Abstract
The epidermal growth factor receptor (EGFR) is a membrane-bound, 170 kDa, protein tyrosine kinase that plays an important role in tumorigenesis. The EGFR gene, which is composed of over 168 kb of sequence, including a 123-kb first intron, is frequently amplified and rearranged in malignant gliomas leading to the expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common DM in gliomas is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of exons 2 through 7 and intervening introns. In addition, some human gliomas express 180- to 190-kDa TDM, which are constitutively active and highly oncogenic. Both DM and TDM arise by recombination of introns that contain sequences with homology to the recombination signal sequence (RSS) heptamers and nonamers present in the V(D)J region of the immunoglobin and T lymphocyte antigen receptor genes. V(D)J RSS have also been identified in certain proto-oncogenes like bcl-2 that are involved in translocations associated with the development of human lymphomas and in other genes such as hypoxanthine-guainine phosphoribosyl transferase (HPRT) in which deletion mutations and intron rearrangements are a common phenomenon. Together with the expression of recombination associated gene (RAG) and nonhomologous end-joining (NHEJ) proteins in gliomas, these observation suggest that aberrant activity of the V(D)J recombinase may be involved in the activation of proto-oncogenes in both liquid and solid tumors.
Keywords: egfr, egfrv, glioma, intron recombination, tandem duplication, v(d)j
Current Genomics
Title: EGFR Intron Recombination in Human Gliomas: Inappropriate Diversion of V(D)J Recombination?
Volume: 8 Issue: 3
Author(s): Robert A. Fenstermaker and Michael J. Ciesielski
Affiliation:
Keywords: egfr, egfrv, glioma, intron recombination, tandem duplication, v(d)j
Abstract: The epidermal growth factor receptor (EGFR) is a membrane-bound, 170 kDa, protein tyrosine kinase that plays an important role in tumorigenesis. The EGFR gene, which is composed of over 168 kb of sequence, including a 123-kb first intron, is frequently amplified and rearranged in malignant gliomas leading to the expression of oncogenic deletion (DM) and tandem duplication (TDM) mutants. The most common DM in gliomas is EGFRvIII, which arises from recombination between introns 1 and 7 with deletion of exons 2 through 7 and intervening introns. In addition, some human gliomas express 180- to 190-kDa TDM, which are constitutively active and highly oncogenic. Both DM and TDM arise by recombination of introns that contain sequences with homology to the recombination signal sequence (RSS) heptamers and nonamers present in the V(D)J region of the immunoglobin and T lymphocyte antigen receptor genes. V(D)J RSS have also been identified in certain proto-oncogenes like bcl-2 that are involved in translocations associated with the development of human lymphomas and in other genes such as hypoxanthine-guainine phosphoribosyl transferase (HPRT) in which deletion mutations and intron rearrangements are a common phenomenon. Together with the expression of recombination associated gene (RAG) and nonhomologous end-joining (NHEJ) proteins in gliomas, these observation suggest that aberrant activity of the V(D)J recombinase may be involved in the activation of proto-oncogenes in both liquid and solid tumors.
Export Options
About this article
Cite this article as:
Fenstermaker A. Robert and Ciesielski J. Michael, EGFR Intron Recombination in Human Gliomas: Inappropriate Diversion of V(D)J Recombination?, Current Genomics 2007; 8 (3) . https://dx.doi.org/10.2174/138920207780833838
DOI https://dx.doi.org/10.2174/138920207780833838 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
A Review of Select Recent Patents on Novel Nanocarriers
Recent Patents on Drug Delivery & Formulation Mass Spectrometric Imaging of the Nervous System
Current Pharmaceutical Design Lipid-based Nanocarriers As An Alternative for Oral Delivery of Poorly Water- Soluble Drugs: Peroral and Mucosal Routes
Current Medicinal Chemistry The Role of Brain Cholesterol and its Oxidized Products in Alzheimer's Disease
Current Alzheimer Research Somatostatin, Somatostatin Analogs and Somatostatin Receptor Dynamics in the Biology of Cancer Progression
Current Molecular Medicine Systemic Redox Biomarkers in Neurodegenerative Diseases
Current Drug Metabolism Targeted Delivery of Anti-Inflammatory Agents to Tumors
Current Pharmaceutical Design mTOR: A Novel Therapeutic Target for Diseases of Multiple Systems
Current Drug Targets Cancer Stem Cells with Overexpression of Neuronal Markers Enhance Chemoresistance and Invasion in Retinoblastoma
Current Cancer Drug Targets Circulating Tumor Stem Cells as Biomarkers for Cancer Progression
Recent Patents on Biomarkers The Mad2-Binding Protein p31<sup>comet</sup> as a Potential Target for Human Cancer Therapy
Current Cancer Drug Targets A Stress Repair Mechanism That Maintains Vertebrate Structure During Stress
Cardiovascular & Hematological Disorders-Drug Targets mTOR Inhibition and the Tumor Vasculature
Current Angiogenesis (Discontinued) Single-Photon Emission Computed Tomography Tracers for Predicting and Monitoring Cancer Therapy
Current Pharmaceutical Biotechnology Anaplastic Lymphoma Kinase as a Therapeutic Target in Anaplastic Large Cell Lymphoma, Non-Small Cell Lung Cancer and Neuroblastoma
Anti-Cancer Agents in Medicinal Chemistry The Role of DNA Methylation in the Pathogenesis and Treatment of Cancer
Current Clinical Pharmacology A Targeted Therapy for Protein and Lipid Kinases in Chronic Lymphocytic Leukemia
Current Medicinal Chemistry Targeting the Hedgehog Pathway: The development of Cyclopamine and the Development of Anti-Cancer Drugs Targeting the Hedgehog Pathway
Mini-Reviews in Medicinal Chemistry Clinical Applications of <sup>18</sup>F-FDG PET/CT in Monitoring Anti-cancer Therapies
Current Pharmaceutical Biotechnology Concepts of Egr-1 Activation – A Hub for Signal Transduction Cascades
Current Signal Transduction Therapy