Review Article

纤维母细胞生长因子:治疗精神分裂症的理想目标

卷 21, 期 13, 2020

页: [1344 - 1353] 页: 10

弟呕挨: 10.2174/1389450121666200628114843

价格: $65

摘要

精神分裂症是世界上最严重的精神疾病之一。它的特征是神经解剖或生化变化。近年来,成纤维细胞生长因子(FGFs)系统在精神分裂症中的作用受到了广泛关注。基因表达和/或FGFs水平的各种变化与精神分裂症的病因、症状和进展有关。例如,研究证实了FGFs与多巴胺受体信号通路之间的相互作用。为了了解该系统在精神分裂症中的作用,我们搜索了开放存取期刊数据库、Web of Science、PubMed (NLM)、LISTA (EBSCO)和谷歌学术,其中的关键词包括纤维母细胞生长因子、多巴胺、精神分裂症、精神病以及神经营养。综上所述,FGF家族代表了精神分裂症新的药物靶点和治疗靶点的候选分子。

关键词: 纤维母细胞生长因子,多巴胺,精神分裂症,精神病,神经营养,抗精神病药物。

图形摘要

[1]
Li, P.; Snyder, G.L.; Vanover, K.E. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr. Top. Med. Chem., 2016, 16(29), 3385-3403.
[http://dx.doi.org/10.2174/1568026616666160608084834] [PMID: 27291902]
[2]
Denis, F.; Pelletier, J-F.; Chauvet-Gelinier, J-C.; Rude, N.; Trojak, B. Oral Health Is a Challenging Problem for Patients with Schizophrenia: A Narrative Review. Iran. J. Psychiatry. Behav. Sci., 2018, 12(1)
[http://dx.doi.org/10.5812/ijpbs.8062]
[3]
Remington, G.; Agid, O.; Foussias, G. Schizophrenia as a disorder of too little dopamine: implications for symptoms and treatment. Expert Rev. Neurother., 2011, 11(4), 589-607.
[http://dx.doi.org/10.1586/ern.10.191] [PMID: 21469931]
[4]
Talaei, A.; Faridhosseini, F.; Kazemi, H. BORDBAR MRF, ARDANI AR. Effect of topiramate on drug associated weight gain of patients with schizophrenia and bipolar i disorders: A dose ranging randomized trial. Turk Psikiyatr. Derg., 2016, 27(2)
[5]
Chaychi, I.; Foroughipour, M.; Haghir, H.; Talaei, A.; Chaichi, A. Electroencephalographic characteristics of Iranian schizophrenia patients. Acta Neurol. Belg., 2015, 115(4), 665-670.
[http://dx.doi.org/10.1007/s13760-014-0415-7] [PMID: 25651947]
[6]
Hosák, L.; Hosakova, J. The complex etiology of schizophrenia - general state of the art. Neuroendocrinol. Lett., 2015, 36(7), 631-637.
[PMID: 26859583]
[7]
Walker, E.; Kestler, L.; Bollini, A.; Hochman, K.M. Schizophrenia: etiology and course. Annu. Rev. Psychol., 2004, 55, 401-430.
[http://dx.doi.org/10.1146/annurev.psych.55.090902.141950] [PMID: 14744221]
[8]
Sedighi, M.; Mansouri, A.; Talaei, A. The relationship between transdiagnostic factors and psychotic symptoms in individuals with schizophrenia disorder. Journal of Fundamentals of Mental Health., 2019, 21(3), 183-193.
[9]
Dean, B. The cortical serotonin2A receptor and the pathology of schizophrenia: a likely accomplice. J. Neurochem., 2003, 85(1), 1-13.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01693.x] [PMID: 12641722]
[10]
Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, 460(7256), 748-752.
[http://dx.doi.org/10.1038/nature08185] [PMID: 19571811]
[11]
Messias, E.L.; Chen, C-Y.; Eaton, W.W. Epidemiology of schizophrenia: review of findings and myths. Psychiatr. Clin. North Am., 2007, 30(3), 323-338.
[http://dx.doi.org/10.1016/j.psc.2007.04.007] [PMID: 17720026]
[12]
Davis, J.; Eyre, H.; Jacka, F.N.; Dodd, S.; Dean, O.; McEwen, S.; Debnath, M.; McGrath, J.; Maes, M.; Amminger, P.; McGorry, P.D.; Pantelis, C.; Berk, M. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci. Biobehav. Rev., 2016, 65, 185-194.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.017] [PMID: 27073049]
[13]
Chong, H.Y.; Teoh, S.L.; Wu, D.B-C.; Kotirum, S.; Chiou, C-F.; Chaiyakunapruk, N. Global economic burden of schizophrenia: a systematic review. Neuropsychiatr. Dis. Treat., 2016, 12, 357-373.
[PMID: 26937191]
[14]
De Luca, V.; Tharmalingam, S.; Müller, D.J.; Wong, G.; de Bartolomeis, A.; Kennedy, J.L. Gene-gene interaction between MAOA and COMT in suicidal behavior: analysis in schizophrenia. Brain Res., 2006, 1097(1), 26-30.
[http://dx.doi.org/10.1016/j.brainres.2006.04.053] [PMID: 16725119]
[15]
Kim, D.H.; Maneen, M.J.; Stahl, S.M. Building a better antipsychotic: receptor targets for the treatment of multiple symptom dimensions of schizophrenia. Neurotherapeutics, 2009, 6(1), 78-85.
[http://dx.doi.org/10.1016/j.nurt.2008.10.020] [PMID: 19110200]
[16]
Dean, B. Neurochemistry of schizophrenia: the contribution of neuroimaging postmortem pathology and neurochemistry in schizophrenia. Curr. Top. Med. Chem., 2012, 12(21), 2375-2392.
[http://dx.doi.org/10.2174/156802612805289935] [PMID: 23279177]
[17]
Grover, S.; Chakrabarti, S.; Kulhara, P.; Avasthi, A. Clinical practice Guidelines for management of schizophrenia. Indian J. Psychiatry, 2017, 59(Suppl. 1), S19-S33.
[http://dx.doi.org/10.4103/0019-5545.196973] [PMID: 28216783]
[18]
Biedermann, F.; Fleischhacker, W.W. Emerging drugs for schizophrenia. Expert Opin. Emerg. Drugs, 2011, 16(2), 271-282.
[http://dx.doi.org/10.1517/14728214.2011.556112] [PMID: 21563991]
[19]
Patel, K.R.; Cherian, J.; Gohil, K.; Atkinson, D. Schizophrenia: overview and treatment options. P&T, 2014, 39(9), 638-645.
[PMID: 25210417]
[20]
Stahl, S.M. Essential psychopharmacology: Neuroscientific basis and practical applications; Cambridge university press, 2000.
[21]
Lavretsky, H. History of schizophrenia as a psychiatric disorder. K. T. Mueser & D. V. Jeste (Eds.). Clinical handbook of schizophrenia. The Guilford Press, 2008; pp. 3-13.
[22]
Jentsch, J.D.; Roth, R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1999, 20(3), 201-225.
[http://dx.doi.org/10.1016/S0893-133X(98)00060-8] [PMID: 10063482]
[23]
Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J. Psychopharmacol. (Oxford), 2015, 29(2), 97-115.
[http://dx.doi.org/10.1177/0269881114563634] [PMID: 25586400]
[24]
Javitt, D.C. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol., 2007, 78, 69-108.
[http://dx.doi.org/10.1016/S0074-7742(06)78003-5] [PMID: 17349858]
[25]
Terwisscha van Scheltinga, A.F.; Bakker, S.C.; Kahn, R.S. Schizophrenia William G. Gossman. Schizophr. Bull., 2010, 36(6), 1157-1166.
[PMID: 19429845]
[26]
Deng, Z.; Deng, S.; Zhang, M-R.; Tang, M-M. Fibroblast growth factors in depression. Front. Pharmacol., 2019, 10, 60.
[http://dx.doi.org/10.3389/fphar.2019.00060] [PMID: 30804785]
[27]
Zhang, X.; Ibrahimi, O.A.; Olsen, S.K.; Umemori, H.; Mohammadi, M.; Ornitz, D.M. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem., 2006, 281(23), 15694-15700.
[http://dx.doi.org/10.1074/jbc.M601252200] [PMID: 16597617]
[28]
Nemoto, Y.; Kumagai, T.; Ishizawa, K.; Miura, Y.; Shiraishi, T.; Morimoto, C.; Sakai, K.; Omizo, H.; Yamazaki, O.; Tamura, Y.; Fujigaki, Y.; Kawachi, H.; Kuro-O, M.; Uchida, S.; Shibata, S. Phosphate binding by sucroferric oxyhydroxide ameliorates renal injury in the remnant kidney model. Sci. Rep., 2019, 9(1), 1732.
[http://dx.doi.org/10.1038/s41598-018-38389-3] [PMID: 30741979]
[29]
Hui, Q.; Jin, Z.; Li, X.; Liu, C.; Wang, X. FGF family: from drug development to clinical application. Int. J. Mol. Sci., 2018, 19(7), 1875.
[http://dx.doi.org/10.3390/ijms19071875] [PMID: 29949887]
[30]
Forouzanfar, F.; Amin, B.; Ghorbani, A.; Ghazavi, H.; Ghasemi, F.; Sadri, K.; Mehri, S.; Sadeghnia, H.R.; Hosseinzadeh, H. New approach for the treatment of neuropathic pain: Fibroblast growth factor 1 gene-transfected adipose-derived mesenchymal stem cells. Eur. J. Pain, 2018, 22(2), 295-310.
[http://dx.doi.org/10.1002/ejp.1119] [PMID: 28949091]
[31]
Hoseini, S.J.; Ghazavi, H.; Forouzanfar, F.; Mashkani, B.; Ghorbani, A.; Mahdipour, E.; Ghasemi, F.; Sadeghnia, H.R.; Ghayour-Mobarhan, M. Fibroblast growth factor 1-transfected adipose-derived mesenchymal stem cells promote angiogenic proliferation. DNA Cell Biol., 2017, 36(5), 401-412.
[http://dx.doi.org/10.1089/dna.2016.3546] [PMID: 28281780]
[32]
Asgharzade, S.; Talaei, A.; Farkhondeh, T.; Forouzanfar, F. Combining growth factor and stem cell therapy for stroke rehabilitation, a review. Curr. Drug Targets, 2020.
[http://dx.doi.org/10.2174/1389450121666200107100747] [PMID: 31914912]
[33]
Turner, C.A.; Eren-Koçak, E.; Inui, E.G.; Watson, S.J.; Akil, H., Eds.; Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Seminars in cell & developmental biology; Elsevier, 2016.
[34]
Ghazavi, H.; Hoseini, S.J.; Ebrahimzadeh-Bideskan, A.; Mashkani, B.; Mehri, S.; Ghorbani, A.; Sadri, K.; Mahdipour, E.; Ghasemi, F.; Forouzanfar, F.; Hoseini, A.; Pasdar, A.R.; Sadeghnia, H.R.; Ghayour-Mobarhan, M. Fibroblast growth factor type 1 (fgf1)-overexpressed adipose-derived mesenchaymal stem cells (ad-mscfgf1) induce neuroprotection and functional recovery in a rat stroke model. Stem Cell Rev Rep, 2017, 13(5), 670-685.
[http://dx.doi.org/10.1007/s12015-017-9755-z] [PMID: 28795363]
[35]
Beenken, A.; Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253.
[http://dx.doi.org/10.1038/nrd2792] [PMID: 19247306]
[36]
Mohammadi, M.; Olsen, S.K.; Ibrahimi, O.A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev., 2005, 16(2), 107-137.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.008] [PMID: 15863029]
[37]
Sobhani, N.; Ianza, A.; D’Angelo, A.; Roviello, G.; Giudici, F.; Bortul, M.; Zanconati, F.; Bottin, C.; Generali, D. Current status of fibroblast growth factor receptor-targeted therapies in breast cancer. Cells, 2018, 7(7), 76.
[http://dx.doi.org/10.3390/cells7070076] [PMID: 30011957]
[38]
Yang, S.; Weske, A.; Du, Y.; Valera, J.M.; Jones, K.L.; Johnson, A.N. FGF signaling directs myotube guidance by regulating Rac activity. Development, 2020, 147(3)dev183624
[http://dx.doi.org/10.1242/dev.183624] [PMID: 31932350]
[39]
Turner, C.A.; Watson, S.J.; Akil, H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron, 2012, 76(1), 160-174.
[http://dx.doi.org/10.1016/j.neuron.2012.08.037] [PMID: 23040813]
[40]
Yun, Y-R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng., 2010, 2010(1) 218142.
[http://dx.doi.org/10.4061/2010/218142] [PMID: 21350642]
[41]
Cowan, K.J.; Storey, K.B. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J. Exp. Biol., 2003, 206(Pt 7), 1107-1115.
[http://dx.doi.org/10.1242/jeb.00220] [PMID: 12604570]
[42]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183.
[PMID: 11294822]
[43]
Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12(1), 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[44]
Dailey, L.; Ambrosetti, D.; Mansukhani, A.; Basilico, C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev., 2005, 16(2), 233-247.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.007] [PMID: 15863038]
[45]
Brewer, J.R.; Mazot, P.; Soriano, P. Genetic insights into the mechanisms of Fgf signaling. Genes Dev., 2016, 30(7), 751-771.
[http://dx.doi.org/10.1101/gad.277137.115] [PMID: 27036966]
[46]
Zhao, M.; Li, D.; Shimazu, K.; Zhou, Y-X.; Lu, B.; Deng, C-X. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol. Psychiatry, 2007, 62(5), 381-390.
[http://dx.doi.org/10.1016/j.biopsych.2006.10.019] [PMID: 17239352]
[47]
Terwisscha van Scheltinga, A.F.; Bakker, S.C.; Kahn, R.S. Fibroblast growth factors in schizophrenia. Schizophr. Bull., 2010, 36(6), 1157-1166.
[http://dx.doi.org/10.1093/schbul/sbp033] [PMID: 19429845]
[48]
Frinchi, M.; Bonomo, A.; Trovato-Salinaro, A.; Condorelli, D.F.; Fuxe, K.; Spampinato, M.G.; Mudò, G. Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci. Lett., 2008, 447(1), 20-25.
[http://dx.doi.org/10.1016/j.neulet.2008.09.059] [PMID: 18835325]
[49]
Dodé, C.; Levilliers, J.; Dupont, J-M.; De Paepe, A.; Le Dû, N.; Soussi-Yanicostas, N.; Coimbra, R.S.; Delmaghani, S.; Compain-Nouaille, S.; Baverel, F.; Pêcheux, C.; Le Tessier, D.; Cruaud, C.; Delpech, M.; Speleman, F.; Vermeulen, S.; Amalfitano, A.; Bachelot, Y.; Bouchard, P.; Cabrol, S.; Carel, J.C.; Delemarre-van de Waal, H.; Goulet-Salmon, B.; Kottler, M.L.; Richard, O.; Sanchez-Franco, F.; Saura, R.; Young, J.; Petit, C.; Hardelin, J.P. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat. Genet., 2003, 33(4), 463-465.
[http://dx.doi.org/10.1038/ng1122] [PMID: 12627230]
[50]
Stevens, H.E.; Smith, K.M.; Maragnoli, M.E.; Fagel, D.; Borok, E.; Shanabrough, M.; Horvath, T.L.; Vaccarino, F.M. Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J. Neurosci., 2010, 30(16), 5590-5602.
[http://dx.doi.org/10.1523/JNEUROSCI.5837-09.2010] [PMID: 20410112]
[51]
Wang, T.; Zeng, Z.; Hu, Z.; Zheng, L.; Li, T.; Li, Y.; Liu, J.; Li, J.; Feng, G.; He, L.; Shi, Y. FGFR2 is associated with bipolar disorder: a large-scale case-control study of three psychiatric disorders in the Chinese Han population. World J. Biol. Psychiatry, 2012, 13(8), 599-604.
[http://dx.doi.org/10.3109/15622975.2011.650203] [PMID: 22404656]
[52]
Williams, N.M.; Norton, N.; Williams, H.; Ekholm, B.; Hamshere, M.L.; Lindblom, Y.; Chowdari, K.V.; Cardno, A.G.; Zammit, S.; Jones, L.A.; Murphy, K.C.; Sanders, R.D.; McCarthy, G.; Gray, M.Y.; Jones, G.; Holmans, P.; Nimgaonkar, V.; Adolfson, R.; Osby, U.; Terenius, L.; Sedvall, G.; O’Donovan, M.C.; Owen, M.J. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am. J. Hum. Genet., 2003, 73(6), 1355-1367.
[http://dx.doi.org/10.1086/380206] [PMID: 14628288]
[53]
Chesi, M.; Brents, L.A.; Ely, S.A.; Bais, C.; Robbiani, D.F.; Mesri, E.A.; Kuehl, W.M.; Bergsagel, P.L. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood, 2001, 97(3), 729-736.
[http://dx.doi.org/10.1182/blood.V97.3.729] [PMID: 11157491]
[54]
Frattini, V.; Pagnotta, S.M. Tala; Fan, J.J.; Russo, M.V.; Lee, S.B.; Garofano, L.; Zhang, J.; Shi, P.; Lewis, G.; Sanson, H.; Frederick, V.; Castano, A.M.; Cerulo, L.; Rolland, D.C.M.; Mall, R.; Mokhtari, K.; Elenitoba-Johnson, K.S.J.; Sanson, M.; Huang, X.; Ceccarelli, M.; Lasorella, A.; Iavarone, A. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature, 2018, 553(7687), 222-227.
[http://dx.doi.org/10.1038/nature25171] [PMID: 29323298]
[55]
Moldrich, R.X.; Mezzera, C.; Holmes, W.M.; Goda, S.; Brookfield, S.J.; Rankin, A.J.; Barr, E.; Kurniawan, N.; Dewar, D.; Richards, L.J.; López-Bendito, G.; Iwata, T. Fgfr3 regulates development of the caudal telencephalon. Dev. Dyn., 2011, 240(6), 1586-1599.
[http://dx.doi.org/10.1002/dvdy.22636] [PMID: 21491541]
[56]
French, D.M.; Lin, B.C.; Wang, M.; Adams, C.; Shek, T.; Hötzel, K.; Bolon, B.; Ferrando, R.; Blackmore, C.; Schroeder, K.; Rodriguez, L.A.; Hristopoulos, M.; Venook, R.; Ashkenazi, A.; Desnoyers, L.R. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One, 2012, 7(5) e36713.
[http://dx.doi.org/10.1371/journal.pone.0036713] [PMID: 22615798]
[57]
Li, H.; Wei, X.; Yang, J.; Dong, D.; Hao, D.; Huang, Y.; Lan, X.; Plath, M.; Lei, C.; Ma, Y.; Lin, F.; Bai, Y.; Chen, H. circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol. Ther. Nucleic Acids, 2018, 11, 272-283.
[http://dx.doi.org/10.1016/j.omtn.2018.02.012] [PMID: 29858062]
[58]
Thompson, J.L.; Pogue-Geile, M.F.; Grace, A.A. Developmental pathology, dopamine, and stress: a model for the age of onset of schizophrenia symptoms. Schizophr. Bull., 2004, 30(4), 875-900.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a007139] [PMID: 15954196]
[59]
Grothe, C.; Timmer, M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res. Brain Res. Rev., 2007, 54(1), 80-91.
[http://dx.doi.org/10.1016/j.brainresrev.2006.12.001] [PMID: 17229467]
[60]
Flajolet, M.; Wang, Z.; Futter, M.; Shen, W.; Nuangchamnong, N.; Bendor, J.; Wallach, I.; Nairn, A.C.; Surmeier, D.J.; Greengard, P. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat. Neurosci., 2008, 11(12), 1402-1409.
[http://dx.doi.org/10.1038/nn.2216] [PMID: 18953346]
[61]
Hsuan, S-L.; Klintworth, H.M.; Xia, Z. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways. J. Neurosci., 2006, 26(17), 4481-4491.
[http://dx.doi.org/10.1523/JNEUROSCI.4922-05.2006] [PMID: 16641227]
[62]
Rumpel, R.; Baron, O.; Ratzka, A.; Schröder, M-L.; Hohmann, M.; Effenberg, A.; Claus, P.; Grothe, C. Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2. Neuroscience, 2016, 314, 134-144.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.057] [PMID: 26642808]
[63]
Yamauchi, K.; Mizushima, S.; Tamada, A.; Yamamoto, N.; Takashima, S.; Murakami, F. FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J. Neurosci., 2009, 29(13), 4044-4055.
[http://dx.doi.org/10.1523/JNEUROSCI.4794-08.2009] [PMID: 19339600]
[64]
Kolk, S.M.; Gunput, R.A.; Tran, T.S.; van den Heuvel, D.M.; Prasad, A.A.; Hellemons, A.J.; Adolfs, Y.; Ginty, D.D.; Kolodkin, A.L.; Burbach, J.P.; Smidt, M.P.; Pasterkamp, R.J. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J. Neurosci., 2009, 29(40), 12542-12557.
[http://dx.doi.org/10.1523/JNEUROSCI.2521-09.2009] [PMID: 19812329]
[65]
Lewis, D.A.; Curley, A.A.; Glausier, J.R.; Volk, D.W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci., 2012, 35(1), 57-67.
[http://dx.doi.org/10.1016/j.tins.2011.10.004] [PMID: 22154068]
[66]
Guidotti, A.; Auta, J.; Chen, Y.; Davis, J.M.; Dong, E.; Gavin, D.P.; Grayson, D.R.; Matrisciano, F.; Pinna, G.; Satta, R.; Sharma, R.P.; Tremolizzo, L.; Tueting, P. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology, 2011, 60(7-8), 1007-1016.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.021] [PMID: 21074545]
[67]
Knable, MB; Barci, BM; Webster, MJ; Meador-Woodruff, J; Torrey, EF Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry., 2004, 9(6), 609-20-544.
[68]
Zhang, Z.J.; Reynolds, G.P. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr. Res., 2002, 55(1-2), 1-10.
[http://dx.doi.org/10.1016/S0920-9964(01)00188-8] [PMID: 11955958]
[69]
Torrey, E.F.; Barci, B.M.; Webster, M.J.; Bartko, J.J.; Meador-Woodruff, J.H.; Knable, M.B. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol. Psychiatry, 2005, 57(3), 252-260.
[http://dx.doi.org/10.1016/j.biopsych.2004.10.019] [PMID: 15691526]
[70]
Alshammari, T.K.; Alshammari, M.A.; Nenov, M.N.; Hoxha, E.; Cambiaghi, M.; Marcinno, A.; James, T.F.; Singh, P.; Labate, D.; Li, J.; Meltzer, H.Y.; Sacchetti, B.; Tempia, F.; Laezza, F. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia. Transl. Psychiatry, 2016, 6(5) e806.
[http://dx.doi.org/10.1038/tp.2016.66] [PMID: 27163207]
[71]
Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Elimination of serotonergic cells induces a marked increase in generation of dopaminergic neurons from mesencephalic precursors. Eur. J. Neurosci., 2003, 18(8), 2166-2174.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02949.x] [PMID: 14622177]
[72]
Klejbor, I.; Myers, J.M.; Hausknecht, K.; Corso, T.D.; Gambino, A.S.; Morys, J.; Maher, P.A.; Hard, R.; Richards, J.; Stachowiak, E.K.; Stachowiak, M.K. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons - inhibition results in a schizophrenia-like syndrome in transgenic mice. J. Neurochem., 2006, 97(5), 1243-1258.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03754.x] [PMID: 16524369]
[73]
Nandy, S.B.; Mohanty, S.; Singh, M.; Behari, M.; Airan, B. Fibroblast Growth Factor-2 alone as an efficient inducer for differentiation of human bone marrow mesenchymal stem cells into dopaminergic neurons. J. Biomed. Sci., 2014, 21, 83.
[http://dx.doi.org/10.1186/s12929-014-0083-1] [PMID: 25248378]
[74]
Boshoff, E.L.; Fletcher, E.J.R.; Duty, S. Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner. Neuropharmacology, 2018, 137, 156-163.
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.017] [PMID: 29698669]
[75]
Stachowiak, E.K.; Benson, C.A.; Narla, S.T.; Dimitri, A.; Chuye, L.E.B.; Dhiman, S.; Harikrishnan, K.; Elahi, S.; Freedman, D.; Brennand, K.J.; Sarder, P.; Stachowiak, M.K. Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Transl. Psychiatry, 2017, 7(11), 6.
[http://dx.doi.org/10.1038/s41398-017-0054-x] [PMID: 30446636]
[76]
Gaughran, F.; Payne, J.; Sedgwick, P.M.; Cotter, D.; Berry, M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res. Bull., 2006, 70(3), 221-227.
[http://dx.doi.org/10.1016/j.brainresbull.2006.04.008] [PMID: 16861106]
[77]
Narla, S.T.; Lee, Y.W.; Benson, C.A.; Sarder, P.; Brennand, K.J.; Stachowiak, E.K.; Stachowiak, M.K. Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS). Schizophr. Res., 2017, 185, 17-32.
[http://dx.doi.org/10.1016/j.schres.2016.12.012] [PMID: 28094170]
[78]
Alzheimer, C.; Werner, S. Fibroblast growth factors and neuroprotection. Molecular and Cellular Biology of Neuroprotection in the CNS; Springer, 2003, pp. 335-351.
[http://dx.doi.org/10.1007/978-1-4615-0123-7_12]
[79]
Umemori, H.; Linhoff, M.W.; Ornitz, D.M.; Sanes, J.R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell, 2004, 118(2), 257-270.
[http://dx.doi.org/10.1016/j.cell.2004.06.025] [PMID: 15260994]
[80]
O’Donovan, M.C.; Norton, N.; Williams, H.; Peirce, T.; Moskvina, V.; Nikolov, I.; Hamshere, M.; Carroll, L.; Georgieva, L.; Dwyer, S.; Holmans, P.; Marchini, J.L.; Spencer, C.C.; Howie, B.; Leung, H.T.; Giegling, I.; Hartmann, A.M.; Möller, H.J.; Morris, D.W.; Shi, Y.; Feng, G.; Hoffmann, P.; Propping, P.; Vasilescu, C.; Maier, W.; Rietschel, M.; Zammit, S.; Schumacher, J.; Quinn, E.M.; Schulze, T.G.; Iwata, N.; Ikeda, M.; Darvasi, A.; Shifman, S.; He, L.; Duan, J.; Sanders, A.R.; Levinson, D.F.; Adolfsson, R.; Osby, U.; Terenius, L.; Jönsson, E.G.; Cichon, S.; Nöthen, M.M.; Gill, M.; Corvin, A.P.; Rujescu, D.; Gejman, P.V.; Kirov, G.; Craddock, N.; Williams, N.M.; Owen, M.J. Molecular Genetics of Schizophrenia Collaboration.. Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol. Psychiatry, 2009, 14(1), 30-36.
[http://dx.doi.org/10.1038/mp.2008.108] [PMID: 18813210]
[81]
Nugent, M.A.; Iozzo, R.V. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol., 2000, 32(2), 115-120.
[http://dx.doi.org/10.1016/S1357-2725(99)00123-5] [PMID: 10687947]
[82]
Rai, K.S.; Hattiangady, B.; Shetty, A.K. Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur. J. Neurosci., 2007, 26(7), 1765-1779.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05820.x] [PMID: 17883411]
[83]
Ford-Perriss, M.; Abud, H.; Murphy, M. Fibroblast growth factors in the developing central nervous system. Clin. Exp. Pharmacol. Physiol., 2001, 28(7), 493-503.
[http://dx.doi.org/10.1046/j.1440-1681.2001.03477.x] [PMID: 11422214]
[84]
Yoshimura, S.; Takagi, Y.; Harada, J.; Teramoto, T.; Thomas, S.S.; Waeber, C.; Bakowska, J.C.; Breakefield, X.O.; Moskowitz, M.A. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5874-5879.
[http://dx.doi.org/10.1073/pnas.101034998] [PMID: 11320217]
[85]
Zheng, W.; Nowakowski, R.S.; Vaccarino, F.M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci., 2004, 26(2-4), 181-196.
[http://dx.doi.org/10.1159/000082136] [PMID: 15711059]
[86]
Ortega, S.; Ittmann, M.; Tsang, S.H.; Ehrlich, M.; Basilico, C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA, 1998, 95(10), 5672-5677.
[http://dx.doi.org/10.1073/pnas.95.10.5672] [PMID: 9576942]
[87]
Nindl, W.; Kavakebi, P.; Claus, P.; Grothe, C.; Pfaller, K.; Klimaschewski, L. Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: synthesis, intracellular localization and involvement in karyokinesis. Neuroscience, 2004, 124(3), 561-572.
[http://dx.doi.org/10.1016/j.neuroscience.2003.11.032] [PMID: 14980727]
[88]
Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Lopez-Virgen, V.; Gomez-Plascencia, J.; Ramos-Zuniga, R.; Gonzalez-Perez, O. Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev., 2016, 32, 85-96.
[http://dx.doi.org/10.1016/j.cytogfr.2016.08.004] [PMID: 27618303]
[89]
Fadda, P.; Bedogni, F.; Fresu, A.; Collu, M.; Racagni, G.; Riva, M.A. Reduction of corticostriatal glutamatergic fibers in basic fibroblast growth factor deficient mice is associated with hyperactivity and enhanced dopaminergic transmission. Biol. Psychiatry, 2007, 62(3), 235-242.
[http://dx.doi.org/10.1016/j.biopsych.2006.08.003] [PMID: 17161387]
[90]
Riva, M.A.; Molteni, R.; Tascedda, F.; Massironi, A.; Racagni, G. Selective modulation of fibroblast growth factor-2 expression in the rat brain by the atypical antipsychotic clozapine. Neuropharmacology, 1999, 38(7), 1075-1082.
[http://dx.doi.org/10.1016/S0028-3908(99)00031-3] [PMID: 10428426]
[91]
Schaber, G.; Stevens, I.; Gaertner, H.J.; Dietz, K.; Breyer-Pfaff, U. Pharmacokinetics of clozapine and its metabolites in psychiatric patients: plasma protein binding and renal clearance. Br. J. Clin. Pharmacol., 1998, 46(5), 453-459.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00822.x] [PMID: 9833598]
[92]
Hashimoto, K.; Shimizu, E.; Komatsu, N.; Nakazato, M.; Okamura, N.; Watanabe, H.; Kumakiri, C.; Shinoda, N.; Okada, S.; Takei, N.; Iyo, M. Increased levels of serum basic fibroblast growth factor in schizophrenia. Psychiatry Res., 2003, 120(3), 211-218.
[http://dx.doi.org/10.1016/S0165-1781(03)00186-0] [PMID: 14561432]
[93]
Li, X-S.; Wu, H-T.; Yu, Y.; Chen, G-Y.; Qin, X-Y.; Zheng, G-E.; Deng, W.; Cheng, Y. Increased serum FGF2 levels in first-episode, drug-free patients with schizophrenia. Neurosci. Lett., 2018, 686, 28-32.
[http://dx.doi.org/10.1016/j.neulet.2018.08.046] [PMID: 30172685]
[94]
Ovalle, S.; Zamanillo, D.; Andreu, F.; Farré, A.J.; Guitart, X. Fibroblast growth factor-2 is selectively modulated in the rat brain by E-5842, a preferential sigma-1 receptor ligand and putative atypical antipsychotic. Eur. J. Neurosci., 2001, 13(5), 909-915.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01459.x] [PMID: 11264663]
[95]
Yu, Y; Xie, GJ; Hu, Y; Li, XS; Chen, GY; Zheng, GE Dysregulation of Fibroblast Growth Factor 10 in the Peripheral Blood of Patients with Schizophrenia. Journal of molecular neuroscience : MN., 2019, 69(1), 69-74.
[http://dx.doi.org/10.1007/s12031-019-01331-x]
[96]
Inagaki, T.; Dutchak, P.; Zhao, G.; Ding, X.; Gautron, L.; Parameswara, V.; Li, Y.; Goetz, R.; Mohammadi, M.; Esser, V.; Elmquist, J.K.; Gerard, R.D.; Burgess, S.C.; Hammer, R.E.; Mangelsdorf, D.J.; Kliewer, S.A. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab., 2007, 5(6), 415-425.
[http://dx.doi.org/10.1016/j.cmet.2007.05.003] [PMID: 17550777]
[97]
Kharitonenkov, A.; Larsen, P. FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol. Metab., 2011, 22(3), 81-86.
[http://dx.doi.org/10.1016/j.tem.2010.11.003] [PMID: 21194964]
[98]
Leng, Y.; Wang, Z.; Tsai, L-K.; Leeds, P.; Fessler, E.B.; Wang, J.; Chuang, D.M. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol. Psychiatry, 2015, 20(2), 215-223.
[http://dx.doi.org/10.1038/mp.2013.192] [PMID: 24468826]
[99]
Sarruf, D.A.; Thaler, J.P.; Morton, G.J.; German, J.; Fischer, J.D.; Ogimoto, K.; Schwartz, M.W. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes, 2010, 59(7), 1817-1824.
[http://dx.doi.org/10.2337/db09-1878] [PMID: 20357365]
[100]
Tan, B.K.; Sivakumar, K.; Bari, M.F.; Vatish, M.; Randeva, H.S. Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21) ratios and placental FGF21 production in gestational diabetes. PLoS One, 2013, 8(6) e65254.
[http://dx.doi.org/10.1371/journal.pone.0065254] [PMID: 23755203]
[101]
Qing, Y.; Yang, J.; Wan, C. Increased serum fibroblast growth factor 21 levels in patients with schizophrenia. Aust. N. Z. J. Psychiatry, 2015, 49(9), 849-850.
[http://dx.doi.org/10.1177/0004867415575380] [PMID: 25722462]
[102]
Ohmachi, S.; Mikami, T.; Konishi, M.; Miyake, A.; Itoh, N. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. J. Neurosci. Res., 2003, 72(4), 436-443.
[http://dx.doi.org/10.1002/jnr.10592] [PMID: 12704805]
[103]
Wu, A-L.; Coulter, S.; Liddle, C.; Wong, A.; Eastham-Anderson, J.; French, D.M.; Peterson, A.S.; Sonoda, J. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One, 2011, 6(3) e17868.
[http://dx.doi.org/10.1371/journal.pone.0017868] [PMID: 21437243]
[104]
Tiong, K.H.; Mah, L.Y.; Leong, C-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468.
[http://dx.doi.org/10.1007/s10495-013-0886-7] [PMID: 23900974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy