Abstract
The epidermal growth factor receptor (EGFR) is a membrane-bound, 170 kDa, protein tyrosine kinase that plays an important role in tumorigenesis. The EGFR gene, which is composed of over 168 kb of sequence, including a 123-kb first intron, is frequently amplified and rearranged in malignant gliomas leading to the expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common DM in gliomas is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of exons 2 through 7 and intervening introns. In addition, some human gliomas express 180- to 190-kDa TDM, which are constitutively active and highly oncogenic. Both DM and TDM arise by recombination of introns that contain sequences with homology to the recombination signal sequence (RSS) heptamers and nonamers present in the V(D)J region of the immunoglobin and T lymphocyte antigen receptor genes. V(D)J RSS have also been identified in certain proto-oncogenes like bcl-2 that are involved in translocations associated with the development of human lymphomas and in other genes such as hypoxanthine-guainine phosphoribosyl transferase (HPRT) in which deletion mutations and intron rearrangements are a common phenomenon. Together with the expression of recombination associated gene (RAG) and nonhomologous end-joining (NHEJ) proteins in gliomas, these observation suggest that aberrant activity of the V(D)J recombinase may be involved in the activation of proto-oncogenes in both liquid and solid tumors.
Keywords: egfr, egfrv, glioma, intron recombination, tandem duplication, v(d)j
Current Genomics
Title: EGFR Intron Recombination in Human Gliomas: Inappropriate Diversion of V(D)J Recombination?
Volume: 8 Issue: 3
Author(s): Robert A. Fenstermaker and Michael J. Ciesielski
Affiliation:
Keywords: egfr, egfrv, glioma, intron recombination, tandem duplication, v(d)j
Abstract: The epidermal growth factor receptor (EGFR) is a membrane-bound, 170 kDa, protein tyrosine kinase that plays an important role in tumorigenesis. The EGFR gene, which is composed of over 168 kb of sequence, including a 123-kb first intron, is frequently amplified and rearranged in malignant gliomas leading to the expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common DM in gliomas is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of exons 2 through 7 and intervening introns. In addition, some human gliomas express 180- to 190-kDa TDM, which are constitutively active and highly oncogenic. Both DM and TDM arise by recombination of introns that contain sequences with homology to the recombination signal sequence (RSS) heptamers and nonamers present in the V(D)J region of the immunoglobin and T lymphocyte antigen receptor genes. V(D)J RSS have also been identified in certain proto-oncogenes like bcl-2 that are involved in translocations associated with the development of human lymphomas and in other genes such as hypoxanthine-guainine phosphoribosyl transferase (HPRT) in which deletion mutations and intron rearrangements are a common phenomenon. Together with the expression of recombination associated gene (RAG) and nonhomologous end-joining (NHEJ) proteins in gliomas, these observation suggest that aberrant activity of the V(D)J recombinase may be involved in the activation of proto-oncogenes in both liquid and solid tumors.
Export Options
About this article
Cite this article as:
Fenstermaker A. Robert and Ciesielski J. Michael, EGFR Intron Recombination in Human Gliomas: Inappropriate Diversion of V(D)J Recombination?, Current Genomics 2007; 8 (3) . https://dx.doi.org/10.2174/138920207780833838
DOI https://dx.doi.org/10.2174/138920207780833838 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Editorial (Hot Topic: Translational Medicine is Promoting Cross-talk of Interdiscipline)
Anti-Cancer Agents in Medicinal Chemistry Mesenchymal stem cell therapy for inflammatory bowel diseases: promise and challenge
Current Stem Cell Research & Therapy Emergence of Ad-Mediated Combination Therapy Against Cancer: What to Expect?
Current Cancer Drug Targets Antagonists of Growth Hormone-Releasing Hormone in Oncology
Combinatorial Chemistry & High Throughput Screening The Anti-cancer Actions of Vitamin D
Anti-Cancer Agents in Medicinal Chemistry Novel Phospholipid-Based Labrasol Nanomicelles Loaded Flavonoids for Oral Delivery with Enhanced Penetration and Anti-Brain Tumor Efficiency
Current Drug Delivery The Role of Mammalian Target of Rapamycin (mTOR) Inhibitors in the Treatment of Solid Tumors
Current Cancer Therapy Reviews One Hundred Faces of Cyclopamine
Current Pharmaceutical Design Patent Selections:
Current Biomarkers (Discontinued) The Need for Calcium Channels in Cell Proliferation
Recent Patents on Anti-Cancer Drug Discovery Development of Selective High Affinity Antagonists, Agonists, and Radioligands for the P2Y1 Receptor
Combinatorial Chemistry & High Throughput Screening Drug Design Studies of the Novel Antitumor Targets Carbonic Anhydrase IX and XII
Current Medicinal Chemistry Sphingolipid Modulation: A Strategy for Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry LRRC4 Inhibits Glioma Cell Growth and Invasion Through a miR-185- Dependent Pathway
Current Cancer Drug Targets Proteomic Analysis of Mitochondrial Proteins on the Mechanism of Apoptotic Under Amorphophallus konjac Tuber (KONJAC) Extracts in Gas tric Cancer Cell
Current Proteomics State of Art and Recent Developments of Anti-Cancer Strategies Based on TRAIL
Recent Patents on Anti-Cancer Drug Discovery Paraneoplastic Neurological Syndromes - Diagnosis and Management
Current Pharmaceutical Design Advances in Synergistic Combinations of Chinese Herbal Medicine for the Treatment of Cancer
Current Cancer Drug Targets Synthetic Hammerhead Ribozymes as Therapeutic Tools to Control Disease Genes
Current Gene Therapy Tumour Re-Differentiation Effect of Retinoic Acid: A Novel Therapeutic Approach for Advanced Thyroid Cancer
Current Pharmaceutical Design