Review Article

A Glance on the Role of Bacterial Siderophore from the Perspectives of Medical and Biotechnological Approaches

Author(s): Manaf AlMatar*, Osman Albarri*, Essam A. Makky*, Işıl Var and Fatih Köksal

Volume 21, Issue 13, 2020

Page: [1326 - 1343] Pages: 18

DOI: 10.2174/1389450121666200621193018

Price: $65

Abstract

Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.

Keywords: Siderophores, microbial virulence, secretion mechanism, interaction with metals, immune response, medical application.

Graphical Abstract

[1]
Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small 2005; 1(5): 482-501.
[http://dx.doi.org/10.1002/smll.200500006] [PMID: 17193474]
[2]
Gamit D, Tank S. Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). Int J Res Pure Appl Microbiol 2014; 4(1): 20.
[3]
Taylor KG, Konhauser KO. Iron in Earth surface systems: A major player in chemical and biological processes. Elements 2011; 7(2): 83.
[http://dx.doi.org/10.2113/gselements.7.2.83]
[4]
Messenger AJ, Barclay R. Bacteria, iron and pathogenicity. Biochem Educ 1983; 11(2): 54.
[http://dx.doi.org/10.1016/0307-4412(83)90043-2]
[5]
Fardeau S, Mullie C, Dassonville-Klimpt A, Audic N, Sonnet P. Bacterial iron uptake: a promising solution against multidrug resistant bacteria Science against microbial pathogens: communicating current research and technological advances 2011; 2: 695.
[6]
Glick R, Gilmour C, Tremblay J, et al. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 2010; 192(12): 2973-80.
[http://dx.doi.org/10.1128/JB.01601-09] [PMID: 20154129]
[7]
Cai Y, Wang R, An M-M, Liang BB. Iron-Depletion prevents biofilm formation in Pseudomonas Aeruginosa through twitching mobility and quorum sensing. Braz J Microbiol 2010; 41(1): 37-41.
[http://dx.doi.org/10.1590/S1517-83822010000100008] [PMID: 24031461]
[8]
Ahmed E, Holmström SJ. Siderophores in environmental research: roles and applications. Microb Biotechnol 2014; 7(3): 196-208.
[http://dx.doi.org/10.1111/1751-7915.12117] [PMID: 24576157]
[9]
Sah S, Singh R. Siderophore: structural and functional characterisation–a comprehensive review. Agriculture (Polnohospodárstvo) 2015; 61(3): 97.
[http://dx.doi.org/10.1515/agri-2015-0015]
[10]
Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P. Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int 2016; 23(5): 3984-99.
[http://dx.doi.org/10.1007/s11356-015-4294-0] [PMID: 25758420]
[11]
Boukhalfa H, Lack JG, Reilly SD, Hersman LE, Neu MP. Siderophore production and facilitated uptake of iron plutonium in p putida. Los Alamos National Laboratory 2003.
[http://dx.doi.org/10.1063/1.1594658]
[12]
Stachelhaus T, Mootz HD, Marahiel MA. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 1999; 6(8): 493-505.
[http://dx.doi.org/10.1016/S1074-5521(99)80082-9] [PMID: 10421756]
[13]
Grünewald J, Marahiel MA. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 2006; 70(1): 121-46.
[http://dx.doi.org/10.1128/MMBR.70.1.121-146.2006] [PMID: 16524919]
[14]
Schmelz S, Kadi N, McMahon SA, et al. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nat Chem Biol 2009; 5(3): 174-82.
[http://dx.doi.org/10.1038/nchembio.145] [PMID: 19182782]
[15]
Kurth C, Kage H, Nett M. Siderophores as molecular tools in medical and environmental applications. Org Biomol Chem 2016; 14(35): 8212-27.
[http://dx.doi.org/10.1039/C6OB01400C] [PMID: 27492756]
[16]
Kantola J, Kunnari T, Mäntsälä P, Ylihonkoa K. Expanding the scope of aromatic polyketides by combinatorial biosynthesis. Comb Chem High Throughput Screen 2003; 6(6): 501-12.
[http://dx.doi.org/10.2174/138620703106298680] [PMID: 14529376]
[17]
Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat Prod Rep 2001; 18(4): 380-416.
[http://dx.doi.org/10.1039/a909079g] [PMID: 11548049]
[18]
Zane HK, Naka H, Rosconi F, Sandy M, Haygood MG, Butler A. Biosynthesis of amphi-enterobactin siderophores by Vibrio harveyi BAA-1116: identification of a bifunctional nonribosomal peptide synthetase condensation domain. J Am Chem Soc 2014; 136(15): 5615-8.
[http://dx.doi.org/10.1021/ja5019942] [PMID: 24701966]
[19]
Carroll CS, Moore MM. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2018; 53(4): 356-81.
[http://dx.doi.org/10.1080/10409238.2018.1476449] [PMID: 29863423]
[20]
Drake EJ, Gulick AM. Structural characterization and high-throughput screening of inhibitors of PvdQ, an NTN hydrolase involved in pyoverdine synthesis. ACS Chem Biol 2011; 6(11): 1277-86.
[http://dx.doi.org/10.1021/cb2002973] [PMID: 21892836]
[21]
Yeterian E, Martin LW, Guillon L, Journet L, Lamont IL, Schalk IJ. Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 2010; 38(5): 1447-59.
[http://dx.doi.org/10.1007/s00726-009-0358-0] [PMID: 19787431]
[22]
Kem MP, Butler A. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications. Biometals 2015; 28(3): 445-59.
[http://dx.doi.org/10.1007/s10534-015-9827-y] [PMID: 25677460]
[23]
Wandersman C, Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 2004; 58: 611-47.
[http://dx.doi.org/10.1146/annurev.micro.58.030603.123811] [PMID: 15487950]
[24]
Lau CK, Krewulak KD, Vogel HJ. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol Rev 2016; 40(2): 273-98.
[http://dx.doi.org/10.1093/femsre/fuv049] [PMID: 26684538]
[25]
Smith AD, Wilks A. In Current topics in membranes. Elsevier 2012; Vol. 69.
[26]
Contreras H, Chim N, Credali A, Goulding CW. Heme uptake in bacterial pathogens. Curr Opin Chem Biol 2014; 19: 34-41.
[http://dx.doi.org/10.1016/j.cbpa.2013.12.014] [PMID: 24780277]
[27]
Crosa JH, Mey AR, Payne SM. Iron transport in bacteria ASM press Washington. DC 2004.
[28]
Page MG. Siderophore conjugates. Ann N Y Acad Sci 2013; 1277(1): 115-26.
[http://dx.doi.org/10.1111/nyas.12024] [PMID: 23346861]
[29]
Raymond KN, Müller G, Matzanke B F. Structural Chemistry. Springer 1984.
[30]
Chu BC, Garcia-Herrero A, Johanson TH, et al. Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 2010; 23(4): 601-11.
[http://dx.doi.org/10.1007/s10534-010-9361-x] [PMID: 20596754]
[31]
Karlsson M, Hannavy K, Higgins CF. ExbB acts as a chaperone-like protein to stabilize TonB in the cytoplasm. Mol Microbiol 1993; 8(2): 389-96.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01582.x] [PMID: 8100348]
[32]
Larsen RA, Thomas MG, Postle K. Protonmotive force, ExbB and ligand-bound FepA drive conformational changes in TonB. Mol Microbiol 1999; 31(6): 1809-24.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01317.x] [PMID: 10209752]
[33]
Paquelin A, Ghigo JM, Bertin S, Wandersman C. Characterization of HasB, a Serratia marcescens TonB-like protein specifically involved in the haemophore-dependent haem acquisition system. Mol Microbiol 2001; 42(4): 995-1005.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02628.x] [PMID: 11737642]
[34]
Ebrahim S, Usha K, Singh B, Mendez-Vilas A. Science against microbial pathogens: communicating current research and technological advances. Méndez-Vilas. Formatex 2011; p. 1043.
[35]
Sverzhinsky A, Fabre L, Cottreau AL, et al. Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. Structure 2014; 22(5): 791-7.
[http://dx.doi.org/10.1016/j.str.2014.02.010] [PMID: 24657092]
[36]
Meux SC. The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport 2009.
[37]
Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep 2010; 27(5): 637-57.
[http://dx.doi.org/10.1039/b906679a] [PMID: 20376388]
[38]
Hoette TM, Clifton MC, Zawadzka AM, Holmes MA, Strong RK, Raymond KN. Immune interference in Mycobacterium tuberculosis intracellular iron acquisition through siderocalin recognition of carboxymycobactins. ACS Chem Biol 2011; 6(12): 1327-31.
[http://dx.doi.org/10.1021/cb200331g] [PMID: 21978368]
[39]
Allred BE, Correnti C, Clifton MC, Strong RK, Raymond KN. Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae. ACS Chem Biol 2013; 8(9): 1882-7.
[http://dx.doi.org/10.1021/cb4002552] [PMID: 23755875]
[40]
Fischbach MA, Lin H, Liu DR, Walsh CT. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol 2006; 2(3): 132-8.
[http://dx.doi.org/10.1038/nchembio771] [PMID: 16485005]
[41]
Valdebenito M, Müller SI, Hantke K. Special conditions allow binding of the siderophore salmochelin to siderocalin (NGAL-lipocalin). FEMS Microbiol Lett 2007; 277(2): 182-7.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00956.x] [PMID: 18031338]
[42]
Ekins A, Khan AG, Shouldice SR, Schryvers AB. Lactoferrin receptors in gram-negative bacteria: insights into the iron acquisition process. Biometals 2004; 17(3): 235-43.
[http://dx.doi.org/10.1023/B:BIOM.0000027698.43322.60] [PMID: 15222471]
[43]
Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 2009; 481(1): 1-15.
[http://dx.doi.org/10.1016/j.abb.2008.10.013] [PMID: 18977196]
[44]
Krieg S, Huché F, Diederichs K, et al. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci USA 2009; 106(4): 1045-50.
[http://dx.doi.org/10.1073/pnas.0809406106] [PMID: 19144921]
[45]
Zambolin S, Clantin B, Chami M, et al. Structural basis for haem piracy from host haemopexin by Haemophilus influenzae. Nat Commun 2016; 7: 11590.
[http://dx.doi.org/10.1038/ncomms11590] [PMID: 27188378]
[46]
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3: 90.
[http://dx.doi.org/10.3389/fcimb.2013.00090] [PMID: 24367764]
[47]
Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E. Sideromycins: tools and antibiotics. Biometals 2009; 22(1): 3-13.
[http://dx.doi.org/10.1007/s10534-008-9199-7] [PMID: 19130258]
[48]
Page M G. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics Clinical Infectious Diseases 2019; 697: S529.
[http://dx.doi.org/10.1093/cid/ciz825]
[49]
Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun 2010; 78(5): 2045-52.
[http://dx.doi.org/10.1128/IAI.01236-09] [PMID: 20160020]
[50]
Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3: 75.
[http://dx.doi.org/10.3389/fcimb.2013.00075] [PMID: 24294593]
[51]
Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 2008; 46: 149-87.
[http://dx.doi.org/10.1146/annurev.phyto.45.062806.094338] [PMID: 18680426]
[52]
Martin P, Marcq I, Magistro G, et al. Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli. PLoS Pathog 2013; 9(7) e1003437.
[http://dx.doi.org/10.1371/journal.ppat.1003437] [PMID: 23853582]
[53]
Watts RE, Totsika M, Challinor VL, et al. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun 2012; 80(1): 333-44.
[http://dx.doi.org/10.1128/IAI.05594-11] [PMID: 21930757]
[54]
ALBARRI O M, Var I, Meral M, Heshmati B, Köksal F. Prevalence of Escherichia coli isolated from meat, chicken and vegetable samples in Turkey. JBSR 2017; 4(3)
[55]
Ballouche M, Cornelis P, Baysse C. Iron metabolism: a promising target for antibacterial strategies. Recent Pat Antiinfect Drug Discov 2009; 4(3): 190-205.
[http://dx.doi.org/10.2174/157489109789318514] [PMID: 19594436]
[56]
Schauer K, Rodionov DA, de Reuse H. New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 2008; 33(7): 330-8.
[http://dx.doi.org/10.1016/j.tibs.2008.04.012] [PMID: 18539464]
[57]
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta (BBA)-. Biomembranes 2008; 1778(9): 1781.
[http://dx.doi.org/10.1016/j.bbamem.2007.07.026]
[58]
Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003; 27(2-3): 215-37.
[http://dx.doi.org/10.1016/S0168-6445(03)00055-X] [PMID: 12829269]
[59]
Ferguson AD, Braun V, Fiedler H-P, Coulton JW, Diederichs K, Welte W. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 2000; 9(5): 956-63.
[http://dx.doi.org/10.1110/ps.9.5.956] [PMID: 10850805]
[60]
Lubelski J, Konings WN, Driessen AJ. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71(3): 463-76.
[http://dx.doi.org/10.1128/MMBR.00001-07] [PMID: 17804667]
[61]
Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D. Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 2009; 22(4): 615-24.
[http://dx.doi.org/10.1007/s10534-009-9219-2] [PMID: 19214755]
[62]
Boyd PW, Ellwood MJ. The biogeochemical cycle of iron in the ocean. Nat Geosci 2010; 3(10): 675.
[http://dx.doi.org/10.1038/ngeo964]
[63]
Leventhal GE, Ackermann M, Schiessl KT. Why microbes secrete molecules to modify their environment: the case of iron-chelating siderophores. J R Soc Interface 2019; 16(150) 20180674.
[http://dx.doi.org/10.1098/rsif.2018.0674] [PMID: 30958157]
[64]
Völker C, Wolf-Gladrow DA. Physical limits on iron uptake mediated by siderophores or surface reductases. Mar Chem 1999; 65(3-4): 227.
[http://dx.doi.org/10.1016/S0304-4203(99)00004-3]
[65]
Vetter YA, Deming JW, Jumars PA, Krieger-Brockett BB. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb Ecol 1998; 36(1): 75-92.
[http://dx.doi.org/10.1007/s002489900095] [PMID: 9622567]
[66]
Horiyama T, Nishino K. AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Escherichia coli. PLoS One 2014; 9(9) e108642.
[http://dx.doi.org/10.1371/journal.pone.0108642] [PMID: 25259870]
[67]
Driscoll WW, Pepper JW. Theory for the evolution of diffusible external goods. Evolution 2010; 64(9): 2682-7.
[http://dx.doi.org/10.1111/j.1558-5646.2010.01002.x] [PMID: 20394658]
[68]
Allen B, Gore J, Nowak MA. Spatial dilemmas of diffusible public goods. eLife 2013; 2 e01169.
[http://dx.doi.org/10.7554/eLife.01169] [PMID: 24347543]
[69]
Dobay A, Bagheri HC, Messina A, Kümmerli R, Rankin DJ. Interaction effects of cell diffusion, cell density and public goods properties on the evolution of cooperation in digital microbes. J Evol Biol 2014; 27(9): 1869-77.
[http://dx.doi.org/10.1111/jeb.12437] [PMID: 24962623]
[70]
Kümmerli R, Griffin AS, West SA, Buckling A, Harrison F. Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences 276(1672): 3531.
[71]
Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 2011; 13(11): 2844-54.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02556.x] [PMID: 21883800]
[72]
Neu MP, Matonic JH, Ruggiero CE, Scott BL. Structural characterization of a plutonium (IV) siderophore complex: single‐crystal structure of pu‐desferrioxamine E. Angew Chem Int Ed Engl 2000; 39(8): 1442-4.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1442:AID-ANIE1442>3.0.CO;2-F] [PMID: 10777635]
[73]
Baysse C, De Vos D, Naudet Y, et al. Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 2000; 146(Pt 10): 2425-34.
[http://dx.doi.org/10.1099/00221287-146-10-2425] [PMID: 11021919]
[74]
Braud A, Geoffroy V, Hoegy F, Mislin GL, Schalk IJ. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol Rep 2010; 2(3): 419-25.
[http://dx.doi.org/10.1111/j.1758-2229.2009.00126.x] [PMID: 23766115]
[75]
Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 2009; 11(5): 1079-91.
[http://dx.doi.org/10.1111/j.1462-2920.2008.01838.x] [PMID: 19207567]
[76]
Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 2012; 8(8): 731-6.
[http://dx.doi.org/10.1038/nchembio.1020] [PMID: 22772152]
[77]
Kümmerli R, Schiessl KT, Waldvogel T, McNeill K, Ackermann M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol Lett 2014; 17(12): 1536-44.
[http://dx.doi.org/10.1111/ele.12371] [PMID: 25250530]
[78]
Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR. The evolution of siderophore production as a competitive trait. Evolution 2017; 71(6): 1443-55.
[http://dx.doi.org/10.1111/evo.13230] [PMID: 28323325]
[79]
Schiessl KT, Janssen EM-L, Kraemer SM, McNeill K, Ackermann M. Magnitude and mechanism of siderophore-mediated competition at low iron solubility in the Pseudomonas aeruginosa pyochelin system. Front Microbiol 2017; 8: 1964.
[http://dx.doi.org/10.3389/fmicb.2017.01964] [PMID: 29085345]
[80]
Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol 2019; 1.
[PMID: 31748738]
[81]
Deriu E, Liu JZ, Pezeshki M, et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 2013; 14(1): 26-37.
[http://dx.doi.org/10.1016/j.chom.2013.06.007] [PMID: 23870311]
[82]
Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 2017; 105: 68-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.489] [PMID: 27780750]
[83]
Holden VI, Bachman MA. Diverging roles of bacterial siderophores during infection. Metallomics 2015; 7(6): 986-95.
[http://dx.doi.org/10.1039/C4MT00333K] [PMID: 25745886]
[84]
Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 1993; 268(14): 10425-32.
[PMID: 7683678]
[85]
Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432(7019): 917-21.
[http://dx.doi.org/10.1038/nature03104] [PMID: 15531878]
[86]
Gómez-Casado C, Roth-Walter F, Jensen-Jarolim E, Díaz-Perales A, Pacios LF. Modeling iron-catecholates binding to NGAL protein. J Mol Graph Model 2013; 45: 111-21.
[http://dx.doi.org/10.1016/j.jmgm.2013.08.013] [PMID: 24018130]
[87]
Abergel RJ, Moore EG, Strong RK, Raymond KN. Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition. J Am Chem Soc 2006; 128(34): 10998-9.
[http://dx.doi.org/10.1021/ja062476+] [PMID: 16925397]
[88]
Newton SM, Igo JD, Scott DC, Klebba PE. Effect of loop deletions on the binding and transport of ferric enterobactin by FepA. Mol Microbiol 1999; 32(6): 1153-65.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01424.x] [PMID: 10383757]
[89]
Nelson AL, Barasch JM, Bunte RM, Weiser JN. Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 2005; 7(10): 1404-17.
[http://dx.doi.org/10.1111/j.1462-5822.2005.00566.x] [PMID: 16153241]
[90]
Steigedal M, Marstad A, Haug M, et al. Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection. J Immunol 2014; 193(12): 6081-9.
[http://dx.doi.org/10.4049/jimmunol.1401528] [PMID: 25398327]
[91]
Singh V, Yeoh BS, Xiao X, et al. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat Commun 2015; 6(1): 7113.
[http://dx.doi.org/10.1038/ncomms8113] [PMID: 25964185]
[92]
Bister B, Bischoff D, Nicholson GJ, et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 2004; 17(4): 471-81.
[http://dx.doi.org/10.1023/B:BIOM.0000029432.69418.6a] [PMID: 15259369]
[93]
Fischbach MA, Lin H, Zhou L, et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 2006; 103(44): 16502-7.
[http://dx.doi.org/10.1073/pnas.0604636103] [PMID: 17060628]
[94]
Bachman MA, Oyler JE, Burns SH, et al. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 2011; 79(8): 3309-16.
[http://dx.doi.org/10.1128/IAI.05114-11] [PMID: 21576334]
[95]
Zawadzka AM, Kim Y, Maltseva N, et al. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc Natl Acad Sci USA 2009; 106(51): 21854-9.
[http://dx.doi.org/10.1073/pnas.0904793106] [PMID: 19955416]
[96]
Cendrowski S, MacArthur W, Hanna P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 2004; 51(2): 407-17.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03861.x] [PMID: 14756782]
[97]
Vagrali MA. Siderophore production by uropathogenic Escherichia coli. Indian J Pathol Microbiol 2009; 52(1): 126-7.
[http://dx.doi.org/10.4103/0377-4929.44988] [PMID: 19136808]
[98]
Payne SM, Wyckoff EE, Murphy ER, Oglesby AG, Boulette ML, Davies NM. Iron and pathogenesis of Shigella: iron acquisition in the intracellular environment. Biometals 2006; 19(2): 173-80.
[http://dx.doi.org/10.1007/s10534-005-4577-x] [PMID: 16718602]
[99]
Forman S, Paulley JT, Fetherston JD, Cheng Y-Q, Perry RD. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Biometals 2010; 23(2): 275-94.
[http://dx.doi.org/10.1007/s10534-009-9286-4] [PMID: 20049509]
[100]
Shields-Cutler RR, Crowley JR, Hung CS, et al. Human urinary composition controls antibacterial activity of siderocalin. J Biol Chem 2015; 290(26): 15949-60.
[http://dx.doi.org/10.1074/jbc.M115.645812] [PMID: 25861985]
[101]
Allen GF, Toth R, James J, Ganley IG. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 2013; 14(12): 1127-35.
[http://dx.doi.org/10.1038/embor.2013.168] [PMID: 24176932]
[102]
Nagi M, Tanabe K, Nakayama H, et al. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata. Autophagy 2016; 12(8): 1259-71.
[http://dx.doi.org/10.1080/15548627.2016.1183080] [PMID: 27347716]
[103]
Schiavi A, Maglioni S, Palikaras K, et al. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 2015; 25(14): 1810-22.
[http://dx.doi.org/10.1016/j.cub.2015.05.059] [PMID: 26144971]
[104]
Kirienko NV, Kirienko DR, Larkins-Ford J, Wählby C, Ruvkun G, Ausubel FM. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 2013; 13(4): 406-16.
[http://dx.doi.org/10.1016/j.chom.2013.03.003] [PMID: 23601103]
[105]
Kirienko NV, Ausubel FM, Ruvkun G. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2015; 112(6): 1821-6.
[http://dx.doi.org/10.1073/pnas.1424954112] [PMID: 25624506]
[106]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257-73.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[107]
Nairz M, Schleicher U, Schroll A, et al. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. J Exp Med 2013; 210(5): 855-73.
[http://dx.doi.org/10.1084/jem.20121946] [PMID: 23630227]
[108]
Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr 2010; 30: 105-22.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104804] [PMID: 20420524]
[109]
Oexle H, Kaser A, Möst J, et al. Pathways for the regulation of interferon-γ-inducible genes by iron in human monocytic cells. J Leukoc Biol 2003; 74(2): 287-94.
[http://dx.doi.org/10.1189/jlb.0802420] [PMID: 12885946]
[110]
Chandrasekar BS, Yadav S, Victor ES, et al. Interferon-gamma and nitric oxide synthase 2 mediate the aggregation of resident adherent peritoneal exudate cells: implications for the host response to pathogens. PLoS One 2015; 10(6) e0128301.
[http://dx.doi.org/10.1371/journal.pone.0128301] [PMID: 26029930]
[111]
Michels K, Nemeth E, Ganz T, Mehrad B. Hepcidin and host defense against infectious diseases. PLoS Pathog 2015; 11(8) e1004998.
[http://dx.doi.org/10.1371/journal.ppat.1004998] [PMID: 26291319]
[112]
Kim D-K, Jeong J-H, Lee J-M, et al. Inverse agonist of estrogen-related receptor γ controls Salmonella typhimurium infection by modulating host iron homeostasis. Nat Med 2014; 20(4): 419-24.
[http://dx.doi.org/10.1038/nm.3483] [PMID: 24658075]
[113]
Pilonieta MC, Moreland SM, English CN, Detweiler CS. Salmonella enterica infection stimulates macrophages to hemophagocytose. MBio 2014; 5(6) e02211.
[http://dx.doi.org/10.1128/mBio.02211-14] [PMID: 25491357]
[114]
McDonald EM, Pilonieta MC, Nick HJ, Detweiler CS. Bacterial stimulation of Toll-like receptor 4 drives macrophages to hemophagocytose. Infect Immun 2015; 84(1): 47-55.
[http://dx.doi.org/10.1128/IAI.01149-15] [PMID: 26459510]
[115]
McCoy MW, Moreland SM, Detweiler CS. Hemophagocytic macrophages in murine typhoid fever have an anti-inflammatory phenotype. Infect Immun 2012; 80(10): 3642-9.
[http://dx.doi.org/10.1128/IAI.00656-12] [PMID: 22868497]
[116]
Bilitewski U, Blodgett JAV, Duhme-Klair AK, et al. Chemical and biological aspects of nutritional immunity-perspectives for new anti-infectives that target iron uptake systems. Angew Chem Int Ed Engl 2017; 56(46): 14360-82.
[http://dx.doi.org/10.1002/anie.201701586] [PMID: 28439959]
[117]
Ji C, Miller MJ. Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorg Med Chem 2012; 20(12): 3828-36.
[http://dx.doi.org/10.1016/j.bmc.2012.04.034] [PMID: 22608921]
[118]
Bush K, Page MGP. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J Pharmacokinet Pharmacodyn 2017; 44(2): 113-32.
[http://dx.doi.org/10.1007/s10928-017-9506-4] [PMID: 28161807]
[119]
Page MG, Dantier C, Desarbre E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob Agents Chemother 2010; 54(6): 2291-302.
[http://dx.doi.org/10.1128/AAC.01525-09] [PMID: 20308379]
[120]
Brown MF, Mitton-Fry MJ, Arcari JT, et al. Pyridone-conjugated monobactam antibiotics with gram-negative activity. J Med Chem 2013; 56(13): 5541-52.
[http://dx.doi.org/10.1021/jm400560z] [PMID: 23755848]
[121]
Murphy-Benenato KE, Dangel B, Davis HE, et al. SAR and structural analysis of siderophore-conjugated monocarbam inhibitors of Pseudomonas aeruginosa PBP3. ACS Med Chem Lett 2015; 6(5): 537-42.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00026] [PMID: 26005529]
[122]
Murphy-Benenato KE, Bhagunde PR, Chen A, et al. Discovery of efficacious Pseudomonas aeruginosa-targeted siderophore-conjugated monocarbams by application of a semi-mechanistic pharmacokinetic/pharmacodynamic model. J Med Chem 2015; 58(5): 2195-205.
[http://dx.doi.org/10.1021/jm501506f] [PMID: 25658376]
[123]
Han S, Caspers N, Zaniewski RP, et al. Distinctive attributes of β-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. J Am Chem Soc 2011; 133(50): 20536-45.
[http://dx.doi.org/10.1021/ja208835z] [PMID: 22050378]
[124]
Triggle DJ, Taylor JB. Comprehensive Medicinal Chemistry II. Elsevier 2006.
[125]
Bird TG, Arnould JC, Bertrandie A, Jung FH. Pharmacokinetics of catechol cephalosporins. The effect of incorporating substituents into the catechol moiety on pharmacokinetics in a marmoset model. J Med Chem 1992; 35(14): 2643-51.
[http://dx.doi.org/10.1021/jm00092a015] [PMID: 1635063]
[126]
Tenero D, Farinola N, Berkowitz EM, et al. Pharmacokinetics, safety, and tolerability evaluation of single and multiple doses of GSK3342830 in healthy volunteers. Clin Pharmacol Drug Dev 2019; 8(6): 754-64.
[PMID: 30536589]
[127]
Rouffet M, Cohen SM. Emerging trends in metalloprotein inhibition. Dalton Trans 2011; 40(14): 3445-54.
[http://dx.doi.org/10.1039/c0dt01743d] [PMID: 21290034]
[128]
Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 2007; 25(1): 84-90.
[http://dx.doi.org/10.1038/nbt1272] [PMID: 17211407]
[129]
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92(8): 827-39.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[130]
Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 2007; 15(6): 2223-68.
[http://dx.doi.org/10.1016/j.bmc.2007.01.011] [PMID: 17275314]
[131]
Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4(8): 617-29.
[http://dx.doi.org/10.1038/nri1418] [PMID: 15286728]
[132]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[133]
Gendron R, Grenier D, Sorsa T, Uitto VJ, Mayrand D. Effect of microbial siderophores on matrix metalloproteinase-2 activity. J Periodontal Res 1999; 34(1): 50-3.
[http://dx.doi.org/10.1111/j.1600-0765.1999.tb02221.x] [PMID: 10086886]
[134]
Shinozaki-Tajiri Y, Akutsu-Shigeno Y, Nakajima-Kambe T, Inomata S, Nomura N, Uchiyama H. Matrix metalloproteinase-2 inhibition and Zn2+-chelating activities of pyoverdine-type siderophores. J Biosci Bioeng 2004; 97(4): 281-3.
[http://dx.doi.org/10.1016/S1389-1723(04)70205-4] [PMID: 16233629]
[135]
KUNZE B, BEDORF N, KOHL W, HÖFLE G, REICHENBACH H. Myxochelin A, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales). J Antibiot (Tokyo) 1989; 42(1): 14.
[http://dx.doi.org/10.7164/antibiotics.42.14] [PMID: 2493439]
[136]
Ravanti L, Kähäri V-M. Matrix metalloproteinases in wound repair (review). Int J Mol Med 2000; 6(4): 391-407.
[PMID: 10998429]
[137]
Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 2005; 120(3): 303-13.
[http://dx.doi.org/10.1016/j.cell.2004.12.018] [PMID: 15707890]
[138]
Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci 2015; 20: 1144-63.
[http://dx.doi.org/10.2741/4364] [PMID: 25961550]
[139]
Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 2009; 41(7): 783-92.
[http://dx.doi.org/10.1038/ng.389] [PMID: 19503090]
[140]
Roos J, Oancea C, Heinssmann M, et al. 5-Lipoxygenase is a candidate target for therapeutic management of stem cell-like cells in acute myeloid leukemia. Cancer Res 2014; 74(18): 5244-55.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3012] [PMID: 25082812]
[141]
Cooper CE, Lynagh GR, Hoyes KP, Hider RC, Cammack R, Porter JB. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J Biol Chem 1996; 271(34): 20291-9.
[http://dx.doi.org/10.1074/jbc.271.34.20291] [PMID: 8702762]
[142]
Rastogi A, Kim H, Twomey JD, Hsieh AH. MMP-2 mediates local degradation and remodeling of collagen by annulus fibrosus cells of the intervertebral disc. Arthritis Res Ther 2013; 15(2): R57.
[http://dx.doi.org/10.1186/ar4224] [PMID: 23621950]
[143]
Cabantchik ZI, Breuer W, Zanninelli G, Cianciulli P. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol 2005; 18(2): 277-87.
[http://dx.doi.org/10.1016/j.beha.2004.10.003] [PMID: 15737890]
[144]
Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 1995; 82-83: 969-74.
[http://dx.doi.org/10.1016/0378-4274(95)03532-X] [PMID: 8597169]
[145]
Allen KJ, Gurrin LC, Constantine CC, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med 2008; 358(3): 221-30.
[http://dx.doi.org/10.1056/NEJMoa073286] [PMID: 18199861]
[146]
Bickel H, Bosshardt R, Gäumann E, et al. Stoffwechselprodukte von Actinomyceten. 26. Mitteilung. Über die Isolierung und Charakterisierung der Ferrioxamine A—F, neuer Wuchsstoffe der Sideramin‐Gruppe. Helv Chim Acta 1960; 43(7): 2118.
[http://dx.doi.org/10.1002/hlca.19600430731]
[147]
Bannerman RM, Callender ST, Williams DL. Effect of desferrioxamine and DTPA in iron overload. BMJ 1962; 2(5319): 1573-7.
[http://dx.doi.org/10.1136/bmj.2.5319.1573] [PMID: 20789564]
[148]
Singh S, Hider RC, Porter JB. Separation and identification of desferrioxamine and its iron chelating metabolites by high-performance liquid chromatography and fast atom bombardment mass spectrometry: choice of complexing agent and application to biological fluids. Anal Biochem 1990; 187(2): 212-9.
[http://dx.doi.org/10.1016/0003-2697(90)90446-G] [PMID: 2116739]
[149]
Hoffbrand AV, Taher A, Cappellini MD. How I treat transfusional iron overload. Blood 2012; 120(18): 3657-69.
[http://dx.doi.org/10.1182/blood-2012-05-370098] [PMID: 22919029]
[150]
Nagoba B, Vedpathak D. Medical applications of siderophores. Eur J Gen Med 2011; 8(3): 229.
[151]
Ali SS, Vidhale N. Bacterial siderophore and their application: a review. Int J Curr Microbiol Appl Sci 2013; 2(12): 303.
[152]
Origa R, Bina P, Agus A, et al. Combined therapy with deferiprone and desferrioxamine in thalassemia major. Haematologica 2005; 90(10): 1309-14.
[PMID: 16219566]
[153]
Górska A, Sloderbach A, Marszałł MP. Siderophore-drug complexes: potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol Sci 2014; 35(9): 442-9.
[http://dx.doi.org/10.1016/j.tips.2014.06.007] [PMID: 25108321]
[154]
Yang T, Brittenham GM, Dong W-Q, et al. Deferoxamine prevents cardiac hypertrophy and failure in the gerbil model of iron-induced cardiomyopathy. J Lab Clin Med 2003; 142(5): 332-40.
[http://dx.doi.org/10.1016/S0022-2143(03)00135-5] [PMID: 14647037]
[155]
Nikaido H, Rosenberg EY. Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols: study with beta-lactam antibiotics containing catechol and analogous groups. J Bacteriol 1990; 172(3): 1361-7.
[http://dx.doi.org/10.1128/JB.172.3.1361-1367.1990] [PMID: 2407721]
[156]
Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob Agents Chemother 2017; 62(1) e01454.
[http://dx.doi.org/10.1128/AAC.01454-17] [PMID: 29061741]
[157]
Kohira N, Nakamura R, Ito A, Nishikawa T, Ota M, Sato T. American Society of Microbiology Annual Meeting. Atlanta, GA. 2018; p. 6.
[158]
McPherson CJ, Aschenbrenner LM, Lacey BM, et al. Clinically relevant Gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophore-conjugated monocarbam. Antimicrob Agents Chemother 2012; 56(12): 6334-42.
[http://dx.doi.org/10.1128/AAC.01345-12] [PMID: 23027195]
[159]
van Delden C, Page MG, Köhler T. Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57(5): 2095-102.
[http://dx.doi.org/10.1128/AAC.02474-12] [PMID: 23422914]
[160]
Kim A, Kutschke A, Ehmann DE, et al. Pharmacodynamic profiling of a siderophore-conjugated monocarbam in Pseudomonas aeruginosa: assessing the risk for resistance and attenuated efficacy. Antimicrob Agents Chemother 2015; 59(12): 7743-52.
[http://dx.doi.org/10.1128/AAC.00831-15] [PMID: 26438502]
[161]
Ito A, Nishikawa T, Matsumoto S, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60(12): 7396-401.
[PMID: 27736756]
[162]
Moynié L, Luscher A, Rolo D, et al. Structure and function of the PiuA and PirA siderophore-drug receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother 2017; 61(4) e02531.
[http://dx.doi.org/10.1128/AAC.02531-16] [PMID: 28137795]
[163]
Tomaras AP, Crandon JL, McPherson CJ, et al. Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57(9): 4197-207.
[http://dx.doi.org/10.1128/AAC.00629-13] [PMID: 23774440]
[164]
Gilleland HE Jr, Farley LB. Adaptive resistance to polymyxin in Pseudomonas aeruginosa due to an outer membrane impermeability mechanism. Can J Microbiol 1982; 28(7): 830-40.
[http://dx.doi.org/10.1139/m82-125] [PMID: 6293694]
[165]
Daikos GL, Jackson GG, Lolans VT, Livermore DM. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis 1990; 162(2): 414-20.
[http://dx.doi.org/10.1093/infdis/162.2.414] [PMID: 2115555]
[166]
Barclay ML, Begg EJ, Chambers ST, Thornley PE, Pattemore PK, Grimwood K. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother 1996; 37(6): 1155-64.
[http://dx.doi.org/10.1093/jac/37.6.1155] [PMID: 8836818]
[167]
Fernández L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother 2010; 54(8): 3372-82.
[http://dx.doi.org/10.1128/AAC.00242-10] [PMID: 20547815]
[168]
Skiada A, Markogiannakis A, Plachouras D, Daikos GL. Adaptive resistance to cationic compounds in Pseudomonas aeruginosa. Int J Antimicrob Agents 2011; 37(3): 187-93.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.11.019] [PMID: 21295448]
[169]
Motta SS, Cluzel P, Aldana M. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS One 2015; 10(3) e0118464.
[http://dx.doi.org/10.1371/journal.pone.0118464] [PMID: 25781931]
[170]
Sandoval-Motta S, Aldana M. Adaptive resistance to antibiotics in bacteria: a systems biology perspective. Wiley Interdiscip Rev Syst Biol Med 2016; 8(3): 253-67.
[http://dx.doi.org/10.1002/wsbm.1335] [PMID: 27103502]
[171]
Al MM, Var I, Kayar B, Köksal F. Differential expression of resistant and efflux pump genes in MDR-TB isolates. Endocr Metab Immune Disord Drug Targets 2019.
[172]
Tomaras AP, Crandon JL, McPherson CJ, Nicolau DP. Potentiation of antibacterial activity of the MB-1 siderophore-monobactam conjugate using an efflux pump inhibitor. Antimicrob Agents Chemother 2015; 59(4): 2439-42.
[http://dx.doi.org/10.1128/AAC.04172-14] [PMID: 25605364]
[173]
Mima T, Kvitko BH, Rholl DA, Page MG, Desarbre E, Schweizer HP. In vitro activity of BAL30072 against Burkholderia pseudomallei. Int J Antimicrob Agents 2011; 38(2): 157-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.03.019] [PMID: 21596528]
[174]
Page M, Müller C, Hofer B, Desarbre E, Dreier J, Vidal F. The role of iron transport in the activity of the siderophore sulfactam BAL30072 againstPseudomonas aeruginosa: P1241. Clin Microbiol Infect 2010; 16.
[175]
Thommes P, Sattar A, Burgess E. 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) 25.
[176]
Matsumoto S, Singley CM, Hoover J, et al. Efficacy of cefiderocol against carbapenem-resistant Gram-negative bacilli in immunocompetent-rat respiratory tract infection models recreating human plasma pharmacokinetics. Antimicrob Agents Chemother 2017; 61(9) e00700.
[http://dx.doi.org/10.1128/AAC.00700-17] [PMID: 28630178]
[177]
Ghazi IM, Monogue ML, Tsuji M, Nicolau DP. Pharmacodynamics of cefiderocol, a novel siderophore cephalosporin, in a Pseudomonas aeruginosa neutropenic murine thigh model. Int J Antimicrob Agents 2018; 51(2): 206-12.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.10.008] [PMID: 29111435]
[178]
Babini GS, Livermore DM. Effect of conalbumin on the activity of Syn 2190, a 1,5 dihydroxy-4-pyridon monobactam inhibitor of AmpC β-lactamases. J Antimicrob Chemother 2000; 45(1): 105-9.
[http://dx.doi.org/10.1093/jac/45.1.105] [PMID: 10629020]
[179]
Nguyen AT, O’Neill MJ, Watts AM, et al. Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014; 196(12): 2265-76.
[http://dx.doi.org/10.1128/JB.01491-14] [PMID: 24727222]
[180]
Yamano Y, Tsuji M, Hackel M, Sahm D, Echols R. 27th European Congress of Clinical Microbiology and Infectious Diseases. Vienna, Austria.
[181]
Kohira N, West J, Ito A, et al. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob Agents Chemother 2015; 60(2): 729-34.
[http://dx.doi.org/10.1128/AAC.01695-15] [PMID: 26574013]
[182]
Falagas ME, Skalidis T, Vardakas KZ, Legakis NJ. Hellenic Cefiderocol Study Group. Activity of cefiderocol (S-649266) against carbapenem-resistant Gram-negative bacteria collected from inpatients in Greek hospitals. J Antimicrob Chemother 2017; 72(6): 1704-8.
[http://dx.doi.org/10.1093/jac/dkx049] [PMID: 28369471]
[183]
Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob Agents Chemother 2017; 61(9) e00093.
[http://dx.doi.org/10.1128/AAC.00093-17] [PMID: 28630181]
[184]
Dobias J, Dénervaud-Tendon V, Poirel L, Nordmann P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis 2017; 36(12): 2319-27.
[http://dx.doi.org/10.1007/s10096-017-3063-z] [PMID: 28748397]
[185]
Jacobs MR, Abdelhamed AM, Good CE, et al. In vitro activity of cefiderocol (S-649266), a siderophore cephalosporin, against Enterobacteriaceae with defined extended-spectrum β-lactamases and carbapenemasesIDWeek. San Francisco 2018.
[186]
Jacobs MR, Abdelhamed AM, Good CE, et al. ARGONAUT-I: activity of cefiderocol (S-649266), a siderophore cephalosporin, against gram-negative bacteria, including carbapenem-resistant nonfermenters and Enterobacteriaceae with defined extended-spectrum β-lactamases and carbapenemases. Antimicrob Agents Chemother 2018; 63(1) e01801.
[http://dx.doi.org/10.1128/AAC.01801-18] [PMID: 30323050]
[187]
Tsuji M, Hackel M, Yamano Y, Echols R, Sahm D. 29th European Congress of Clinical Microbiology and Infectious DiseasesAmsterdam. Netherlands. 2019; p. 13.
[188]
Ito-Horiyama T, Ishii Y, Ito A, et al. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob Agents Chemother 2016; 60(7): 4384-6.
[http://dx.doi.org/10.1128/AAC.03098-15] [PMID: 27139465]
[189]
Harrington JM, Gootz T, Flanagan M, et al. Characterization of the aqueous iron(III) chelation chemistry of a potential Trojan Horse antimicrobial agent: chelate structure, stability and pH dependent speciation. Biometals 2012; 25(5): 1023-36.
[http://dx.doi.org/10.1007/s10534-012-9568-0] [PMID: 22855208]
[190]
Scorciapino MA, Malloci G, Serra I, et al. Complexes formed by the siderophore-based monosulfactam antibiotic BAL30072 and their interaction with the outer membrane receptor PiuA of P. aeruginosa. Biometals 2019; 32(1): 155-70.
[http://dx.doi.org/10.1007/s10534-018-00166-0] [PMID: 30635814]
[191]
Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis 2018; 18(12): 1319-28.
[http://dx.doi.org/10.1016/S1473-3099(18)30554-1] [PMID: 30509675]
[192]
Shionogi S I. 2019.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy