Review Article

Fibroblast Growth Factor: Promising Target for Schizophrenia

Author(s): Ali Talaei, Tahereh Farkhondeh and Fatemeh Forouzanfar*

Volume 21, Issue 13, 2020

Page: [1344 - 1353] Pages: 10

DOI: 10.2174/1389450121666200628114843

Price: $65

Abstract

Schizophrenia is one of the most debilitating mental disorders around the world. It is characterized by neuroanatomical or biochemical changes. The role of the fibroblast growth factors (FGFs) system in schizophrenia has received considerable attention in recent years. Various changes in the gene expression and/or level of FGFs have been implicated in the etiology, symptoms and progression of schizophrenia. For example, studies have substantiated an interaction between FGFs and the signaling pathway of dopamine receptors. To understand the role of this system in schizophrenia, the databases of Open Access Journals, Web of Science, PubMed (NLM), LISTA (EBSCO), and Google Scholar with keywords including fibroblast growth factors, dopamine, schizophrenia, psychosis, along with neurotrophic were searched. In conclusion, the FGF family represent molecular candidates as new drug targets and treatment targets for schizophrenia.

Keywords: Fibroblast growth factors, dopamine, schizophrenia, psychosis, neurotrophic, antipsychotic drugs.

Graphical Abstract

[1]
Li, P.; Snyder, G.L.; Vanover, K.E. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr. Top. Med. Chem., 2016, 16(29), 3385-3403.
[http://dx.doi.org/10.2174/1568026616666160608084834] [PMID: 27291902]
[2]
Denis, F.; Pelletier, J-F.; Chauvet-Gelinier, J-C.; Rude, N.; Trojak, B. Oral Health Is a Challenging Problem for Patients with Schizophrenia: A Narrative Review. Iran. J. Psychiatry. Behav. Sci., 2018, 12(1)
[http://dx.doi.org/10.5812/ijpbs.8062]
[3]
Remington, G.; Agid, O.; Foussias, G. Schizophrenia as a disorder of too little dopamine: implications for symptoms and treatment. Expert Rev. Neurother., 2011, 11(4), 589-607.
[http://dx.doi.org/10.1586/ern.10.191] [PMID: 21469931]
[4]
Talaei, A.; Faridhosseini, F.; Kazemi, H. BORDBAR MRF, ARDANI AR. Effect of topiramate on drug associated weight gain of patients with schizophrenia and bipolar i disorders: A dose ranging randomized trial. Turk Psikiyatr. Derg., 2016, 27(2)
[5]
Chaychi, I.; Foroughipour, M.; Haghir, H.; Talaei, A.; Chaichi, A. Electroencephalographic characteristics of Iranian schizophrenia patients. Acta Neurol. Belg., 2015, 115(4), 665-670.
[http://dx.doi.org/10.1007/s13760-014-0415-7] [PMID: 25651947]
[6]
Hosák, L.; Hosakova, J. The complex etiology of schizophrenia - general state of the art. Neuroendocrinol. Lett., 2015, 36(7), 631-637.
[PMID: 26859583]
[7]
Walker, E.; Kestler, L.; Bollini, A.; Hochman, K.M. Schizophrenia: etiology and course. Annu. Rev. Psychol., 2004, 55, 401-430.
[http://dx.doi.org/10.1146/annurev.psych.55.090902.141950] [PMID: 14744221]
[8]
Sedighi, M.; Mansouri, A.; Talaei, A. The relationship between transdiagnostic factors and psychotic symptoms in individuals with schizophrenia disorder. Journal of Fundamentals of Mental Health., 2019, 21(3), 183-193.
[9]
Dean, B. The cortical serotonin2A receptor and the pathology of schizophrenia: a likely accomplice. J. Neurochem., 2003, 85(1), 1-13.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01693.x] [PMID: 12641722]
[10]
Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, 460(7256), 748-752.
[http://dx.doi.org/10.1038/nature08185] [PMID: 19571811]
[11]
Messias, E.L.; Chen, C-Y.; Eaton, W.W. Epidemiology of schizophrenia: review of findings and myths. Psychiatr. Clin. North Am., 2007, 30(3), 323-338.
[http://dx.doi.org/10.1016/j.psc.2007.04.007] [PMID: 17720026]
[12]
Davis, J.; Eyre, H.; Jacka, F.N.; Dodd, S.; Dean, O.; McEwen, S.; Debnath, M.; McGrath, J.; Maes, M.; Amminger, P.; McGorry, P.D.; Pantelis, C.; Berk, M. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci. Biobehav. Rev., 2016, 65, 185-194.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.017] [PMID: 27073049]
[13]
Chong, H.Y.; Teoh, S.L.; Wu, D.B-C.; Kotirum, S.; Chiou, C-F.; Chaiyakunapruk, N. Global economic burden of schizophrenia: a systematic review. Neuropsychiatr. Dis. Treat., 2016, 12, 357-373.
[PMID: 26937191]
[14]
De Luca, V.; Tharmalingam, S.; Müller, D.J.; Wong, G.; de Bartolomeis, A.; Kennedy, J.L. Gene-gene interaction between MAOA and COMT in suicidal behavior: analysis in schizophrenia. Brain Res., 2006, 1097(1), 26-30.
[http://dx.doi.org/10.1016/j.brainres.2006.04.053] [PMID: 16725119]
[15]
Kim, D.H.; Maneen, M.J.; Stahl, S.M. Building a better antipsychotic: receptor targets for the treatment of multiple symptom dimensions of schizophrenia. Neurotherapeutics, 2009, 6(1), 78-85.
[http://dx.doi.org/10.1016/j.nurt.2008.10.020] [PMID: 19110200]
[16]
Dean, B. Neurochemistry of schizophrenia: the contribution of neuroimaging postmortem pathology and neurochemistry in schizophrenia. Curr. Top. Med. Chem., 2012, 12(21), 2375-2392.
[http://dx.doi.org/10.2174/156802612805289935] [PMID: 23279177]
[17]
Grover, S.; Chakrabarti, S.; Kulhara, P.; Avasthi, A. Clinical practice Guidelines for management of schizophrenia. Indian J. Psychiatry, 2017, 59(Suppl. 1), S19-S33.
[http://dx.doi.org/10.4103/0019-5545.196973] [PMID: 28216783]
[18]
Biedermann, F.; Fleischhacker, W.W. Emerging drugs for schizophrenia. Expert Opin. Emerg. Drugs, 2011, 16(2), 271-282.
[http://dx.doi.org/10.1517/14728214.2011.556112] [PMID: 21563991]
[19]
Patel, K.R.; Cherian, J.; Gohil, K.; Atkinson, D. Schizophrenia: overview and treatment options. P&T, 2014, 39(9), 638-645.
[PMID: 25210417]
[20]
Stahl, S.M. Essential psychopharmacology: Neuroscientific basis and practical applications; Cambridge university press, 2000.
[21]
Lavretsky, H. History of schizophrenia as a psychiatric disorder. K. T. Mueser & D. V. Jeste (Eds.). Clinical handbook of schizophrenia. The Guilford Press, 2008; pp. 3-13.
[22]
Jentsch, J.D.; Roth, R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1999, 20(3), 201-225.
[http://dx.doi.org/10.1016/S0893-133X(98)00060-8] [PMID: 10063482]
[23]
Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J. Psychopharmacol. (Oxford), 2015, 29(2), 97-115.
[http://dx.doi.org/10.1177/0269881114563634] [PMID: 25586400]
[24]
Javitt, D.C. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol., 2007, 78, 69-108.
[http://dx.doi.org/10.1016/S0074-7742(06)78003-5] [PMID: 17349858]
[25]
Terwisscha van Scheltinga, A.F.; Bakker, S.C.; Kahn, R.S. Schizophrenia William G. Gossman. Schizophr. Bull., 2010, 36(6), 1157-1166.
[PMID: 19429845]
[26]
Deng, Z.; Deng, S.; Zhang, M-R.; Tang, M-M. Fibroblast growth factors in depression. Front. Pharmacol., 2019, 10, 60.
[http://dx.doi.org/10.3389/fphar.2019.00060] [PMID: 30804785]
[27]
Zhang, X.; Ibrahimi, O.A.; Olsen, S.K.; Umemori, H.; Mohammadi, M.; Ornitz, D.M. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem., 2006, 281(23), 15694-15700.
[http://dx.doi.org/10.1074/jbc.M601252200] [PMID: 16597617]
[28]
Nemoto, Y.; Kumagai, T.; Ishizawa, K.; Miura, Y.; Shiraishi, T.; Morimoto, C.; Sakai, K.; Omizo, H.; Yamazaki, O.; Tamura, Y.; Fujigaki, Y.; Kawachi, H.; Kuro-O, M.; Uchida, S.; Shibata, S. Phosphate binding by sucroferric oxyhydroxide ameliorates renal injury in the remnant kidney model. Sci. Rep., 2019, 9(1), 1732.
[http://dx.doi.org/10.1038/s41598-018-38389-3] [PMID: 30741979]
[29]
Hui, Q.; Jin, Z.; Li, X.; Liu, C.; Wang, X. FGF family: from drug development to clinical application. Int. J. Mol. Sci., 2018, 19(7), 1875.
[http://dx.doi.org/10.3390/ijms19071875] [PMID: 29949887]
[30]
Forouzanfar, F.; Amin, B.; Ghorbani, A.; Ghazavi, H.; Ghasemi, F.; Sadri, K.; Mehri, S.; Sadeghnia, H.R.; Hosseinzadeh, H. New approach for the treatment of neuropathic pain: Fibroblast growth factor 1 gene-transfected adipose-derived mesenchymal stem cells. Eur. J. Pain, 2018, 22(2), 295-310.
[http://dx.doi.org/10.1002/ejp.1119] [PMID: 28949091]
[31]
Hoseini, S.J.; Ghazavi, H.; Forouzanfar, F.; Mashkani, B.; Ghorbani, A.; Mahdipour, E.; Ghasemi, F.; Sadeghnia, H.R.; Ghayour-Mobarhan, M. Fibroblast growth factor 1-transfected adipose-derived mesenchymal stem cells promote angiogenic proliferation. DNA Cell Biol., 2017, 36(5), 401-412.
[http://dx.doi.org/10.1089/dna.2016.3546] [PMID: 28281780]
[32]
Asgharzade, S.; Talaei, A.; Farkhondeh, T.; Forouzanfar, F. Combining growth factor and stem cell therapy for stroke rehabilitation, a review. Curr. Drug Targets, 2020.
[http://dx.doi.org/10.2174/1389450121666200107100747] [PMID: 31914912]
[33]
Turner, C.A.; Eren-Koçak, E.; Inui, E.G.; Watson, S.J.; Akil, H., Eds.; Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Seminars in cell & developmental biology; Elsevier, 2016.
[34]
Ghazavi, H.; Hoseini, S.J.; Ebrahimzadeh-Bideskan, A.; Mashkani, B.; Mehri, S.; Ghorbani, A.; Sadri, K.; Mahdipour, E.; Ghasemi, F.; Forouzanfar, F.; Hoseini, A.; Pasdar, A.R.; Sadeghnia, H.R.; Ghayour-Mobarhan, M. Fibroblast growth factor type 1 (fgf1)-overexpressed adipose-derived mesenchaymal stem cells (ad-mscfgf1) induce neuroprotection and functional recovery in a rat stroke model. Stem Cell Rev Rep, 2017, 13(5), 670-685.
[http://dx.doi.org/10.1007/s12015-017-9755-z] [PMID: 28795363]
[35]
Beenken, A.; Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253.
[http://dx.doi.org/10.1038/nrd2792] [PMID: 19247306]
[36]
Mohammadi, M.; Olsen, S.K.; Ibrahimi, O.A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev., 2005, 16(2), 107-137.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.008] [PMID: 15863029]
[37]
Sobhani, N.; Ianza, A.; D’Angelo, A.; Roviello, G.; Giudici, F.; Bortul, M.; Zanconati, F.; Bottin, C.; Generali, D. Current status of fibroblast growth factor receptor-targeted therapies in breast cancer. Cells, 2018, 7(7), 76.
[http://dx.doi.org/10.3390/cells7070076] [PMID: 30011957]
[38]
Yang, S.; Weske, A.; Du, Y.; Valera, J.M.; Jones, K.L.; Johnson, A.N. FGF signaling directs myotube guidance by regulating Rac activity. Development, 2020, 147(3)dev183624
[http://dx.doi.org/10.1242/dev.183624] [PMID: 31932350]
[39]
Turner, C.A.; Watson, S.J.; Akil, H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron, 2012, 76(1), 160-174.
[http://dx.doi.org/10.1016/j.neuron.2012.08.037] [PMID: 23040813]
[40]
Yun, Y-R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng., 2010, 2010(1) 218142.
[http://dx.doi.org/10.4061/2010/218142] [PMID: 21350642]
[41]
Cowan, K.J.; Storey, K.B. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J. Exp. Biol., 2003, 206(Pt 7), 1107-1115.
[http://dx.doi.org/10.1242/jeb.00220] [PMID: 12604570]
[42]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183.
[PMID: 11294822]
[43]
Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12(1), 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[44]
Dailey, L.; Ambrosetti, D.; Mansukhani, A.; Basilico, C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev., 2005, 16(2), 233-247.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.007] [PMID: 15863038]
[45]
Brewer, J.R.; Mazot, P.; Soriano, P. Genetic insights into the mechanisms of Fgf signaling. Genes Dev., 2016, 30(7), 751-771.
[http://dx.doi.org/10.1101/gad.277137.115] [PMID: 27036966]
[46]
Zhao, M.; Li, D.; Shimazu, K.; Zhou, Y-X.; Lu, B.; Deng, C-X. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol. Psychiatry, 2007, 62(5), 381-390.
[http://dx.doi.org/10.1016/j.biopsych.2006.10.019] [PMID: 17239352]
[47]
Terwisscha van Scheltinga, A.F.; Bakker, S.C.; Kahn, R.S. Fibroblast growth factors in schizophrenia. Schizophr. Bull., 2010, 36(6), 1157-1166.
[http://dx.doi.org/10.1093/schbul/sbp033] [PMID: 19429845]
[48]
Frinchi, M.; Bonomo, A.; Trovato-Salinaro, A.; Condorelli, D.F.; Fuxe, K.; Spampinato, M.G.; Mudò, G. Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci. Lett., 2008, 447(1), 20-25.
[http://dx.doi.org/10.1016/j.neulet.2008.09.059] [PMID: 18835325]
[49]
Dodé, C.; Levilliers, J.; Dupont, J-M.; De Paepe, A.; Le Dû, N.; Soussi-Yanicostas, N.; Coimbra, R.S.; Delmaghani, S.; Compain-Nouaille, S.; Baverel, F.; Pêcheux, C.; Le Tessier, D.; Cruaud, C.; Delpech, M.; Speleman, F.; Vermeulen, S.; Amalfitano, A.; Bachelot, Y.; Bouchard, P.; Cabrol, S.; Carel, J.C.; Delemarre-van de Waal, H.; Goulet-Salmon, B.; Kottler, M.L.; Richard, O.; Sanchez-Franco, F.; Saura, R.; Young, J.; Petit, C.; Hardelin, J.P. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat. Genet., 2003, 33(4), 463-465.
[http://dx.doi.org/10.1038/ng1122] [PMID: 12627230]
[50]
Stevens, H.E.; Smith, K.M.; Maragnoli, M.E.; Fagel, D.; Borok, E.; Shanabrough, M.; Horvath, T.L.; Vaccarino, F.M. Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J. Neurosci., 2010, 30(16), 5590-5602.
[http://dx.doi.org/10.1523/JNEUROSCI.5837-09.2010] [PMID: 20410112]
[51]
Wang, T.; Zeng, Z.; Hu, Z.; Zheng, L.; Li, T.; Li, Y.; Liu, J.; Li, J.; Feng, G.; He, L.; Shi, Y. FGFR2 is associated with bipolar disorder: a large-scale case-control study of three psychiatric disorders in the Chinese Han population. World J. Biol. Psychiatry, 2012, 13(8), 599-604.
[http://dx.doi.org/10.3109/15622975.2011.650203] [PMID: 22404656]
[52]
Williams, N.M.; Norton, N.; Williams, H.; Ekholm, B.; Hamshere, M.L.; Lindblom, Y.; Chowdari, K.V.; Cardno, A.G.; Zammit, S.; Jones, L.A.; Murphy, K.C.; Sanders, R.D.; McCarthy, G.; Gray, M.Y.; Jones, G.; Holmans, P.; Nimgaonkar, V.; Adolfson, R.; Osby, U.; Terenius, L.; Sedvall, G.; O’Donovan, M.C.; Owen, M.J. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am. J. Hum. Genet., 2003, 73(6), 1355-1367.
[http://dx.doi.org/10.1086/380206] [PMID: 14628288]
[53]
Chesi, M.; Brents, L.A.; Ely, S.A.; Bais, C.; Robbiani, D.F.; Mesri, E.A.; Kuehl, W.M.; Bergsagel, P.L. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood, 2001, 97(3), 729-736.
[http://dx.doi.org/10.1182/blood.V97.3.729] [PMID: 11157491]
[54]
Frattini, V.; Pagnotta, S.M. Tala; Fan, J.J.; Russo, M.V.; Lee, S.B.; Garofano, L.; Zhang, J.; Shi, P.; Lewis, G.; Sanson, H.; Frederick, V.; Castano, A.M.; Cerulo, L.; Rolland, D.C.M.; Mall, R.; Mokhtari, K.; Elenitoba-Johnson, K.S.J.; Sanson, M.; Huang, X.; Ceccarelli, M.; Lasorella, A.; Iavarone, A. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature, 2018, 553(7687), 222-227.
[http://dx.doi.org/10.1038/nature25171] [PMID: 29323298]
[55]
Moldrich, R.X.; Mezzera, C.; Holmes, W.M.; Goda, S.; Brookfield, S.J.; Rankin, A.J.; Barr, E.; Kurniawan, N.; Dewar, D.; Richards, L.J.; López-Bendito, G.; Iwata, T. Fgfr3 regulates development of the caudal telencephalon. Dev. Dyn., 2011, 240(6), 1586-1599.
[http://dx.doi.org/10.1002/dvdy.22636] [PMID: 21491541]
[56]
French, D.M.; Lin, B.C.; Wang, M.; Adams, C.; Shek, T.; Hötzel, K.; Bolon, B.; Ferrando, R.; Blackmore, C.; Schroeder, K.; Rodriguez, L.A.; Hristopoulos, M.; Venook, R.; Ashkenazi, A.; Desnoyers, L.R. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One, 2012, 7(5) e36713.
[http://dx.doi.org/10.1371/journal.pone.0036713] [PMID: 22615798]
[57]
Li, H.; Wei, X.; Yang, J.; Dong, D.; Hao, D.; Huang, Y.; Lan, X.; Plath, M.; Lei, C.; Ma, Y.; Lin, F.; Bai, Y.; Chen, H. circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol. Ther. Nucleic Acids, 2018, 11, 272-283.
[http://dx.doi.org/10.1016/j.omtn.2018.02.012] [PMID: 29858062]
[58]
Thompson, J.L.; Pogue-Geile, M.F.; Grace, A.A. Developmental pathology, dopamine, and stress: a model for the age of onset of schizophrenia symptoms. Schizophr. Bull., 2004, 30(4), 875-900.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a007139] [PMID: 15954196]
[59]
Grothe, C.; Timmer, M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res. Brain Res. Rev., 2007, 54(1), 80-91.
[http://dx.doi.org/10.1016/j.brainresrev.2006.12.001] [PMID: 17229467]
[60]
Flajolet, M.; Wang, Z.; Futter, M.; Shen, W.; Nuangchamnong, N.; Bendor, J.; Wallach, I.; Nairn, A.C.; Surmeier, D.J.; Greengard, P. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat. Neurosci., 2008, 11(12), 1402-1409.
[http://dx.doi.org/10.1038/nn.2216] [PMID: 18953346]
[61]
Hsuan, S-L.; Klintworth, H.M.; Xia, Z. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways. J. Neurosci., 2006, 26(17), 4481-4491.
[http://dx.doi.org/10.1523/JNEUROSCI.4922-05.2006] [PMID: 16641227]
[62]
Rumpel, R.; Baron, O.; Ratzka, A.; Schröder, M-L.; Hohmann, M.; Effenberg, A.; Claus, P.; Grothe, C. Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2. Neuroscience, 2016, 314, 134-144.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.057] [PMID: 26642808]
[63]
Yamauchi, K.; Mizushima, S.; Tamada, A.; Yamamoto, N.; Takashima, S.; Murakami, F. FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J. Neurosci., 2009, 29(13), 4044-4055.
[http://dx.doi.org/10.1523/JNEUROSCI.4794-08.2009] [PMID: 19339600]
[64]
Kolk, S.M.; Gunput, R.A.; Tran, T.S.; van den Heuvel, D.M.; Prasad, A.A.; Hellemons, A.J.; Adolfs, Y.; Ginty, D.D.; Kolodkin, A.L.; Burbach, J.P.; Smidt, M.P.; Pasterkamp, R.J. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J. Neurosci., 2009, 29(40), 12542-12557.
[http://dx.doi.org/10.1523/JNEUROSCI.2521-09.2009] [PMID: 19812329]
[65]
Lewis, D.A.; Curley, A.A.; Glausier, J.R.; Volk, D.W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci., 2012, 35(1), 57-67.
[http://dx.doi.org/10.1016/j.tins.2011.10.004] [PMID: 22154068]
[66]
Guidotti, A.; Auta, J.; Chen, Y.; Davis, J.M.; Dong, E.; Gavin, D.P.; Grayson, D.R.; Matrisciano, F.; Pinna, G.; Satta, R.; Sharma, R.P.; Tremolizzo, L.; Tueting, P. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology, 2011, 60(7-8), 1007-1016.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.021] [PMID: 21074545]
[67]
Knable, MB; Barci, BM; Webster, MJ; Meador-Woodruff, J; Torrey, EF Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry., 2004, 9(6), 609-20-544.
[68]
Zhang, Z.J.; Reynolds, G.P. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr. Res., 2002, 55(1-2), 1-10.
[http://dx.doi.org/10.1016/S0920-9964(01)00188-8] [PMID: 11955958]
[69]
Torrey, E.F.; Barci, B.M.; Webster, M.J.; Bartko, J.J.; Meador-Woodruff, J.H.; Knable, M.B. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol. Psychiatry, 2005, 57(3), 252-260.
[http://dx.doi.org/10.1016/j.biopsych.2004.10.019] [PMID: 15691526]
[70]
Alshammari, T.K.; Alshammari, M.A.; Nenov, M.N.; Hoxha, E.; Cambiaghi, M.; Marcinno, A.; James, T.F.; Singh, P.; Labate, D.; Li, J.; Meltzer, H.Y.; Sacchetti, B.; Tempia, F.; Laezza, F. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia. Transl. Psychiatry, 2016, 6(5) e806.
[http://dx.doi.org/10.1038/tp.2016.66] [PMID: 27163207]
[71]
Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Elimination of serotonergic cells induces a marked increase in generation of dopaminergic neurons from mesencephalic precursors. Eur. J. Neurosci., 2003, 18(8), 2166-2174.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02949.x] [PMID: 14622177]
[72]
Klejbor, I.; Myers, J.M.; Hausknecht, K.; Corso, T.D.; Gambino, A.S.; Morys, J.; Maher, P.A.; Hard, R.; Richards, J.; Stachowiak, E.K.; Stachowiak, M.K. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons - inhibition results in a schizophrenia-like syndrome in transgenic mice. J. Neurochem., 2006, 97(5), 1243-1258.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03754.x] [PMID: 16524369]
[73]
Nandy, S.B.; Mohanty, S.; Singh, M.; Behari, M.; Airan, B. Fibroblast Growth Factor-2 alone as an efficient inducer for differentiation of human bone marrow mesenchymal stem cells into dopaminergic neurons. J. Biomed. Sci., 2014, 21, 83.
[http://dx.doi.org/10.1186/s12929-014-0083-1] [PMID: 25248378]
[74]
Boshoff, E.L.; Fletcher, E.J.R.; Duty, S. Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner. Neuropharmacology, 2018, 137, 156-163.
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.017] [PMID: 29698669]
[75]
Stachowiak, E.K.; Benson, C.A.; Narla, S.T.; Dimitri, A.; Chuye, L.E.B.; Dhiman, S.; Harikrishnan, K.; Elahi, S.; Freedman, D.; Brennand, K.J.; Sarder, P.; Stachowiak, M.K. Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Transl. Psychiatry, 2017, 7(11), 6.
[http://dx.doi.org/10.1038/s41398-017-0054-x] [PMID: 30446636]
[76]
Gaughran, F.; Payne, J.; Sedgwick, P.M.; Cotter, D.; Berry, M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res. Bull., 2006, 70(3), 221-227.
[http://dx.doi.org/10.1016/j.brainresbull.2006.04.008] [PMID: 16861106]
[77]
Narla, S.T.; Lee, Y.W.; Benson, C.A.; Sarder, P.; Brennand, K.J.; Stachowiak, E.K.; Stachowiak, M.K. Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS). Schizophr. Res., 2017, 185, 17-32.
[http://dx.doi.org/10.1016/j.schres.2016.12.012] [PMID: 28094170]
[78]
Alzheimer, C.; Werner, S. Fibroblast growth factors and neuroprotection. Molecular and Cellular Biology of Neuroprotection in the CNS; Springer, 2003, pp. 335-351.
[http://dx.doi.org/10.1007/978-1-4615-0123-7_12]
[79]
Umemori, H.; Linhoff, M.W.; Ornitz, D.M.; Sanes, J.R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell, 2004, 118(2), 257-270.
[http://dx.doi.org/10.1016/j.cell.2004.06.025] [PMID: 15260994]
[80]
O’Donovan, M.C.; Norton, N.; Williams, H.; Peirce, T.; Moskvina, V.; Nikolov, I.; Hamshere, M.; Carroll, L.; Georgieva, L.; Dwyer, S.; Holmans, P.; Marchini, J.L.; Spencer, C.C.; Howie, B.; Leung, H.T.; Giegling, I.; Hartmann, A.M.; Möller, H.J.; Morris, D.W.; Shi, Y.; Feng, G.; Hoffmann, P.; Propping, P.; Vasilescu, C.; Maier, W.; Rietschel, M.; Zammit, S.; Schumacher, J.; Quinn, E.M.; Schulze, T.G.; Iwata, N.; Ikeda, M.; Darvasi, A.; Shifman, S.; He, L.; Duan, J.; Sanders, A.R.; Levinson, D.F.; Adolfsson, R.; Osby, U.; Terenius, L.; Jönsson, E.G.; Cichon, S.; Nöthen, M.M.; Gill, M.; Corvin, A.P.; Rujescu, D.; Gejman, P.V.; Kirov, G.; Craddock, N.; Williams, N.M.; Owen, M.J. Molecular Genetics of Schizophrenia Collaboration.. Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol. Psychiatry, 2009, 14(1), 30-36.
[http://dx.doi.org/10.1038/mp.2008.108] [PMID: 18813210]
[81]
Nugent, M.A.; Iozzo, R.V. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol., 2000, 32(2), 115-120.
[http://dx.doi.org/10.1016/S1357-2725(99)00123-5] [PMID: 10687947]
[82]
Rai, K.S.; Hattiangady, B.; Shetty, A.K. Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur. J. Neurosci., 2007, 26(7), 1765-1779.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05820.x] [PMID: 17883411]
[83]
Ford-Perriss, M.; Abud, H.; Murphy, M. Fibroblast growth factors in the developing central nervous system. Clin. Exp. Pharmacol. Physiol., 2001, 28(7), 493-503.
[http://dx.doi.org/10.1046/j.1440-1681.2001.03477.x] [PMID: 11422214]
[84]
Yoshimura, S.; Takagi, Y.; Harada, J.; Teramoto, T.; Thomas, S.S.; Waeber, C.; Bakowska, J.C.; Breakefield, X.O.; Moskowitz, M.A. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5874-5879.
[http://dx.doi.org/10.1073/pnas.101034998] [PMID: 11320217]
[85]
Zheng, W.; Nowakowski, R.S.; Vaccarino, F.M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci., 2004, 26(2-4), 181-196.
[http://dx.doi.org/10.1159/000082136] [PMID: 15711059]
[86]
Ortega, S.; Ittmann, M.; Tsang, S.H.; Ehrlich, M.; Basilico, C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA, 1998, 95(10), 5672-5677.
[http://dx.doi.org/10.1073/pnas.95.10.5672] [PMID: 9576942]
[87]
Nindl, W.; Kavakebi, P.; Claus, P.; Grothe, C.; Pfaller, K.; Klimaschewski, L. Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: synthesis, intracellular localization and involvement in karyokinesis. Neuroscience, 2004, 124(3), 561-572.
[http://dx.doi.org/10.1016/j.neuroscience.2003.11.032] [PMID: 14980727]
[88]
Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Lopez-Virgen, V.; Gomez-Plascencia, J.; Ramos-Zuniga, R.; Gonzalez-Perez, O. Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev., 2016, 32, 85-96.
[http://dx.doi.org/10.1016/j.cytogfr.2016.08.004] [PMID: 27618303]
[89]
Fadda, P.; Bedogni, F.; Fresu, A.; Collu, M.; Racagni, G.; Riva, M.A. Reduction of corticostriatal glutamatergic fibers in basic fibroblast growth factor deficient mice is associated with hyperactivity and enhanced dopaminergic transmission. Biol. Psychiatry, 2007, 62(3), 235-242.
[http://dx.doi.org/10.1016/j.biopsych.2006.08.003] [PMID: 17161387]
[90]
Riva, M.A.; Molteni, R.; Tascedda, F.; Massironi, A.; Racagni, G. Selective modulation of fibroblast growth factor-2 expression in the rat brain by the atypical antipsychotic clozapine. Neuropharmacology, 1999, 38(7), 1075-1082.
[http://dx.doi.org/10.1016/S0028-3908(99)00031-3] [PMID: 10428426]
[91]
Schaber, G.; Stevens, I.; Gaertner, H.J.; Dietz, K.; Breyer-Pfaff, U. Pharmacokinetics of clozapine and its metabolites in psychiatric patients: plasma protein binding and renal clearance. Br. J. Clin. Pharmacol., 1998, 46(5), 453-459.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00822.x] [PMID: 9833598]
[92]
Hashimoto, K.; Shimizu, E.; Komatsu, N.; Nakazato, M.; Okamura, N.; Watanabe, H.; Kumakiri, C.; Shinoda, N.; Okada, S.; Takei, N.; Iyo, M. Increased levels of serum basic fibroblast growth factor in schizophrenia. Psychiatry Res., 2003, 120(3), 211-218.
[http://dx.doi.org/10.1016/S0165-1781(03)00186-0] [PMID: 14561432]
[93]
Li, X-S.; Wu, H-T.; Yu, Y.; Chen, G-Y.; Qin, X-Y.; Zheng, G-E.; Deng, W.; Cheng, Y. Increased serum FGF2 levels in first-episode, drug-free patients with schizophrenia. Neurosci. Lett., 2018, 686, 28-32.
[http://dx.doi.org/10.1016/j.neulet.2018.08.046] [PMID: 30172685]
[94]
Ovalle, S.; Zamanillo, D.; Andreu, F.; Farré, A.J.; Guitart, X. Fibroblast growth factor-2 is selectively modulated in the rat brain by E-5842, a preferential sigma-1 receptor ligand and putative atypical antipsychotic. Eur. J. Neurosci., 2001, 13(5), 909-915.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01459.x] [PMID: 11264663]
[95]
Yu, Y; Xie, GJ; Hu, Y; Li, XS; Chen, GY; Zheng, GE Dysregulation of Fibroblast Growth Factor 10 in the Peripheral Blood of Patients with Schizophrenia. Journal of molecular neuroscience : MN., 2019, 69(1), 69-74.
[http://dx.doi.org/10.1007/s12031-019-01331-x]
[96]
Inagaki, T.; Dutchak, P.; Zhao, G.; Ding, X.; Gautron, L.; Parameswara, V.; Li, Y.; Goetz, R.; Mohammadi, M.; Esser, V.; Elmquist, J.K.; Gerard, R.D.; Burgess, S.C.; Hammer, R.E.; Mangelsdorf, D.J.; Kliewer, S.A. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab., 2007, 5(6), 415-425.
[http://dx.doi.org/10.1016/j.cmet.2007.05.003] [PMID: 17550777]
[97]
Kharitonenkov, A.; Larsen, P. FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol. Metab., 2011, 22(3), 81-86.
[http://dx.doi.org/10.1016/j.tem.2010.11.003] [PMID: 21194964]
[98]
Leng, Y.; Wang, Z.; Tsai, L-K.; Leeds, P.; Fessler, E.B.; Wang, J.; Chuang, D.M. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol. Psychiatry, 2015, 20(2), 215-223.
[http://dx.doi.org/10.1038/mp.2013.192] [PMID: 24468826]
[99]
Sarruf, D.A.; Thaler, J.P.; Morton, G.J.; German, J.; Fischer, J.D.; Ogimoto, K.; Schwartz, M.W. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes, 2010, 59(7), 1817-1824.
[http://dx.doi.org/10.2337/db09-1878] [PMID: 20357365]
[100]
Tan, B.K.; Sivakumar, K.; Bari, M.F.; Vatish, M.; Randeva, H.S. Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21) ratios and placental FGF21 production in gestational diabetes. PLoS One, 2013, 8(6) e65254.
[http://dx.doi.org/10.1371/journal.pone.0065254] [PMID: 23755203]
[101]
Qing, Y.; Yang, J.; Wan, C. Increased serum fibroblast growth factor 21 levels in patients with schizophrenia. Aust. N. Z. J. Psychiatry, 2015, 49(9), 849-850.
[http://dx.doi.org/10.1177/0004867415575380] [PMID: 25722462]
[102]
Ohmachi, S.; Mikami, T.; Konishi, M.; Miyake, A.; Itoh, N. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. J. Neurosci. Res., 2003, 72(4), 436-443.
[http://dx.doi.org/10.1002/jnr.10592] [PMID: 12704805]
[103]
Wu, A-L.; Coulter, S.; Liddle, C.; Wong, A.; Eastham-Anderson, J.; French, D.M.; Peterson, A.S.; Sonoda, J. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One, 2011, 6(3) e17868.
[http://dx.doi.org/10.1371/journal.pone.0017868] [PMID: 21437243]
[104]
Tiong, K.H.; Mah, L.Y.; Leong, C-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468.
[http://dx.doi.org/10.1007/s10495-013-0886-7] [PMID: 23900974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy