-139.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.004] [PMID: 25818419]
[29]
Jiang, L.; He, B.; Pan, D.; Luo, K.; Yi, Q.; Gu, Z.; Gu, Z. Anti-cancer efficacy of paclitaxel loaded in pH triggered liposomes. J. Biomed. Nanotechnol., 2016, 12(1), 79-90.
[http://dx.doi.org/10.1166/jbn.2016.2123] [PMID: 27301174]
[30]
Reddy, T.L.; Garikapati, K.R.; Reddy, S.G.; Reddy, B.V.S.; Yadav, J.S.; Bhadra, U.; Bhadra, M.P. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci. Rep.-UK, 2016, 6, 35223.
[http://dx.doi.org/10.1038/srep35223]
[31]
Nguyen, V.D.; Han, J.; Go, G.; Zhen, J.; Zheng, S.; Le, V.H.; Park, J-O.; Park, S. Feasibility study of dual-targeting paclitaxel-loaded magnetic liposomes using electromagnetic actuation and macrophages. In: Sens. Actuators B Chem; , 2017; 240, pp. 1226-1236.
[http://dx.doi.org/10.1016/j.snb.2016.09.076]
[32]
Gabizon, A.A.; Patil, Y.; La-Beck, N.M. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist. Updat., 2016, 29, 90-106.
[http://dx.doi.org/10.1016/j.drup.2016.10.003] [PMID: 27912846]
[33]
Zhang, Y.; Huang, L. Liposomal delivery system.Nanoparticles for Biomedical Applications; Chung, E.J.; Leon, L.; Rinaldi, C., Eds.; Elsevier: Amsterdam, 2020, pp. 145-152.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00010-2]
[34]
Yoshizawa, Y.; Kono, Y.; Ogawara, K.; Kimura, T.; Higaki, K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int. J. Pharm., 2011, 412(1-2), 132-141.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.008] [PMID: 21507344]
[35]
Yoshizawa, Y.; Ogawara, K.; Fushimi, A.; Abe, S.; Ishikawa, K.; Araki, T.; Molema, G.; Kimura, T.; Higaki, K. Deeper penetration into tumor tissues and enhanced in vivo antitumor activity of liposomal paclitaxel by pretreatment with angiogenesis inhibitor SU5416. Mol. Pharm., 2012, 9(12), 3486-3494.
[http://dx.doi.org/10.1021/mp300318q] [PMID: 23134499]
[36]
Xu, Y.; Meng, H. Paclitaxel-loaded stealth liposomes: Development, characterization, pharmacokinetics, and biodistribution. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 350-355.
[http://dx.doi.org/10.3109/21691401.2014.951722] [PMID: 25162671]
[37]
Biswas, S.; Dodwadkar, N.S.; Deshpande, P.P.; Torchilin, V.P. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release, 2012, 159(3), 393-402.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.009] [PMID: 22286008]
[38]
Hong, S.S.; Choi, J.Y.; Kim, J.O.; Lee, M.K.; Kim, S.H.; Lim, S.J. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int. J. Nanomedicine, 2016, 11, 4465-4477.
[http://dx.doi.org/10.2147/IJN.S113723] [PMID: 27660440]
[39]
Yamashita, S.; Katsumi, H.; Hibino, N.; Isobe, Y.; Yagi, Y.; Tanaka, Y.; Yamada, S.; Naito, C.; Yamamoto, A. Development of PEGylated aspartic acid-modified liposome as a bone-targeting carrier for the delivery of paclitaxel and treatment of bone metastasis. Biomaterials, 2018, 154, 74-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.053] [PMID: 29120820]
[40]
Farran, B.; Pavitra, E.; Kasa, P.; Peela, S.; Rama Raju, G.S.; Nagaraju, G.P. Folate-targeted immunotherapies: Passive and active strategies for cancer. Cytokine Growth Factor Rev., 2019, 45, 45-52.
[http://dx.doi.org/10.1016/j.cytogfr.2019.02.001] [PMID: 30770191]
[41]
Zhao, P.; Wang, H.; Yu, M.; Cao, S.; Zhang, F.; Chang, J.; Niu, R. Paclitaxel-loaded, folic-acid-targeted and TAT-peptide-conjugated polymeric liposomes: In vitro and in vivo evaluation. Pharm. Res., 2010, 27(9), 1914-1926.
[http://dx.doi.org/10.1007/s11095-010-0196-5] [PMID: 20582454]
[42]
Niu, R.; Zhao, P.; Wang, H.; Yu, M.; Cao, S.; Zhang, F.; Chang, J. Preparation, characterization, and antitumor activity of paclitaxel-loaded folic acid modified and TAT peptide conjugated PEGylated polymeric liposomes. J. Drug Target., 2011, 19(5), 373-381.
[http://dx.doi.org/10.3109/1061186X.2010.504266] [PMID: 20677917]
[43]
Tong, L.; Chen, W.; Wu, J.; Li, H. Folic acid-coupled nano-paclitaxel liposome reverses drug resistance in SKOV3/TAX ovarian cancer cells. Anticancer Drugs, 2014, 25(3), 244-254.
[http://dx.doi.org/10.1097/CAD.0000000000000047] [PMID: 24275314]
[44]
Jain, A.; Jain, S.K. Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev. Ind. Pharm., 2016, 42(1), 136-149.
[http://dx.doi.org/10.3109/03639045.2015.1036066] [PMID: 26006330]
[45]
Barbosa, M.V.; Monteiro, L.O.F.; Carneiro, G.; Malagutti, A.R.; Vilela, J.M.C.; Andrade, M.S.; Oliveira, M.C.; Carvalho-Junior, A.D.; Leite, E.A. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf. B Biointerfaces, 2015, 136, 553-561.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.055] [PMID: 26454545]
[46]
Monteiro, L.O.F.; Fernandes, R.S.; Oda, C.M.R.; Lopes, S.C.; Townsend, D.M.; Cardoso, V.N.; Oliveira, M.C.; Leite, E.A.; Rubello, D.; de Barros, A.L.B. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed. Pharmacother., 2018, 97, 489-495.
[http://dx.doi.org/10.1016/j.biopha.2017.10.135] [PMID: 29091899]
[47]
Liu, Y.; Ran, R.; Chen, J.; Kuang, Q.; Tang, J.; Mei, L.; Zhang, Q.; Gao, H.; Zhang, Z.; He, Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials, 2014, 35(17), 4835-4847.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.031] [PMID: 24651033]
[48]
Luo, L-M.; Huang, Y.; Zhao, B-X.; Zhao, X.; Duan, Y.; Du, R.; Yu, K-F.; Song, P.; Zhao, Y.; Zhang, X.; Zhang, Q. Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. Biomaterials, 2013, 34(4), 1102-1114.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.029] [PMID: 23127332]
[49]
Sun, J.; Jiang, L.; Lin, Y.; Gerhard, E.M.; Jiang, X.; Li, L.; Yang, J.; Gu, Z. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int. J. Nanomedicine, 2017, 12, 1517-1537.
[http://dx.doi.org/10.2147/IJN.S122859] [PMID: 28280323]
[50]
Zhang, D.; Lv, P.; Zhou, C.; Zhao, Y.; Liao, X.; Yang, B. Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C, 2019, 96, 872-886.
[http://dx.doi.org/10.1016/j.msec.2018.11.031] [PMID: 30606602]
[51]
Mejia-Ariza, R.; Graña-Suárez, L.; Verboom, W.; Huskens, J. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(1), 36-52.
[http://dx.doi.org/10.1039/C6TB02776H] [PMID: 32263433]
[52]
Mognetti, B.; Barberis, A.; Marino, S.; Berta, G.; De Francia, S.; Trotta, F.; Cavalli, R. In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J. Incl. Phenom. Macrocycl. Chem., 2012, 74(1-4), 201-210.
[http://dx.doi.org/10.1007/s10847-011-0101-9]
[53]
He, H.; Chen, S.; Zhou, J.; Dou, Y.; Song, L.; Che, L.; Zhou, X.; Chen, X.; Jia, Y.; Zhang, J.; Li, S.; Li, X. Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials, 2013, 34(21), 5344-5358.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.068] [PMID: 23591391]
[54]
Yu, S.; Zhang, Y.; Wang, X.; Zhen, X.; Zhang, Z.; Wu, W.; Jiang, X. Synthesis of paclitaxel-conjugated β-cyclodextrin polyrotaxane and its antitumor activity. Angew. Chem. Int. Ed. Engl., 2013, 52(28), 7272-7277.
[http://dx.doi.org/10.1002/anie.201301397] [PMID: 23740531]
[55]
Boztas, A.O.; Karakuzu, O.; Galante, G.; Ugur, Z.; Kocabas, F.; Altuntas, C.Z.; Yazaydin, A.O. Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol. Pharm., 2013, 10(7), 2676-2683.
[http://dx.doi.org/10.1021/mp400101k] [PMID: 23730903]
[56]
Calleja, P.; Espuelas, S.; Corrales, L.; Pio, R.; Irache, J.M. Pharmacokinetics and antitumor efficacy of paclitaxel-cyclodextrin complexes loaded in mucus-penetrating nanoparticles for oral administration. Nanomedicine (Lond.), 2014, 9(14), 2109-2121.
[http://dx.doi.org/10.2217/nnm.13.199] [PMID: 24471503]
[57]
Namgung, R.; Mi, Lee Y.; Kim, J.; Jang, Y.; Lee, B.H.; Kim, I.S.; Sokkar, P.; Rhee, Y.M.; Hoffman, A.S.; Kim, W.J. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun., 2014, 5(1), 3702.
[http://dx.doi.org/10.1038/ncomms4702] [PMID: 24805848]
[58]
Ye, Y-J.; Wang, Y.; Lou, K-Y.; Chen, Y-Z.; Chen, R.; Gao, F. The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes. Int. J. Nanomedicine, 2015, 10, 4309-4319.
[PMID: 26170666]
[59]
Shah, M.; Shah, V.; Ghosh, A.; Zhang, Z.; Minko, T. Molecular inclusion complexes of β-cyclodextrin derivatives enhance aqueous solubility and cellular internalization of paclitaxel: Preformulation and in vitro assessments. J. Pharm. Pharmacol. (Los Angel.), 2015, 2(2), 8.
[PMID: 25950011]
[60]
Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.L.; Xu, H.E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature, 2013, 500(7463), 486-489.
[http://dx.doi.org/10.1038/nature12327] [PMID: 23851396]
[61]
Okamatsu, A.; Motoyama, K.; Onodera, R.; Higashi, T.; Koshigoe, T.; Shimada, Y.; Hattori, K.; Takeuchi, T.; Arima, H. Folate-appended β-cyclodextrin as a promising tumor targeting carrier for antitumor drugs in vitro and in vivo. Bioconjug. Chem., 2013, 24(4), 724-733.
[http://dx.doi.org/10.1021/bc400015r] [PMID: 23458386]
[62]
Erdoğar, N.; Esendağlı, G.; Nielsen, T.T.; Şen, M.; Öner, L.; Bilensoy, E. Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles. Int. J. Pharm., 2016, 509(1-2), 375-390.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.040] [PMID: 27282534]
[63]
Erdoğar, N.; Esendağlı, G.; Nielsen, T.T.; Esendağlı-Yılmaz, G.; Yöyen-Ermiş, D.; Erdoğdu, B.; Sargon, M.F.; Eroğlu, H.; Bilensoy, E. Therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer. J. Drug Target., 2018, 26(1), 66-74.
[http://dx.doi.org/10.1080/1061186X.2017.1339194] [PMID: 28581827]
[64]
Chen, L-X.; Zhang, Y-M.; Cao, Y.; Zhang, H-Y.; Liu, Y. Bridged bis(β-cyclodextrin)s-based polysaccharide nanoparticles for controlled paclitaxel delivery. RSC Advances, 2016, 6(34), 28593-28598.
[http://dx.doi.org/10.1039/C6RA02644C]
[65]
Yan, C.; Liang, N.; Li, Q.; Yan, P.; Sun, S. Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydr. Polym., 2019, 216, 129-139.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.024] [PMID: 31047049]
[66]
Jeon, H.; Kim, J.; Lee, Y.M.; Kim, J.; Choi, H.W.; Lee, J.; Park, H.; Kang, Y.; Kim, I.S.; Lee, B.H.; Hoffman, A.S.; Kim, W.J. Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system. J. Control. Release, 2016, 231, 68-76.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.006] [PMID: 26780174]
[67]
Song, X.; Wen, Y.; Zhu, J.L.; Zhao, F.; Zhang, Z-X.; Li, J. Thermoresponsive delivery of paclitaxel by β-cyclodextrin-based poly(N-isopropylacrylamide) star polymer via inclusion complexation. Biomacromolecules, 2016, 17(12), 3957-3963.
[http://dx.doi.org/10.1021/acs.biomac.6b01344] [PMID: 27776208]
[68]
Yu, H.S.; Lee, E.S. Honeycomb-like pH-responsive γ-cyclodextrin electrospun particles for highly efficient tumor therapy. Carbohydr. Polym., 2020, 230115563
[http://dx.doi.org/10.1016/j.carbpol.2019.115563] [PMID: 31887908]
[69]
Zhang, Y-M.; Zhang, N-Y.; Xiao, K.; Yu, Q.; Liu, Y. Photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin. Angew. Chem. Int. Ed. Engl., 2018, 57(28), 8649-8653.
[http://dx.doi.org/10.1002/anie.201804620] [PMID: 29781242]
[70]
Gothwal, A.; Khan, I.; Gupta, U. Polymeric micelles: Recent advancements in the delivery of anticancer drugs. Pharm. Res., 2016, 33(1), 18-39.
[http://dx.doi.org/10.1007/s11095-015-1784-1] [PMID: 26381278]
[71]
Saadat, E.; Amini, M.; Khoshayand, M.R.; Dinarvand, R.; Dorkoosh, F.A. Synthesis and optimization of a novel polymeric micelle based on hyaluronic acid and phospholipids for delivery of paclitaxel, in vitro and in vivo evaluation. Int. J. Pharm., 2014, 475(1-2), 163-173.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.030] [PMID: 25148729]
[72]
Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E.H.E.; Fens, M.H.A.M.; Ehling, J.; Schiffelers, R.M.; Storm, G.; van Nostrum, C.F.; Lammers, T.; Hennink, W.E. Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π-Π stacking stabilized polymeric micelles. ACS Nano, 2015, 9(4), 3740-3752.
[http://dx.doi.org/10.1021/acsnano.5b00929] [PMID: 25831471]
[73]
He, Z.; Wan, X.; Schulz, A.; Bludau, H.; Dobrovolskaia, M.A.; Stern, S.T.; Montgomery, S.A.; Yuan, H.; Li, Z.; Alakhova, D.; Sokolsky, M.; Darr, D.B.; Perou, C.M.; Jordan, R.; Luxenhofer, R.; Kabanov, A.V. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials, 2016, 101, 296-309.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.002] [PMID: 27315213]
[74]
Liang, N.; Sun, S.; Gong, X.; Li, Q.; Yan, P.; Cui, F. Polymeric micelles based on modified glycol chitosan for paclitaxel delivery: Preparation, characterization and evaluation. Int. J. Mol. Sci., 2018, 19(6), 1550.
[http://dx.doi.org/10.3390/ijms19061550] [PMID: 29882845]
[75]
Xiang, J.; Wu, B.; Zhou, Z.; Hu, S.; Piao, Y.; Zhou, Q.; Wang, G.; Tang, J.; Liu, X.; Shen, Y. Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Sci. China Life Sci., 2018, 61(4), 436-447.
[http://dx.doi.org/10.1007/s11427-017-9274-9] [PMID: 29572777]
[76]
Wang, X.; Guo, Y.; Qiu, L.; Wang, X.; Li, T.; Han, L.; Ouyang, H.; Xu, W.; Chu, K. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr. Polym., 2019, 206, 121-131.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.096] [PMID: 30553305]
[77]
Wang, X.; Qiu, L.; Wang, X.; Ouyang, H.; Li, T.; Han, L.; Zhang, X.; Xu, W.; Chu, K. Evaluation of intestinal permeation enhancement with carboxymethyl chitosan-rhein polymeric micelles for oral delivery of paclitaxel. Int. J. Pharm., 2020, 573118840
[http://dx.doi.org/10.1016/j.ijpharm.2019.118840] [PMID: 31715358]
[78]
Piao, L.; Li, Y.; Zhang, H.; Jiang, J. Stereocomplex micelle loaded with paclitaxel for enhanced therapy of breast cancer in an orthotopic mouse model. J. Biomater. Sci. Polym. Ed., 2019, 30(3), 233-246.
[http://dx.doi.org/10.1080/09205063.2019.1565612] [PMID: 30606090]
[79]
Takeuchi, I.; Makino, K. Biocompatibility and effectiveness of paclitaxel-encapsulated micelle using phosphoester compounds as a carrier for cancer treatment. Colloids Surf. B Biointerfaces, 2019, 177, 356-361.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.017] [PMID: 30772670]
[80]
Zhang, Y.; Zhang, H.; Wu, W.; Zhang, F.; Liu, S.; Wang, R.; Sun, Y.; Tong, T.; Jing, X. Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models. Int. J. Nanomedicine, 2014, 9, 2019-2030.
[PMID: 24790440]
[81]
Li, M.; Liu, Y.; Feng, L.; Liu, F.; Zhang, L.; Zhang, N. Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery. Colloids Surf. B Biointerfaces, 2015, 131, 191-201.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.057] [PMID: 25988283]
[82]
Emami, J.; Rezazadeh, M.; Hasanzadeh, F.; Sadeghi, H.; Mostafavi, A.; Minaiyan, M.; Rostami, M.; Davies, N. Development and in vitro/in vivo evaluation of a novel targeted polymeric micelle for delivery of paclitaxel. Int. J. Biol. Macromol., 2015, 80, 29-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.062] [PMID: 26093319]
[83]
Rezazadeh, M.; Emami, J.; Hasanzadeh, F.; Sadeghi, H.; Minaiyan, M.; Mostafavi, A.; Rostami, M.; Lavasanifar, A. In vivo pharmacokinetics, biodistribution and anti-tumor effect of paclitaxel-loaded targeted chitosan-based polymeric micelle. Drug Deliv., 2016, 23(5), 1707-1717.
[PMID: 25188785]
[84]
Wang, Y.; Zhao, H.; Peng, J.; Chen, L.; Tan, L.; Huang, Y.; Qian, Z. Targeting therapy of Neuropilin-1 receptors overexpressed breast cancer by paclitaxel-loaded CK3-conjugated polymeric micelles. J. Biomed. Nanotechnol., 2016, 12(12), 2097-2111.
[http://dx.doi.org/10.1166/jbn.2016.2319] [PMID: 29368881]
[85]
Li, Z.L.; Huang, Y.S.; Xiong, X.Y.; Qin, X.; Luo, Y.Y. Synthesis, characterisation and in vitro release of paclitaxel-loaded polymeric micelles. Micro & Nano Lett., 2017, 12(3), 191-194.
[http://dx.doi.org/10.1049/mnl.2016.0690]
[86]
Li, L.; Liang, N.; Wang, D.; Yan, P.; Kawashima, Y.; Cui, F.; Sun, S. Amphiphilic polymeric micelles based on deoxycholic acid and folic acid modified chitosan for the delivery of paclitaxel. Int. J. Mol. Sci., 2018, 19(10), 3132.
[http://dx.doi.org/10.3390/ijms19103132] [PMID: 30322014]
[87]
Mehnath, S.; Arjama, M.; Rajan, M.; Jeyaraj, M. Development of cholate conjugated hybrid polymeric micelles for FXR receptor mediated effective site-specific delivery of paclitaxel. New J. Chem., 2018, 42(20), 17021-17032.
[http://dx.doi.org/10.1039/C8NJ03251C]
[88]
Liu, Y.; Sun, J.; Lian, H.; Cao, W.; Wang, Y.; He, Z. Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution. J. Pharm. Sci., 2014, 103(5), 1538-1547.
[http://dx.doi.org/10.1002/jps.23934] [PMID: 24619562]
[89]
Lin, M.M.; Kang, Y.J.; Sohn, Y.; Kim, D.K. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel. J. Nanopart. Res., 2015, 17(6), 248.
[http://dx.doi.org/10.1007/s11051-015-3033-2]
[90]
Gao, Y.; Zhou, Y.; Zhao, L.; Zhang, C.; Li, Y.; Li, J.; Li, X.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater., 2015, 23, 127-135.
[http://dx.doi.org/10.1016/j.actbio.2015.05.021] [PMID: 26013038]
[91]
Shi, Y.; van Nostrum, C.F.; Hennink, W.E. Interfacially hydrazone cross-linked thermosensitive polymeric micelles for acid-triggered release of paclitaxel. ACS Biomater. Sci. Eng., 2015, 1(6), 393-404.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00006]
[92]
Zhang, J.; Zhao, X.; Chen, Q.; Yin, X.; Xin, X.; Li, K.; Qiao, M.; Hu, H.; Chen, D.; Zhao, X. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Acta Biomater., 2017, 50, 381-395.
[http://dx.doi.org/10.1016/j.actbio.2016.12.021] [PMID: 27956367]
[93]
Ma, B.; Zhuang, W.; Liu, G.; Wang, Y. A biomimetic and pH-sensitive polymeric micelle as carrier for paclitaxel delivery. Regen. Biomater., 2018, 5(1), 15-24.
[http://dx.doi.org/10.1093/rb/rbx023] [PMID: 29423264]
[94]
Behroozi, F.; Abdkhodaie, M-J.; Abandansari, H.S.; Satarian, L.; Molazem, M.; Al-Jamal, K.T.; Baharvand, H. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomater., 2018, 76, 239-256.
[http://dx.doi.org/10.1016/j.actbio.2018.05.031] [PMID: 29928995]
[95]
Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system 3 Biotech, 2015, 5(2), 123-127.
[96]
Ma, P.; Mumper, R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol., 2013, 4(2), 1000164-1000164.
[http://dx.doi.org/10.4172/2157-7439.1000164] [PMID: 24163786]
[97]
Qi, J.; Huang, C.; He, F.; Yao, P. Heat-treated emulsions with cross-linking bovine serum albumin interfacial films and different dextran surfaces: effect of paclitaxel delivery. J. Pharm. Sci., 2013, 102(4), 1307-1317.
[http://dx.doi.org/10.1002/jps.23468] [PMID: 23389967]
[98]
Alayoubi, A.; Alqahtani, S.; Kaddoumi, A.; Nazzal, S. Effect of PEG surface conformation on anticancer activity and blood circulation of nanoemulsions loaded with tocotrienol-rich fraction of palm oil. AAPS J., 2013, 15(4), 1168-1179.
[http://dx.doi.org/10.1208/s12248-013-9525-z] [PMID: 23990503]
[99]
Yadav, M.; Parle, M.; Sharma, N.; Dhingra, S.; Raina, N.; Jindal, D.K. Brain targeted oral delivery of doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles against ketamine induced psychosis: Behavioral, biochemical, neurochemical and histological alterations in mice. Drug Deliv., 2017, 24(1), 1429-1440.
[http://dx.doi.org/10.1080/10717544.2017.1377315] [PMID: 28942680]
[100]
Lee, E.H.; Hong, S.S.; Kim, S.H.; Lee, M.K.; Lim, J.S.; Lim, S.J. Computed tomography-guided screening of surfactant effect on blood circulation time of emulsions: Application to the design of an emulsion formulation for paclitaxel. Pharm. Res., 2014, 31(8), 2022-2034.
[http://dx.doi.org/10.1007/s11095-014-1304-8] [PMID: 24549824]
[101]
Choudhury, H.; Gorain, B.; Karmakar, S.; Biswas, E.; Dey, G.; Barik, R.; Mandal, M.; Pal, T.K. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int. J. Pharm., 2014, 460(1-2), 131-143.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.055] [PMID: 24239580]
[102]
Damitz, R.; Chauhan, A. Parenteral emulsions and liposomes to treat drug overdose. Adv. Drug Deliv. Rev., 2015, 90, 12-23.
[http://dx.doi.org/10.1016/j.addr.2015.06.004] [PMID: 26086091]
[103]
Kadam, A.N.; Najlah, M.; Wan, K-W.; Ahmed, W.; Crean, S.J.; Phoenix, D.A.; Taylor, K.M.G.; Elhissi, A.M.A. Stability of parenteral nanoemulsions loaded with paclitaxel: The influence of lipid phase composition, drug concentration and storage temperature. Pharm. Dev. Technol., 2014, 19(8), 999-1004.
[http://dx.doi.org/10.3109/10837450.2013.840845] [PMID: 24093888]
[104]
Najlah, M.; Kadam, A.; Wan, K-W.; Ahmed, W.; Taylor, K.M.G.; Elhissi, A.M.A. Novel paclitaxel formulations solubilized by parenteral nutrition nanoemulsions for application against glioma cell lines. Int. J. Pharm., 2016, 506(1-2), 102-109.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.027] [PMID: 27107899]
[105]
Bu, H.; He, X.; Zhang, Z.; Yin, Q.; Yu, H.; Li, Y. A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. Int. J. Pharm., 2014, 471(1-2), 206-213.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.039] [PMID: 24866272]
[106]
Jing, X.; Deng, L.; Gao, B.; Xiao, L.; Zhang, Y.; Ke, X.; Lian, J.; Zhao, Q.; Ma, L.; Yao, J.; Chen, J. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel. Nanomedicine (Lond.), 2014, 10(2), 371-380.
[http://dx.doi.org/10.1016/j.nano.2013.07.018] [PMID: 23969104]
[107]
Chen, L.; Chen, B.; Deng, L.; Gao, B.; Zhang, Y.; Wu, C.; Yu, N.; Zhou, Q.; Yao, J.; Chen, J. An optimized two-vial formulation lipid nanoemulsion of paclitaxel for targeted delivery to tumor. Int. J. Pharm., 2017, 534(1-2), 308-315.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.005] [PMID: 28986321]
[108]
Ogawara, K.I.; Fukuoka, Y.; Yoshizawa, Y.; Kimura, T.; Higaki, K. Development of safe and potent oil-in-water emulsion of paclitaxel to treat peritoneal dissemination. J. Pharm. Sci., 2017, 106(4), 1143-1148.
[http://dx.doi.org/10.1016/j.xphs.2016.12.029] [PMID: 28063824]
[109]
Ye, J.; Dong, W.; Yang, Y.; Hao, H.; Liao, H.; Wang, B.; Han, X.; Jin, Y.; Xia, X.; Liu, Y. Vitamin E-rich nanoemulsion enhances the antitumor efficacy of low-dose paclitaxel by driving Th1 immune response. Pharm. Res., 2017, 34(6), 1244-1254.
[http://dx.doi.org/10.1007/s11095-017-2141-3] [PMID: 28326458]
[110]
Abu-Fayyad, A.; Kamal, M.M.; Carroll, J.L.; Dragoi, A.M.; Cody, R.; Cardelli, J.; Nazzal, S. Development and in vitro characterization of nanoemulsions loaded with paclitaxel/γ-tocotrienol lipid conjugates. Int. J. Pharm., 2018, 536(1), 146-157.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.062] [PMID: 29195915]
[111]
Shakhwar, S.; Darwish, R.; Kamal, M.M.; Nazzal, S.; Pallerla, S.; Abu Fayyad, A. Development and evaluation of paclitaxel nanoemulsion for cancer therapy. Pharm. Dev. Technol., 2020, 25(4), 510-516.
[PMID: 31858867]
[112]
Afzal, S.M.; Shareef, M.Z.; Dinesh, T.; Kishan, V. Folate-PEG-decorated docetaxel lipid nanoemulsion for improved antitumor activity. Nanomedicine (Lond.), 2016, 11(16), 2171-2184.
[http://dx.doi.org/10.2217/nnm-2016-0120] [PMID: 27463694]
[113]
Kim, J.E.; Park, Y.J. High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids Surf. B Biointerfaces, 2017, 150, 362-372.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.050] [PMID: 27823852]
[114]
Kim, J-E.; Park, Y-J. Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. Int. J. Nanomedicine, 2017, 12, 645-658.
[http://dx.doi.org/10.2147/IJN.S124158] [PMID: 28176896]
[115]
Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res., 2005, 11(23), 8230-8234.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1895] [PMID: 16322279]
[116]
Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm., 2007, 65(3), 259-269.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[117]
Zhang, J.; Liang, Y.Q.; Li, N.; Zhao, X.M.; Hu, R.J.; Hu, F.Q.; Xing, J.F.; Deng, L.D.; Dong, A.J. Poly(ether-ester anhydride)-based amphiphilic block copolymer nanoparticle as delivery devices for paclitaxel. Micro & Nano Lett., 2012, 7(2), 183-187.
[http://dx.doi.org/10.1049/mnl.2011.0580]
[118]
Xu, J.; Ma, L.; Liu, Y.; Xu, F.; Nie, J.; Ma, G. Design and characterization of antitumor drug paclitaxel-loaded chitosan nanoparticles by W/O emulsions. Int. J. Biol. Macromol., 2012, 50(2), 438-443.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.12.034] [PMID: 22230611]
[119]
Ding, Y.; Zhou, Y.Y.; Chen, H.; Geng, D.D.; Wu, D.Y.; Hong, J.; Shen, W.B.; Hang, T.J.; Zhang, C. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials, 2013, 34(38), 10217-10227.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.008] [PMID: 24055524]
[120]
Lu, J.; Chuan, X.; Zhang, H.; Dai, W.; Wang, X.; Wang, X.; Zhang, Q. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Int. J. Pharm., 2014, 471(1-2), 525-535.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.032] [PMID: 24858391]
[121]
Nance, E.; Zhang, C.; Shih, T-Y.; Xu, Q.; Schuster, B.S.; Hanes, J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano, 2014, 8(10), 10655-10664.
[http://dx.doi.org/10.1021/nn504210g] [PMID: 25259648]
[122]
Jiménez-López, J.; El-Hammadi, M.M.; Ortiz, R.; Cayero-Otero, M.D.; Cabeza, L.; Perazzoli, G.; Martin-Banderas, L.; Baeyens, J.M.; Prados, J.; Melguizo, C. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol. Res., 2019, 141, 451-465.
[http://dx.doi.org/10.1016/j.phrs.2019.01.013] [PMID: 30634051]
[123]
Li, S.; Wang, X.; Li, W.; Yuan, G.; Pan, Y.; Chen, H. Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein. Carbohydr. Polym., 2016, 146, 52-57.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.042] [PMID: 27112850]
[124]
Contreras-Cáceres, R.; Leiva, M.C.; Ortiz, R.; Díaz, A.; Perazzoli, G.; Casado-Rodríguez, M.A.; Melguizo, C.; Baeyens, J.M.; López-Romero, J.M.; Prados, J. Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Res., 2017, 10(3), 856-875.
[http://dx.doi.org/10.1007/s12274-016-1340-2]
[125]
Wang, L.; Yao, J.; Zhang, X.; Zhang, Y.; Xu, C.; Lee, R.J.; Yu, G.; Yu, B.; Teng, L. Delivery of paclitaxel using nanoparticles composed of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO). Colloids Surf. B Biointerfaces, 2018, 161, 464-470.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.013] [PMID: 29128832]
[126]
Samarajeewa, S.; Shrestha, R.; Elsabahy, M.; Karwa, A.; Li, A.; Zentay, R.P.; Kostelc, J.G.; Dorshow, R.B.; Wooley, K.L. In vitro efficacy of paclitaxel-loaded dual-responsive shell cross-linked polymer nanoparticles having orthogonally degradable disulfide cross-linked corona and polyester core domains. Mol. Pharm., 2013, 10(3), 1092-1099.
[http://dx.doi.org/10.1021/mp3005897] [PMID: 23421959]
[127]
Abouelmagd, S.A.; Ku, Y.J.; Yeo, Y. Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. J. Drug Target., 2015, 23(7-8), 725-735.
[http://dx.doi.org/10.3109/1061186X.2015.1054829] [PMID: 26453168]
[128]
Liu, R.; Colby, A.H.; Gilmore, D.; Schulz, M.; Zeng, J.; Padera, R.F.; Shirihai, O.; Grinstaff, M.W.; Colson, Y.L. Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma. Biomaterials, 2016, 102, 175-186.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.031] [PMID: 27343465]
[129]
Colby, A.H.; Liu, R.; Schulz, M.D.; Padera, R.F.; Colson, Y.L.; Grinstaff, M.W. Two-step delivery: Exploiting the partition coefficient concept to increase intratumoral paclitaxel concentrations in vivo using responsive nanoparticles. Sci. Rep.-UK, 2016, 6, 18720.
[130]
Yang, X.; Cai, X.; Yu, A.; Xi, Y.; Zhai, G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J. Colloid Interface Sci., 2017, 496, 311-326.
[http://dx.doi.org/10.1016/j.jcis.2017.02.033] [PMID: 28237749]
[131]
Huang, D.; Zhuang, Y.; Shen, H.; Yang, F.; Wang, X.; Wu, D. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Mater. Sci. Eng. C, 2018, 82, 60-68.
[http://dx.doi.org/10.1016/j.msec.2017.08.063] [PMID: 29025675]
[132]
Song, Y.; Cai, H.; Yin, T.; Huo, M.; Ma, P.; Zhou, J.; Lai, W. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int. J. Nanomedicine, 2018, 13, 1585-1600.
[http://dx.doi.org/10.2147/IJN.S155383] [PMID: 29588586]
[133]
Esfandyari-Manesh, M.; Darvishi, B.; Ishkuh, F.A.; Shahmoradi, E.; Mohammadi, A.; Javanbakht, M.; Dinarvand, R.; Atyabi, F. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity. Mater. Sci. Eng. C, 2016, 62, 626-633.
[http://dx.doi.org/10.1016/j.msec.2016.01.059] [PMID: 26952466]
[134]
Nag, M.; Gajbhiye, V.; Kesharwani, P.; Jain, N.K. Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells. Colloids Surf. B Biointerfaces, 2016, 148, 363-370.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.059] [PMID: 27632697]
[135]
Yu, K.; Zhao, J.; Zhang, Z.; Gao, Y.; Zhou, Y.; Teng, L.; Li, Y. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int. J. Pharm., 2016, 497(1-2), 78-87.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.033] [PMID: 26617314]
[136]
Luo, Y.Y.; Xiong, X.Y.; Cheng, F.; Gong, Y.C.; Li, Z.L.; Li, Y.P. The targeting properties of folate-conjugated Pluronic F127/poly (lactic-co-glycolic) nanoparticles. Int. J. Biol. Macromol., 2017, 105(Pt 1), 711-719.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.085] [PMID: 28716749]
[137]
Cerqueira, B.B.S.; Lasham, A.; Shelling, A.N.; Al-Kassas, R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C, 2017, 76, 593-600.
[http://dx.doi.org/10.1016/j.msec.2017.03.121] [PMID: 28482569]
[138]
Wang, G.; Wang, Z.; Li, C.; Duan, G.; Wang, K.; Li, Q.; Tao, T. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed. Pharmacother., 2018, 106, 275-284.
[http://dx.doi.org/10.1016/j.biopha.2018.06.137] [PMID: 29966971]
[139]
Duan, T.; Xu, Z.; Sun, F.; Wang, Y.; Zhang, J.; Luo, C.; Wang, M. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed. Pharmacother., 2019, 117109121
[http://dx.doi.org/10.1016/j.biopha.2019.109121] [PMID: 31252265]
[140]
Schleich, N.; Po, C.; Jacobs, D.; Ucakar, B.; Gallez, B.; Danhier, F.; Préat, V. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release, 2014, 194, 82-91.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.059] [PMID: 25178270]
[141]
Nguyen, Q.V.; Huynh, D.P.; Park, J.H.; Lee, D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur. Polym. J., 2015, 72, 602-619.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.016]
[142]
Cheng, Y.; He, C.; Ding, J.; Xiao, C.; Zhuang, X.; Chen, X. Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34(38), 10338-10347.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.064] [PMID: 24095250]
[143]
Lin, Z.; Gao, W.; Hu, H.; Ma, K.; He, B.; Dai, W.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J. Control. Release, 2014, 174, 161-170.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.026] [PMID: 24512789]
[144]
Xu, S.; Fan, H.; Yin, L.; Zhang, J.; Dong, A.; Deng, L.; Tang, H. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. Eur. J. Pharm. Biopharm., 2016, 104, 251-259.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.010] [PMID: 27185379]
[145]
Sun, B.; Taha, M.S.; Ramsey, B.; Torregrosa-Allen, S.; Elzey, B.D.; Yeo, Y. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals. J. Control. Release, 2016, 235, 91-98.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.056] [PMID: 27238443]
[146]
Chen, T.; Gong, T.; Zhao, T.; Liu, X.; Fu, Y.; Zhang, Z.; Gong, T. Paclitaxel loaded phospholipid-based gel as a drug delivery system for local treatment of glioma. Int. J. Pharm., 2017, 528(1-2), 127-132.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.013] [PMID: 28596136]
[147]
Zheng, C.; Gao, H.; Yang, D.P.; Liu, M.; Cheng, H.; Wu, Y.L.; Loh, X.J. PCL-based thermo-gelling polymers for in vivo delivery of chemotherapeutics to tumors. Mater. Sci. Eng. C, 2017, 74, 110-116.
[http://dx.doi.org/10.1016/j.msec.2017.02.005] [PMID: 28254274]
[148]
Qian, H.; Qian, K.; Cai, J.; Yang, Y.; Zhu, L.; Liu, B. Therapy for gastric cancer with peritoneal metastasis using injectable albumin hydrogel hybridized with paclitaxel-loaded red blood cell membrane nanoparticles. ACS Biomater. Sci. Eng., 2019, 5(2), 1100-1112.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01557]
[149]
Zhang, K.; Zhou, L.; Chen, F.; Chen, Y.; Luo, X. Injectable gel self-assembled by paclitaxel itself for in situ inhibition of tumor growth. J. Control. Release, 2019, 315, 197-205.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.002] [PMID: 31669210]
[150]
Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov., 2008, 7(3), 255-270.
[http://dx.doi.org/10.1038/nrd2468] [PMID: 18219308]
[151]
Luo, C.; Sun, J.; Sun, B.; He, Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol. Sci., 2014, 35(11), 556-566.
[http://dx.doi.org/10.1016/j.tips.2014.09.008] [PMID: 25441774]
[152]
Sohn, J.S.; Jin, J.I.; Hess, M.; Jo, B.W. Polymer prodrug approaches applied to paclitaxel Polym. Chem.-UK, 2010, 1(6), 778-792.
[http://dx.doi.org/10.1039/b9py00351g]
[153]
Arpicco, S.; Stella, B.; Schiavon, O.; Milla, P.; Zonari, D.; Cattel, L. Preparation and characterization of novel poly(ethylene glycol) paclitaxel derivatives. Int. J. Pharm., 2013, 454(2), 653-659.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.027] [PMID: 23701999]
[154]
Louage, B.; Nuhn, L.; Risseeuw, M.D.; Vanparijs, N.; De Coen, R.; Karalic, I.; Van Calenbergh, S.; De Geest, B.G. Well-defined polymer-paclitaxel prodrugs by a grafting-from-drug approach. Angew. Chem. Int. Ed. Engl., 2016, 55(39), 11791-11796.
[http://dx.doi.org/10.1002/anie.201605892] [PMID: 27560940]
[155]
Hou, H.; Zhang, D.; Lin, J.; Zhang, Y.; Li, C.; Wang, Z.; Ren, J.; Yao, M.; Wong, K.H.; Wang, Y. Zein-paclitaxel prodrug nanoparticles for redox-triggered drug delivery and enhanced therapeutic efficiency. J. Agric. Food Chem., 2018, 66(44), 11812-11822.
[http://dx.doi.org/10.1021/acs.jafc.8b04627] [PMID: 30339011]
[156]
Zhu, L.; Wang, T.; Perche, F.; Taigind, A.; Torchilin, V.P. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc. Natl. Acad. Sci. USA, 2013, 110(42), 17047-17052.
[http://dx.doi.org/10.1073/pnas.1304987110] [PMID: 24062440]
[157]
Satsangi, A.; Roy, S.S.; Satsangi, R.K.; Vadlamudi, R.K.; Ong, J.L. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol. Pharm., 2014, 11(6), 1906-1918.
[http://dx.doi.org/10.1021/mp500128k] [PMID: 24847940]
[158]
Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release, 2011, 152(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[159]
Saito, G.; Swanson, J.A.; Lee, K-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities. Adv. Drug Deliv. Rev., 2003, 55(2), 199-215.
[http://dx.doi.org/10.1016/S0169-409X(02)00179-5] [PMID: 12564977]
[160]
Chuan, X.; Song, Q.; Lin, J.; Chen, X.; Zhang, H.; Dai, W.; He, B.; Wang, X.; Zhang, Q. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: Synthesis, characterization, and antitumor activity in vitro and in vivo. Mol. Pharm., 2014, 11(10), 3656-3670.
[http://dx.doi.org/10.1021/mp500399j] [PMID: 25208098]
[161]
Ding, Y.; Chen, W.; Hu, J.; Du, M.; Yang, D. Polymerizable disulfide paclitaxel prodrug for controlled drug delivery. Mater. Sci. Eng. C, 2014, 44, 386-390.
[http://dx.doi.org/10.1016/j.msec.2014.08.046] [PMID: 25280719]
[162]
Fu, Q.; Wang, Y.; Ma, Y.; Zhang, D.; Fallon, J.K.; Yang, X.; Liu, D.; He, Z.; Liu, F. Programmed hydrolysis in designing paclitaxel prodrug for nanocarrier assembly. Sci. Rep.-UK, 2015, 5, 12023.
[http://dx.doi.org/10.1038/srep12023]
[163]
Li, N.; Cai, H.; Jiang, L.; Hu, J.; Bains, A.; Hu, J.; Gong, Q.; Luo, K.; Gu, Z. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl. Mater. Interfaces, 2017, 9(8), 6865-6877.
[http://dx.doi.org/10.1021/acsami.6b15505] [PMID: 28112512]
[164]
Shan, L.; Cui, S.; Du, C.; Wan, S.; Qian, Z.; Achilefu, S.; Gu, Y. A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Biomaterials, 2012, 33(1), 146-162.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.025] [PMID: 21959006]
[165]
Zhang, G.; Zhang, M.; He, J.; Ni, P. Synthesis and characterization of a new multifunctional polymeric prodrug paclitaxelpolyphosphoester-folic acid for targeted drug delivery Polym. Chem.-UK, 2013, 4(16), 4515-4525.
[http://dx.doi.org/10.1039/c3py00419h]
[166]
Shan, L.; Liu, M.; Wu, C.; Zhao, L.; Li, S.; Xu, L.; Cao, W.; Gao, G.; Gu, Y. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy. Int. J. Nanomedicine, 2015, 10, 5571-5591.
[http://dx.doi.org/10.2147/IJN.S85402] [PMID: 26366078]
[167]
Thapa, P.; Li, M.; Karki, R.; Bio, M.; Rajaputra, P.; Nkepang, G.; Woo, S.; You, Y. Folate-PEG conjugates of a far-red light-activatable paclitaxel prodrug to improve selectivity toward folate receptor-positive cancer cells. ACS Omega, 2017, 2(10), 6349-6360.
[http://dx.doi.org/10.1021/acsomega.7b01105] [PMID: 29104951]
[168]
Huo, M.; Zhu, Q.; Wu, Q.; Yin, T.; Wang, L.; Yin, L.; Zhou, J. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy. J. Pharm. Sci., 2015, 104(6), 2018-2028.
[http://dx.doi.org/10.1002/jps.24438] [PMID: 25820241]
[169]
Yin, T.; Wu, Q.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Well-defined redox-sensitive polyethene glycol-paclitaxel prodrug conjugate for tumor-specific delivery of paclitaxel using octreotide for tumor targeting. Mol. Pharm., 2015, 12(8), 3020-3031.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00280] [PMID: 26086430]
[170]
Zhong, Y.; Goltsche, K.; Cheng, L.; Xie, F.; Meng, F.; Deng, C.; Zhong, Z.; Haag, R. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials, 2016, 84, 250-261.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.049] [PMID: 26851390]
[171]
Wang, W.; Li, M.; Zhang, Z.; Cui, C.; Zhou, J.; Yin, L.; Lv, H. Design, synthesis and evaluation of multi-functional tLyP-1-hyaluronic acid-paclitaxel conjugate endowed with broad anticancer scope. Carbohydr. Polym., 2017, 156, 97-107.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.100] [PMID: 27842858]
[172]
Chen, Y.; Peng, F.; Song, X.; Wu, J.; Yao, W.; Gao, X. Conjugation of paclitaxel to C-6 hexanediamine-modified hyaluronic acid for targeted drug delivery to enhance antitumor efficacy. Carbohydr. Polym., 2018, 181, 150-158.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.017] [PMID: 29253957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy