Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Effects of Maternal Obesity On Placental Phenotype

Author(s): A.L. Fowden*, E.J. Camm and A.N. Sferruzzi-Perri

Volume 19, Issue 2, 2021

Published on: 13 May, 2020

Page: [113 - 131] Pages: 19

DOI: 10.2174/1570161118666200513115316

Price: $65

Abstract

The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.

Keywords: Obesity, placenta, development, programming, pregnancy, gestational diabetes.

Graphical Abstract

[1]
Parliament Obesity Statistics: Library Briefing Paper No. 3336 London: House of Commons Library 2019.Available. www.parliament.uk/commons-library
[3]
Chen C, Xu X, Yan Y. Estimated global overweight and obesity burden in pregnant women based on panel data model. PLoS One 2018; 13(8)e0202183
[http://dx.doi.org/10.1371/journal.pone.0202183] [PMID: 30092099]
[4]
Huda SS, Brodie LE, Sattar N. Obesity in pregnancy: prevalence and metabolic consequences. Semin Fetal Neonatal Med 2010; 15(2): 70-6.
[http://dx.doi.org/10.1016/j.siny.2009.09.006] [PMID: 19896913]
[5]
Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA 2016; 315(21): 2284-91.
[http://dx.doi.org/10.1001/jama.2016.6458] [PMID: 27272580]
[6]
Stüber TN, Künzel EC, Zollner U, Rehn M, Wöckel A, Hönig A. Prevalence and Associated Risk Factors for Obesity During Pregnancy Over Time. Geburtshilfe Frauenheilkd 2015; 75(9): 923-8.
[http://dx.doi.org/10.1055/s-0035-1557868] [PMID: 26500368]
[7]
Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017; 356: j1.
[http://dx.doi.org/10.1136/bmj.j1] [PMID: 28179267]
[8]
Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev 2015; 16(8): 621-38.
[http://dx.doi.org/10.1111/obr.12288] [PMID: 26016557]
[9]
King JC. Maternal obesity, metabolism, and pregnancy outcomes. Annu Rev Nutr 2006; 26: 271-91.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132249] [PMID: 16704347]
[10]
Frias AE, Morgan TK, Evans AE, et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 2011; 152(6): 2456-64.
[http://dx.doi.org/10.1210/en.2010-1332] [PMID: 21447636]
[11]
Huang HY, Chen HL, Feng LP. Maternal obesity and the risk of neural tube defects in offspring: A meta-analysis. Obes Res Clin Pract 2017; 11(2): 188-97.
[http://dx.doi.org/10.1016/j.orcp.2016.04.005] [PMID: 27155922]
[12]
Louwagie EJ, Larsen TD, Wachal AL, Baack ML. Placental lipid processing in response to a maternal high-fat diet and diabetes in rats. Pediatr Res 2018; 83(3): 712-22.
[http://dx.doi.org/10.1038/pr.2017.288] [PMID: 29166372]
[13]
Hayes EK, Lechowicz A, Petrik JJ, et al. Adverse fetal and neonatal outcomes associated with a life-long high fat diet: role of altered development of the placental vasculature. PLoS One 2012; 7(3)e33370
[http://dx.doi.org/10.1371/journal.pone.0033370] [PMID: 22442686]
[14]
Wallace JM, Horgan GW, Bhattacharya S. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta 2012; 33(8): 611-8.
[http://dx.doi.org/10.1016/j.placenta.2012.05.006] [PMID: 22695104]
[15]
Godfrey KM, Reynolds RM, Prescott SL, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol 2017; 5(1): 53-64.
[http://dx.doi.org/10.1016/S2213-8587(16)30107-3] [PMID: 27743978]
[16]
Barbour LA. Metabolic culprits in obese pregnancies and gestational diabetes mellitus: big babies, big twists, big picture: The 2018 Norbert Freinkel award lecture. Diabetes Care 2019; 42(5): 718-26.
[http://dx.doi.org/10.2337/dci18-0048] [PMID: 31010942]
[17]
Rosario FJ, Kanai Y, Powell TL, Jansson T. Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth. Obesity (Silver Spring) 2015; 23(8): 1663-70.
[http://dx.doi.org/10.1002/oby.21165] [PMID: 26193061]
[18]
Sferruzzi-Perri AN, Vaughan OR, Haro M, et al. An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory. FASEB J 2013; 27(10): 3928-37.
[http://dx.doi.org/10.1096/fj.13-234823] [PMID: 23825226]
[19]
Contu L, Hawkes CA. A review of the impact of maternal obesity on the cognitive function and mental health of the offspring. Int J Mol Sci 2017; 18(5)E1093
[http://dx.doi.org/10.3390/ijms18051093] [PMID: 28534818]
[20]
Reynolds RM, Allan KM, Raja EA, et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ 2013; 347: f4539.
[http://dx.doi.org/10.1136/bmj.f4539] [PMID: 23943697]
[21]
Burton GJ, Fowden AL, Thornburg KL. Placental Origins of Chronic Disease. Physiol Rev 2016; 96(4): 1509-65.
[http://dx.doi.org/10.1152/physrev.00029.2015] [PMID: 27604528]
[22]
Fowden AL, Moore T. Maternal-fetal resource allocation: co-operation and conflict. Placenta 2012; 33(Suppl. 2): e11-5.
[http://dx.doi.org/10.1016/j.placenta.2012.05.002] [PMID: 22652046]
[23]
Sferruzzi-Perri AN, Camm EJ. The programming power of the placenta. Front Physiol 2016; 7: 33.
[http://dx.doi.org/10.3389/fphys.2016.00033] [PMID: 27014074]
[24]
Hoch D, Gauster M, Hauguel-de Mouzon S, Desoye G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects Med 2019; 66: 21-30.
[http://dx.doi.org/10.1016/j.mam.2018.11.002] [PMID: 30513311]
[25]
Pantham P, Aye IL, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 2015; 36(7): 709-15.
[http://dx.doi.org/10.1016/j.placenta.2015.04.006] [PMID: 25972077]
[26]
Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregravid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol 2019; 106(5): 1035-50.
[http://dx.doi.org/10.1002/JLB.3RI0619-181R] [PMID: 31483523]
[27]
Richardson BS, Ruttinger S, Brown HK, Regnault TRH, de Vrijer B. Maternal body mass index impacts fetal-placental size at birth and umbilical cord oxygen values with implications for regulatory mechanisms. Early Hum Dev 2017; 112: 42-7.
[http://dx.doi.org/10.1016/j.earlhumdev.2017.06.009] [PMID: 28688997]
[28]
Tanaka K, Matsushima M, Izawa T, Furukawa S, Kobayashi Y, Iwashita M. Influence of maternal obesity on fetal growth at different periods of pregnancies with normal glucose tolerance. J Obstet Gynaecol Res 2018; 44(4): 691-6.
[http://dx.doi.org/10.1111/jog.13575] [PMID: 29345098]
[29]
Martino J, Sebert S, Segura MT, et al. Maternal body weight and gestational diabetes differentially influence placental and pregnancy outcomes. J Clin Endocrinol Metab 2016; 101(1): 59-68.
[http://dx.doi.org/10.1210/jc.2015-2590] [PMID: 26513002]
[30]
Feghali MN, Catov JM, Zantow E, Mission J, Caritis SN, Scifres CM. Timing of gestational weight gain and adverse perinatal outcomes in overweight and obese women. Obstet Gynecol 2019; 133(5): 962-70.
[http://dx.doi.org/10.1097/AOG.0000000000003234] [PMID: 30969214]
[31]
Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA. Pre-gestational vs. gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia 2015; 58(3): 615-24.
[http://dx.doi.org/10.1007/s00125-014-3466-7] [PMID: 25608625]
[32]
Ye K, Li L, Zhang D, et al. Effect of maternal obesity on fetal growth and expression of placental fatty acid transporters. J Clin Res Pediatr Endocrinol 2017; 9(4): 300-7.
[PMID: 28588000]
[33]
Song YP, Chen YH, Gao L, et al. Differential effects of high-fat diets before pregnancy and/or during pregnancy on fetal growth development. Life Sci 2018; 212: 241-50.
[http://dx.doi.org/10.1016/j.lfs.2018.10.008] [PMID: 30300654]
[34]
Li HP, Chen X, Li MQ. Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int J Clin Exp Pathol 2013; 6(4): 650-9.
[PMID: 23573311]
[35]
Kim DW, Young SL, Grattan DR, Jasoni CL. Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol Reprod 2014; 90(6): 130.
[http://dx.doi.org/10.1095/biolreprod.113.117259] [PMID: 24829026]
[36]
Nam J, Greenwald E, Jack-Roberts C, et al. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J Nutr Biochem 2017; 49: 80-8.
[http://dx.doi.org/10.1016/j.jnutbio.2017.08.004] [PMID: 28915389]
[37]
Stuart TJ, O’Neill K, Condon D, et al. Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse. Biol Reprod 2018; 98(6): 795-809.
[http://dx.doi.org/10.1093/biolre/ioy010] [PMID: 29360948]
[38]
Son JS, Liu X, Tian Q, et al. Exercise prevents the adverse effects of maternal obesity on placental vascularization and fetal growth. J Physiol 2019; 597(13): 3333-47.
[http://dx.doi.org/10.1113/JP277698] [PMID: 31115053]
[39]
Liang C, DeCourcy K, Prater MR. High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism 2010; 59(7): 943-50.
[http://dx.doi.org/10.1016/j.metabol.2009.10.015] [PMID: 20022072]
[40]
Gohir W, Kennedy KM, Wallace JG, et al. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. J Physiol 2019; 597(12): 3029-51.
[http://dx.doi.org/10.1113/JP277353] [PMID: 31081119]
[41]
Appel S, Grothe J, Storck S, et al. A potential role for gsk3β in glucose-driven intrauterine catch-up growth in maternal obesity. Endocrinology 2019; 160(2): 377-86.
[http://dx.doi.org/10.1210/en.2018-00899] [PMID: 30535296]
[42]
Gabory A, Ferry L, Fajardy I, et al. Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS One 2012; 7(11)e47986
[http://dx.doi.org/10.1371/journal.pone.0047986] [PMID: 23144842]
[43]
Baltayeva J, Konwar C, Castellana B, Mara DL, Christians JK, Beristain AG. Obesogenic diet exposure alters uterine natural killer cell biology and impairs vasculature remodeling in mice. Biol Reprod 2020; 102(1): 63-75.
[PMID: 31436293]
[44]
Reynolds CM, Vickers MH, Harrison CJ, Segovia SA, Gray C. Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta. Physiol Rep 2015; 3(5)e12399
[http://dx.doi.org/10.14814/phy2.12399] [PMID: 25991721]
[45]
Hayes EK, Tessier DR, Percival ME, et al. Trophoblast invasion and blood vessel remodeling are altered in a rat model of lifelong maternal obesity. Reprod Sci 2014; 21(5): 648-57.
[http://dx.doi.org/10.1177/1933719113508815] [PMID: 24155067]
[46]
Song L, Sun B, Boersma GJ, et al. Prenatal high-fat diet alters placental morphology, nutrient transporter expression, and mtorc1 signaling in rat. Obesity (Silver Spring) 2017; 25(5): 909-19.
[http://dx.doi.org/10.1002/oby.21821] [PMID: 28332771]
[47]
Mark PJ, Sisala C, Connor K, et al. A maternal high-fat diet in rat pregnancy reduces growth of the fetus and the placental junctional zone, but not the labyrinth zone growth. J Dev Orig Health Dis 2011; 2: 63-70.
[http://dx.doi.org/10.1017/S2040174410000681]
[48]
Ma Y, Zhu MJ, Zhang L, Hein SM, Nathanielsz PW, Ford SP. Maternal obesity and overnutrition alter fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe. Am J Physiol Regul Integr Comp Physiol 2010; 299(1): R249-58.
[http://dx.doi.org/10.1152/ajpregu.00498.2009] [PMID: 20427725]
[49]
Hu C, Yang Y, Li J, et al. Maternal Diet-Induced Obesity Compromises Oxidative Stress Status and Angiogenesis in the Porcine Placenta by Upregulating Nox2 Expression. Oxid Med Cell Longev 2019; 20192481592
[http://dx.doi.org/10.1155/2019/2481592] [PMID: 31662816]
[50]
Farley D, Tejero ME, Comuzzie AG, et al. Feto-placental adaptations to maternal obesity in the baboon. Placenta 2009; 30(9): 752-60.
[http://dx.doi.org/10.1016/j.placenta.2009.06.007] [PMID: 19632719]
[51]
Samson JE, Mari G, Dick EJ Jr, Hubbard GB, Ferry RJ Jr, Schlabritz-Loutsevitch NE. The morphometry of materno-fetal oxygen exchange barrier in a baboon model of obesity. Placenta 2011; 32(11): 845-51.
[http://dx.doi.org/10.1016/j.placenta.2011.07.083] [PMID: 21872927]
[52]
Huang L, Liu J, Feng L, Chen Y, Zhang J, Wang W. Maternal prepregnancy obesity is associated with higher risk of placental pathological lesions. Placenta 2014; 35(8): 563-9.
[http://dx.doi.org/10.1016/j.placenta.2014.05.006] [PMID: 24930988]
[53]
Roberts KA, Riley SC, Reynolds RM, et al. Placental structure and inflammation in pregnancies associated with obesity. Placenta 2011; 32(3): 247-54.
[http://dx.doi.org/10.1016/j.placenta.2010.12.023] [PMID: 21232790]
[54]
Rosado-Yépez PI, Chávez-Corral DV, Reza-López SA, et al. Relation between pregestational obesity and characteristics of the placenta. J Matern Fetal Neonatal Med 2019; 33(16): 1-6.
[http://dx.doi.org/10.1080/14767058.2019.1573222] [PMID: 30704317]
[55]
Bar J, Kovo M, Schraiber L, Shargorodsky M. Placental maternal and fetal vascular circulation in healthy non-obese and metabolically healthy obese pregnant women. Atherosclerosis 2017; 260: 63-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.03.006] [PMID: 28349890]
[56]
Bar J, Schreiber L, Saruhanov E, Ben-Haroush A, Golan A, Kovo M. Placental histopathological findings in obese and nonobese women with complicated and uncomplicated pregnancies. Arch Gynecol Obstet 2012; 286(6): 1343-7.
[http://dx.doi.org/10.1007/s00404-012-2450-z] [PMID: 22797660]
[57]
Kovo M, Zion-Saukhanov E, Schreiber L, et al. The effect of maternal obesity on pregnancy outcome in correlation with placental pathology. Reprod Sci 2015; 22(12): 1643-8.
[http://dx.doi.org/10.1177/1933719115592712] [PMID: 26130679]
[58]
He M, Curran P, Raker C, Martin S, Larson L, Bourjeily G. Placental findings associated with maternal obesity at early pregnancy. Pathol Res Pract 2016; 212(4): 282-7.
[http://dx.doi.org/10.1016/j.prp.2016.01.006] [PMID: 26861722]
[59]
Higgins L, Mills TA, Greenwood SL, Cowley EJ, Sibley CP, Jones RL. Maternal obesity and its effect on placental cell turnover. J Matern Fetal Neonatal Med 2013; 26(8): 783-8.
[http://dx.doi.org/10.3109/14767058.2012.760539] [PMID: 23270521]
[60]
Lineker C, Kerr PM, Nguyen P, et al. High fructose consumption in pregnancy alters the perinatal environment without increasing metabolic disease in the offspring. Reprod Fertil Dev 2016; 28(12): 2007-15.
[http://dx.doi.org/10.1071/RD15119] [PMID: 26143929]
[61]
Musial B, Vaughan OR, Fernandez-Twinn DS, et al. A Western-style obesogenic diet alters maternal metabolic physiology with consequences for fetal nutrient acquisition in mice. J Physiol 2017; 595(14): 4875-92.
[http://dx.doi.org/10.1113/JP273684] [PMID: 28382681]
[62]
Ganguly A, Devaskar SU. High-fat diet affects pregestational adiposity and glucose tolerance perturbing gestational placental macronutrient transporters culminating in an obese offspring in wild-type and glucose transporter isoform 3 heterozygous null mice. J Nutr Biochem 2018; 62: 192-201.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.001] [PMID: 30308381]
[63]
McCoski SR, Vailes MT, Owens CE, Cockrum RR, Ealy AD. Exposure to maternal obesity alters gene expression in the preimplantation ovine conceptus. BMC Genomics 2018; 19(1): 737.
[http://dx.doi.org/10.1186/s12864-018-5120-0] [PMID: 30305020]
[64]
Lassance L, Haghiac M, Leahy P, et al. Identification of early transcriptome signatures in placenta exposed to insulin and obesity. Am J Obstet Gynecol 2015; 212(5): 647.
[http://dx.doi.org/10.1016/j.ajog.2015.02.026]
[65]
Saben J, Lindsey F, Zhong Y, et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta 2014; 35(3): 171-7.
[http://dx.doi.org/10.1016/j.placenta.2014.01.003] [PMID: 24484739]
[66]
Altmäe S, Segura MT, Esteban FJ, et al. Maternal pre-pregnancy obesity is associated with altered placental transcriptome. PLoS One 2017; 12(1)e0169223
[http://dx.doi.org/10.1371/journal.pone.0169223] [PMID: 28125591]
[67]
Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy 2016; 12(5): 752-69.
[http://dx.doi.org/10.1080/15548627.2016.1156822] [PMID: 26986453]
[68]
Fernandez-Twinn DS, Gascoin G, Musial B, et al. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Sci Rep 2017; 7: 44650.
[http://dx.doi.org/10.1038/srep44650] [PMID: 28291256]
[69]
Hayward CE, Higgins L, Cowley EJ, et al. Chorionic plate arterial function is altered in maternal obesity. Placenta 2013; 34(3): 281-7.
[http://dx.doi.org/10.1016/j.placenta.2013.01.001] [PMID: 23360794]
[70]
Villalobos-Labra R, Westermeier F, Pizarro C, et al. Neonates from women with pregestational maternal obesity show reduced umbilical vein endothelial response to insulin. Placenta 2019; 86: 35-44.
[http://dx.doi.org/10.1016/j.placenta.2019.07.007] [PMID: 31345420]
[71]
Cleal JK, Lofthouse EM, Sengers BG, Lewis RM. A systems perspective on placental amino acid transport. J Physiol 2018; 596(23): 5511-22.
[http://dx.doi.org/10.1113/JP274883] [PMID: 29984402]
[72]
Hay WW Jr. Placental-fetal glucose exchange and fetal glucose metabolism. Trans Am Clin Climatol Assoc 2006; 117: 321-39.
[PMID: 18528484]
[73]
Lewis RM, Wadsack C, Desoye G. Placental fatty acid transfer. Curr Opin Clin Nutr Metab Care 2018; 21(2): 78-82.
[http://dx.doi.org/10.1097/MCO.0000000000000443] [PMID: 29206689]
[74]
Myatt L, Maloyan A. Obesity and placental function. Semin Reprod Med 2016; 34(1): 42-9.
[http://dx.doi.org/10.1055/s-0035-1570027] [PMID: 26734917]
[75]
James-Allan LB, Arbet J, Teal SB, Powell TL, Jansson T. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab 2019; 104(9): 4225-38.
[http://dx.doi.org/10.1210/jc.2018-02778] [PMID: 31112275]
[76]
Woollett LA. Review: Transport of maternal cholesterol to the fetal circulation. Placenta 2011; 32(Suppl. 2): S218-21.
[http://dx.doi.org/10.1016/j.placenta.2011.01.011] [PMID: 21300403]
[77]
Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 2015; 103: 11-22.
[http://dx.doi.org/10.1016/j.steroids.2015.09.006] [PMID: 26435077]
[78]
Cetin I, Parisi F, Berti C, Mandò C, Desoye G. Placental fatty acid transport in maternal obesity. J Dev Orig Health Dis 2012; 3(6): 409-14.
[http://dx.doi.org/10.1017/S2040174412000414] [PMID: 25084293]
[79]
Delhaes F, Giza SA, Koreman T, et al. Altered maternal and placental lipid metabolism and fetal fat development in obesity: Current knowledge and advances in non-invasive assessment. Placenta 2018; 69: 118-24.
[http://dx.doi.org/10.1016/j.placenta.2018.05.011] [PMID: 29907450]
[80]
Gallo LA, Barrett HL, Dekker Nitert M. Review: Placental transport and metabolism of energy substrates in maternal obesity and diabetes. Placenta 2017; 54: 59-67.
[http://dx.doi.org/10.1016/j.placenta.2016.12.006] [PMID: 27993398]
[81]
Cunningham P, McDermott L. Long chain PUFA transport in human term placenta. J Nutr 2009; 139(4): 636-9.
[http://dx.doi.org/10.3945/jn.108.098608] [PMID: 19225129]
[82]
Gil-Sánchez A, Demmelmair H, Parrilla JJ, Koletzko B, Larqué E. Mechanisms involved in the selective transfer of long chain polyunsaturated Fatty acids to the fetus. Front Genet 2011; 2: 57.
[http://dx.doi.org/10.3389/fgene.2011.00057] [PMID: 22303352]
[83]
Stammers JP, Hull D, Silver M, Fowden AL, Ousey J, Rossdale PD. Release of lipid from the equine placenta during in vitro incubation. Placenta 1994; 15(8): 857-72.
[http://dx.doi.org/10.1016/S0143-4004(05)80187-0] [PMID: 7886026]
[84]
Gazquez A, Prieto-Sanchez MT, Blanco-Carnero JE, et al. Altered materno-fetal transfer of 13C-polyunsaturated fatty acids in obese pregnant women. Clin Nutr 2020; 39(4): 1101-7.
[http://dx.doi.org/10.1016/jcinu2019.04.014]] [PMID: 31029479]
[85]
Vaughan OR, Rosario FJ, Powell TL, Jansson T. Regulation of Placental Amino Acid Transport and Fetal Growth. Prog Mol Biol Transl Sci 2017; 145: 217-51.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.008] [PMID: 28110752]
[86]
Lager S, Jansson T, Powell TL. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids. Am J Physiol Cell Physiol 2014; 307(8): C738-44.
[http://dx.doi.org/10.1152/ajpcell.00196.2014] [PMID: 25143349]
[87]
Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J 2009; 23(1): 271-8.
[http://dx.doi.org/10.1096/fj.08-116889] [PMID: 18827021]
[88]
King V, Hibbert N, Seckl JR, Norman JE, Drake AJ. The effects of an obesogenic diet during pregnancy on fetal growth and placental gene expression are gestation dependent. Placenta 2013; 34(11): 1087-90.
[http://dx.doi.org/10.1016/j.placenta.2013.09.006] [PMID: 24090886]
[89]
Qiao L, Yoo HS, Madon A, Kinney B, Hay WW Jr, Shao J. Adiponectin enhances mouse fetal fat deposition. Diabetes 2012; 61(12): 3199-207.
[http://dx.doi.org/10.2337/db12-0055] [PMID: 22872236]
[90]
Qiao L, Guo Z, Bosco C, et al. Maternal high-fat feeding increases placental lipoprotein lipase activity by reducing sirt1 expression in mice. Diabetes 2015; 64(9): 3111-20.
[http://dx.doi.org/10.2337/db14-1627] [PMID: 25948680]
[91]
Gallou-Kabani C, Gabory A, Tost J, et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010; 5(12)e14398
[http://dx.doi.org/10.1371/journal.pone.0014398] [PMID: 21200436]
[92]
Aye IL, Rosario FJ, Powell TL, Jansson T. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci USA 2015; 112(41): 12858-63.
[http://dx.doi.org/10.1073/pnas.1515484112] [PMID: 26417088]
[93]
Díaz P, Harris J, Rosario FJ, Powell TL, Jansson T. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy. Am J Physiol Regul Integr Comp Physiol 2015; 309(12): R1569-77.
[http://dx.doi.org/10.1152/ajpregu.00385.2015] [PMID: 26491104]
[94]
Lin Y, Han XF, Fang ZF, et al. Beneficial effects of dietary fibre supplementation of a high-fat diet on fetal development in rats. Br J Nutr 2011; 106(4): 510-8.
[http://dx.doi.org/10.1017/S0007114511000614] [PMID: 21486515]
[95]
Draycott SAV, Daniel Z, Khan R, Muhlhausler BS, Elmes MJ, Langley-Evans SC. Expression of cholesterol packaging and transport genes in human and rat placenta: impact of obesity and a high-fat diet. J Dev Orig Health Dis 2020; 11(3): 222-7.
[http://dx.doi.org/10.1017/S2040174419000606] [PMID: 31601282]
[96]
Zhu MJ, Ma Y, Long NM, Du M, Ford SP. Maternal obesity markedly increases placental fatty acid transporter expression and fetal blood triglycerides at midgestation in the ewe. Am J Physiol Regul Integr Comp Physiol 2010; 299(5): R1224-31.
[http://dx.doi.org/10.1152/ajpregu.00309.2010] [PMID: 20844260]
[97]
Tian L, Dong SS, Hu J, Yao JJ, Yan PS. The effect of maternal obesity on fatty acid transporter expression and lipid metabolism in the full-term placenta of lean breed swine. J Anim Physiol Anim Nutr (Berl) 2018; 102(1): e242-53.
[http://dx.doi.org/10.1111/jpn.12735] [PMID: 28508539]
[98]
Mata-Greenwood E, Huber HF, Li C, Nathanielsz PW. Role of pregnancy and obesity on vitamin D status, transport, and metabolism in baboons. Am J Physiol Endocrinol Metab 2019; 316(1): E63-72.
[http://dx.doi.org/10.1152/ajpendo.00208.2018] [PMID: 30398904]
[99]
O’Tierney-Ginn P, Roberts V, Gillingham M, et al. Influence of high fat diet and resveratrol supplementation on placental fatty acid uptake in the Japanese macaque. Placenta 2015; 36(8): 903-10.
[http://dx.doi.org/10.1016/j.placenta.2015.06.002] [PMID: 26145226]
[100]
Jansson N, Rosario FJ, Gaccioli F, et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 2013; 98(1): 105-13.
[http://dx.doi.org/10.1210/jc.2012-2667] [PMID: 23150676]
[101]
Desforges M, Ditchfield A, Hirst CR, et al. Reduced placental taurine transporter (TauT) activity in pregnancies complicated by pre-eclampsia and maternal obesity. Adv Exp Med Biol 2013; 776: 81-91.
[http://dx.doi.org/10.1007/978-1-4614-6093-0_9] [PMID: 23392873]
[102]
Brass E, Hanson E, O’ Tierney-Ginn PF. Placental oleic acid uptake is lower in male offspring of obese women. Placenta 2013; 34(6): 503-9.
[http://dx.doi.org/10.1016/j.placenta.2013.03.009] [PMID: 23602336]
[103]
Dube E, Gravel A, Martin C, et al. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol Reprod 2012; 87(1): 14-1-11.
[http://dx.doi.org/10.1095/biolreprod.111.098095] [PMID: 22553224]
[104]
Farley DM, Choi J, Dudley DJ, et al. Placental amino acid transport and placental leptin resistance in pregnancies complicated by maternal obesity. Placenta 2010; 31(8): 718-24.
[http://dx.doi.org/10.1016/j.placenta.2010.06.006] [PMID: 20609473]
[105]
Yang X, Glazebrook P, Ranasinghe GC, et al. Fatty acid transporter expression and regulation is impaired in placental macrovascular endothelial cells in obese women. J Matern Fetal Neonatal Med 2019; 32(6): 971-8.
[http://dx.doi.org/10.1080/14767058.2017.1397119] [PMID: 29065800]
[106]
Segura MT, Demmelmair H, Krauss-Etschmann S, et al. Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta 2017; 57: 144-51.
[http://dx.doi.org/10.1016/j.placenta.2017.07.001] [PMID: 28864004]
[107]
Colomiere M, Permezel M, Riley C, Desoye G, Lappas M. Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol 2009; 160(4): 567-78.
[http://dx.doi.org/10.1530/EJE-09-0031] [PMID: 19179458]
[108]
Amusquivar E, Herrera E. Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat. Biol Neonate 2003; 83(2): 136-45.
[http://dx.doi.org/10.1159/000067963] [PMID: 12576758]
[109]
Lewis RM, Desoye G. Placental lipid and fatty acid transfer in maternal overnutrition. Ann Nutr Metab 2017; 70(3): 228-31.
[http://dx.doi.org/10.1159/000463397] [PMID: 28301855]
[110]
Lager S, Ramirez VI, Gaccioli F, Jang B, Jansson T, Powell TL. Protein expression of fatty acid transporter 2 is polarized to the trophoblast basal plasma membrane and increased in placentas from overweight/obese women. Placenta 2016; 40: 60-6.
[http://dx.doi.org/10.1016/j.placenta.2016.02.010] [PMID: 27016784]
[111]
Hirschmugl B, Desoye G, Catalano P, et al. Maternal obesity modulates intracellular lipid turnover in the human term placenta. Int J Obes 2017; 41(2): 317-23.
[http://dx.doi.org/10.1038/ijo.2016.188] [PMID: 27780978]
[112]
Lewis RM, Greenwood SL, Cleal JK, et al. Maternal muscle mass may influence system a activity in human placenta. Placenta 2010; 31(5): 418-22.
[http://dx.doi.org/10.1016/j.placenta.2010.02.001] [PMID: 20206993]
[113]
Brett KE, Ferraro ZM, Holcik M, Adamo KB. Placenta nutrient transport-related gene expression: the impact of maternal obesity and excessive gestational weight gain. J Matern Fetal Neonatal Med 2016; 29(9): 1399-405.
[http://dx.doi.org/10.3109/14767058.2015.1049522] [PMID: 26067267]
[114]
Gázquez A, Prieto-Sánchez MT, Blanco-Carnero JE, et al. In vivo kinetic study of materno-fetal fatty acid transfer in obese and normal weight pregnant women. J Physiol 2019; 597(19): 4959-73.
[http://dx.doi.org/10.1113/JP278146] [PMID: 31287560]
[115]
Musial B, Fernandez-Twinn DS, Vaughan OR, et al. Proximity to delivery alters insulin sensitivity and glucose metabolism in pregnant mice. Diabetes 2016; 65(4): 851-60.
[http://dx.doi.org/10.2337/db15-1531] [PMID: 26740602]
[116]
Michelsen TM, Holme AM, Holm MB, et al. Uteroplacental glucose uptake and fetal glucose consumption: a quantitative study in human pregnancies. J Clin Endocrinol Metab 2019; 104(3): 873-82.
[http://dx.doi.org/10.1210/jc.2018-01154] [PMID: 30339207]
[117]
Fattuoni C, Mandò C, Palmas F, et al. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta 2018; 61: 89-95.
[http://dx.doi.org/10.1016/j.placenta.2017.11.014] [PMID: 29277276]
[118]
Lassance L, Haghiac M, Minium J, Catalano P, Hauguel-de Mouzon S. Obesity-induced down-regulation of the mitochondrial translocator protein (TSPO) impairs placental steroid production. J Clin Endocrinol Metab 2015; 100(1): E11-8.
[http://dx.doi.org/10.1210/jc.2014-2792] [PMID: 25322273]
[119]
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9: 1091.
[http://dx.doi.org/10.3389/fphys.2018.01091] [PMID: 30174608]
[120]
Calabuig-Navarro V, Haghiac M, Minium J, et al. Effect of maternal obesity on placental lipid metabolism. Endocrinology 2017; 158(8): 2543-55.
[http://dx.doi.org/10.1210/en.2017-00152] [PMID: 28541534]
[121]
Malti N, Merzouk H, Merzouk SA, et al. Oxidative stress and maternal obesity: feto-placental unit interaction. Placenta 2014; 35(6): 411-6.
[http://dx.doi.org/10.1016/j.placenta.2014.03.010] [PMID: 24698544]
[122]
Liang T, Jinglong X, Shusheng D, Aiyou W. Maternal obesity stimulates lipotoxicity and up-regulates inflammatory signaling pathways in the full-term swine placenta. Anim Sci J 2018; 89(9): 1310-22.
[http://dx.doi.org/10.1111/asj.13064] [PMID: 29947166]
[123]
Draycott SAV, Liu G, Daniel ZC, Elmes MJ, Muhlhausler BS, Langley-Evans SC. Maternal dietary ratio of linoleic acid to alpha-linolenic acid during pregnancy has sex-specific effects on placental and fetal weights in the rat. Nutr Metab (Lond) 2019; 16: 1.
[http://dx.doi.org/10.1186/s12986-018-0330-7] [PMID: 30622622]
[124]
Mazzucco MB, Higa R, Capobianco E, Kurtz M, Jawerbaum A, White V. Saturated fat-rich diet increases fetal lipids and modulates LPL and leptin receptor expression in rat placentas. J Endocrinol 2013; 217(3): 303-15.
[http://dx.doi.org/10.1530/JOE-13-0021] [PMID: 23482704]
[125]
Heerwagen MJR, Gumina DL, Hernandez TL, et al. Placental lipoprotein lipase activity is positively associated with newborn adiposity. Placenta 2018; 64: 53-60.
[http://dx.doi.org/10.1016/j.placenta.2018.03.001] [PMID: 29626981]
[126]
Li JW, Hu J, Wei M, Guo YY, Yan PS. The effects of maternal obesity on porcine placental efficiency and proteome. Animals (Basel) 2019; 9(8)E546
[http://dx.doi.org/10.3390/ani9080546] [PMID: 31408947]
[127]
Ferchaud-Roucher V, Barner K, Jansson T, Powell TL. Maternal obesity results in decreased syncytiotrophoblast synthesis of palmitoleic acid, a fatty acid with anti-inflammatory and insulin-sensitizing properties. FASEB J 2019; 33(5): 6643-54.
[http://dx.doi.org/10.1096/fj.201802444R] [PMID: 30811959]
[128]
Borengasser SJ, Faske J, Kang P, Blackburn ML, Badger TM, Shankar K. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring. Physiol Genomics 2014; 46(23): 841-50.
[http://dx.doi.org/10.1152/physiolgenomics.00059.2014] [PMID: 25336449]
[129]
Hastie R, Lappas M. The effect of pre-existing maternal obesity and diabetes on placental mitochondrial content and electron transport chain activity. Placenta 2014; 35(9): 673-83.
[http://dx.doi.org/10.1016/j.placenta.2014.06.368] [PMID: 25002362]
[130]
Mele J, Muralimanoharan S, Maloyan A, Myatt L. Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab 2014; 307(5): E419-25.
[http://dx.doi.org/10.1152/ajpendo.00025.2014] [PMID: 25028397]
[131]
Oliva K, Barker G, Riley C, et al. The effect of pre-existing maternal obesity on the placental proteome: two-dimensional difference gel electrophoresis coupled with mass spectrometry. J Mol Endocrinol 2012; 48(2): 139-49.
[http://dx.doi.org/10.1530/JME-11-0123] [PMID: 22301947]
[132]
Fornes R, Manti M, Qi X, et al. Mice exposed to maternal androgen excess and diet-induced obesity have altered phosphorylation of catechol-O-methyltransferase in the placenta and fetal liver. Int J Obes 2019; 43(11): 2176-88.
[http://dx.doi.org/10.1038/s41366-018-0314-8] [PMID: 30670847]
[133]
Mandò C, Anelli GM, Novielli C, et al. Impact of obesity and hyperglycemia on placental mitochondria. Oxid Med Cell Longev 2018; 20182378189
[http://dx.doi.org/10.1155/2018/2378189] [PMID: 30186542]
[134]
Wang Y, Bucher M, Myatt L. Use of glucose, glutamine and fatty acids for trophoblast respiration in lean, obese and gestational diabetic women. J Clin Endocrinol Metab 2019; 104(9): 4178-87.
[PMID: 31116396]
[135]
Evans L, Myatt L. Sexual dimorphism in the effect of maternal obesity on antioxidant defense mechanisms in the human placenta. Placenta 2017; 51: 64-9.
[http://dx.doi.org/10.1016/j.placenta.2017.02.004] [PMID: 28292470]
[136]
Manuel CR, Charron MJ, Ashby CR Jr, Reznik SE. Saturated and unsaturated fatty acids differentially regulate in vitro and ex vivo placental antioxidant capacity. Am J Reprod Immunol 2018; 80(3)e12868
[http://dx.doi.org/10.1111/aji.12868] [PMID: 29736947]
[137]
Sferruzzi-Perri AN, Vaughan OR, Forhead AJ, Fowden AL. Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care 2013; 16(3): 298-309.
[http://dx.doi.org/10.1097/MCO.0b013e32835e3643] [PMID: 23340010]
[138]
Fowden AL, Forhead AJ, Sferruzzi-Perri AN, Burton GJ, Vaughan OR. Review: Endocrine regulation of placental phenotype. Placenta 2015; 36(Suppl. 1): S50-9.
[http://dx.doi.org/10.1016/j.placenta.2014.11.018] [PMID: 25524059]
[139]
Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reproduction 2017; 153(3): R97-R108.
[http://dx.doi.org/10.1530/REP-16-0495] [PMID: 27864335]
[140]
Maliqueo M, Cruz G, Espina C, et al. Obesity during pregnancy affects sex steroid concentrations depending on fetal gender. Int J Obes 2017; 41(11): 1636-45.
[http://dx.doi.org/10.1038/ijo.2017.159] [PMID: 28676682]
[141]
Crew RC, Mark PJ, Clarke MW, Waddell BJ. Obesity disrupts the rhythmic profiles of maternal and fetal progesterone in rat pregnancy. Biol Reprod 2016; 95(3): 55.
[http://dx.doi.org/10.1095/biolreprod.116.139451] [PMID: 27465137]
[142]
Wallace JM, Milne JS, Aitken RP. The effect of overnourishing singleton-bearing adult ewes on nutrient partitioning to the gravid uterus. Br J Nutr 2005; 94(4): 533-9.
[http://dx.doi.org/10.1079/BJN20041398] [PMID: 16197577]
[143]
Jin Y, Vakili H, Liu SY, Menticoglou S, Bock ME, Cattini PA. Chromosomal architecture and placental expression of the human growth hormone gene family are targeted by pre-pregnancy maternal obesity. Am J Physiol Endocrinol Metab 2018; 315(4): E435-45.
[http://dx.doi.org/10.1152/ajpendo.00042.2018] [PMID: 29763375]
[144]
Vakili H, Jin Y, Menticoglou S, Cattini PA. CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity. J Biol Chem 2013; 288(31): 22849-61.
[http://dx.doi.org/10.1074/jbc.M113.474999] [PMID: 23782703]
[145]
Tessier DR, Ferraro ZM, Gruslin A. Role of leptin in pregnancy: consequences of maternal obesity. Placenta 2013; 34(3): 205-11.
[http://dx.doi.org/10.1016/j.placenta.2012.11.035] [PMID: 23332215]
[146]
Fensterseifer SR, Austin KJ, Ford SP, Alexander BM. Effects of maternal obesity on maternal and fetal plasma concentrations of adiponectin and expression of adiponectin and its receptor genes in cotyledonary and adipose tissues at mid- and late-gestation in sheep. Anim Reprod Sci 2018; 197: 231-9.
[http://dx.doi.org/10.1016/j.anireprosci.2018.08.033] [PMID: 30172606]
[147]
Stolzenbach F, Valdivia S, Ojeda-Provoste P, Toledo F, Sobrevia L, Kerr B. DNA methylation changes in genes coding for leptin and insulin receptors during metabolic-altered pregnancies. Biochim Biophys Acta Mol Basis Dis 2020; 1866(2)165465
[http://dx.doi.org/10.1016/j.bbadis.2019.05.001] [PMID: 31075490]
[148]
Wang C, Li H, Luo C, et al. The effect of maternal obesity on the expression and functionality of placental P-glycoprotein: Implications in the individualized transplacental digoxin treatment for fetal heart failure. Placenta 2015; 36(10): 1138-47.
[http://dx.doi.org/10.1016/j.placenta.2015.08.007] [PMID: 26311557]
[149]
Johns EC, Denison FC, Reynolds RM. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866(2)165374
[http://dx.doi.org/10.1016/j.bbadis.2018.12.025] [PMID: 30684643]
[150]
Yu CK, Teoh TG, Robinson S. Obesity in pregnancy. BJOG 2006; 113(10): 1117-25.
[http://dx.doi.org/10.1111/j.1471-0528.2006.00991.x] [PMID: 16903839]
[151]
Stirrat LI, Just G, Homer NZM, Andrew R, Norman JE, Reynolds RM. Glucocorticoids are lower at delivery in maternal, but not cord blood of obese pregnancies. Sci Rep 2017; 7(1): 10263.
[http://dx.doi.org/10.1038/s41598-017-10266-5] [PMID: 28860525]
[152]
Karl PI, Alpy KL, Fisher SE. Amino acid transport by the cultured human placental trophoblast: effect of insulin on AIB transport. Am J Physiol 1992; 262(4 Pt 1): C834-9.
[http://dx.doi.org/10.1152/ajpcell.1992.262.4.C834] [PMID: 1566812]
[153]
Audette MC, Challis JR, Jones RL, Sibley CP, Matthews SG. Synthetic glucocorticoid reduces human placental system a transport in women treated with antenatal therapy. J Clin Endocrinol Metab 2014; 99(11): E2226-33.
[http://dx.doi.org/10.1210/jc.2014-2157] [PMID: 25105735]
[154]
Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T. Leptin stimulates the activity of the system a amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab 2003; 88(3): 1205-11.
[http://dx.doi.org/10.1210/jc.2002-021332] [PMID: 12629107]
[155]
Vaughan OR, Davies KL, Ward JW, de Blasio MJ, Fowden AL. A physiological increase in maternal cortisol alters uteroplacental metabolism in the pregnant ewe. J Physiol 2016; 594(21): 6407-18.
[http://dx.doi.org/10.1113/JP272301] [PMID: 27292274]
[156]
Vaughan OR, Sferruzzi-Perri AN, Fowden AL. Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J Physiol 2012; 590(21): 5529-40.
[http://dx.doi.org/10.1113/jphysiol.2012.239426] [PMID: 22930269]
[157]
Nogues P, Dos Santos E, Jammes H, et al. Maternal obesity influences expression and DNA methylation of the adiponectin and leptin systems in human third-trimester placenta. Clin Epigenetics 2019; 11(1): 20.
[http://dx.doi.org/10.1186/s13148-019-0612-6] [PMID: 30732639]
[158]
Gaccioli F, White V, Capobianco E, Powell TL, Jawerbaum A, Jansson T. Maternal overweight induced by a diet with high content of saturated fat activates placental mTOR and eIF2alpha signaling and increases fetal growth in rats. Biol Reprod 2013; 89(4): 96.
[http://dx.doi.org/10.1095/biolreprod.113.109702] [PMID: 24006279]
[159]
Castillo-Castrejon M, Jansson T, Powell TL. No evidence of attenuation of placental insulin-stimulated Akt phosphorylation and amino acid transport in maternal obesity and gestational diabetes mellitus. Am J Physiol Endocrinol Metab 2019; 317(6): E1037-49.
[http://dx.doi.org/10.1152/ajpendo.00196.2019] [PMID: 31573844]
[160]
Rosario FJ, Powell TL, Jansson T. Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth. Am J Physiol Regul Integr Comp Physiol 2016; 310(1): R87-93.
[http://dx.doi.org/10.1152/ajpregu.00356.2015] [PMID: 26491103]
[161]
Burton GJ, Fowden AL. Review: The placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta 2012; 33(Suppl.): S23-7.
[http://dx.doi.org/10.1016/j.placenta.2011.11.013] [PMID: 22154688]
[162]
Mitsuya K, Parker AN, Liu L, Ruan J, Vissers MCM, Myatt L. Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PLoS One 2017; 12(10)e0186115
[http://dx.doi.org/10.1371/journal.pone.0186115] [PMID: 29045485]
[163]
Carreras-Badosa G, Bonmatí A, Ortega FJ, et al. Dysregulation of placental miRNA in maternal obesity is associated with pre- and postnatal growth. J Clin Endocrinol Metab 2017; 102(7): 2584-94.
[http://dx.doi.org/10.1210/jc.2017-00089] [PMID: 28368446]
[164]
Nomura Y, Lambertini L, Rialdi A, et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 2014; 21(1): 131-7.
[http://dx.doi.org/10.1177/1933719113492206] [PMID: 23765376]
[165]
Pelaez M, Gonzalez-Cerron S, Montejo R, Barakat R. Protective effect of exercise in pregnant women including those who exceed weight gain recommendations: a randomized controlled trial. Mayo Clin Proc 2019; 94(10): 1951-9.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.050] [PMID: 31585579]
[166]
Du MC, Ouyang YQ, Nie XF, Huang Y, Redding SR. Effects of physical exercise during pregnancy on maternal and infant outcomes in overweight and obese pregnant women: A meta-analysis. Birth 2019; 46(2): 211-21.
[http://dx.doi.org/10.1111/birt.12396] [PMID: 30240042]
[167]
Petrella E, Tamborrino V, Di Cerbo L, Neri I, Facchinetti F. An early, customized low-glycemic-index diet prevents adverse pregnancy outcomes in overweight/obese women. Minerva Ginecol 2018; 70(3): 254-60.
[PMID: 29083138]
[168]
Upadhyay A, Anjum B, Godbole NM, et al. Time-restricted feeding reduces high-fat diet associated placental inflammation and limits adverse effects on fetal organ development. Biochem Biophys Res Commun 2019; 514(2): 415-21.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.154] [PMID: 31053302]
[169]
Kunle-Alabi OT, Akindele OO, Raji Y. Coconut water alters maternal high fat diet induced changes in hormones and pup morphometry of wistar rats. Afr J Med Med Sci 2015; 44(2): 133-44.
[PMID: 26937526]
[170]
Gázquez A, Uhl O, Ruíz-Palacios M, et al. UPBEAT consortium. Placental lipid droplet composition: Effect of a lifestyle intervention (UPBEAT) in obese pregnant women. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863(9): 998-1005.
[http://dx.doi.org/10.1016/j.bbalip.2018.04.020] [PMID: 29702246]
[171]
Dodd JM, Louise J, Deussen AR, et al. Effect of metformin in addition to dietary and lifestyle advice for pregnant women who are overweight or obese: the grow randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2019; 7(1): 15-24.
[http://dx.doi.org/10.1016/S2213-8587(18)30310-3] [PMID: 30528218]
[172]
Sales WB, Nascimento IBD, Dienstmann G, Souza MLR, Silva GDD, Silva JC. Effectiveness of metformin in the prevention of gestational diabetes mellitus in obese pregnant women. Rev Bras Ginecol Obstet 2018; 40(4): 180-7.
[http://dx.doi.org/10.1055/s-0038-1642632] [PMID: 29702716]
[173]
Alzamendi A, Del Zotto H, Castrogiovanni D, Romero J, Giovambattista A, Spinedi E. Oral metformin treatment prevents enhanced insulin demand and placental dysfunction in the pregnant rat fed a fructose-rich diet. ISRN Endocrinol 2012; 2012757913
[http://dx.doi.org/10.5402/2012/757913] [PMID: 22957268]
[174]
Ireland KE, Maloyan A, Myatt L. Melatonin improves mitochondrial respiration in syncytiotrophoblasts from placentas of obese women. Reprod Sci 2018; 25(1): 120-30.
[http://dx.doi.org/10.1177/1933719117704908] [PMID: 28443479]
[175]
Stirrat LI, Walker JJ, Stryjakowska K, et al. Pulsatility of glucocorticoid hormones in pregnancy: Changes with gestation and obesity. Clin Endocrinol (Oxf) 2018; 88(4): 592-600.
[http://dx.doi.org/10.1111/cen.13548] [PMID: 29314170]
[176]
Crew RC, Waddell BJ, Mark PJ. Obesity-induced changes in hepatic and placental clock gene networks in rat pregnancy. Biol Reprod 2018; 98(1): 75-88.
[http://dx.doi.org/10.1093/biolre/iox158] [PMID: 29186286]
[177]
McGee M, Bainbridge S, Fontaine-Bisson B. A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes. Nutr Rev 2018; 76(6): 469-78.
[http://dx.doi.org/10.1093/nutrit/nuy006] [PMID: 29529267]
[178]
Panchenko PE, Voisin S, Jouin M, et al. Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice. Clin Epigenetics 2016; 8: 22.
[http://dx.doi.org/10.1186/s13148-016-0188-3] [PMID: 26925174]
[179]
Shrestha D, Workalemahu T, Tekola-Ayele F. Maternal dyslipidemia during early pregnancy and epigenetic ageing of the placenta. Epigenetics 2019; 14(10): 1030-9.
[http://dx.doi.org/10.1080/15592294.2019.1629234] [PMID: 31179827]
[180]
Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 2010; 299(3): R711-22.
[http://dx.doi.org/10.1152/ajpregu.00310.2010] [PMID: 20631295]
[181]
Mahany EB, Han X, Borges BC, et al. Obesity and high-fat diet induce distinct changes in placental gene expression and pregnancy outcome. Endocrinology 2018; 159(4): 1718-33.
[http://dx.doi.org/10.1210/en.2017-03053] [PMID: 29438518]
[182]
Workalemahu T, Shrestha D, Tajuddin SM, Tekola-Ayele F. Maternal cardiometabolic factors and genetic ancestry influence epigenetic aging of the placenta. J Dev Orig Health Dis 2020; 1-8.
[http://dx.doi.org/10.1017/S2040174419000801] [PMID: 31948495]
[183]
Forhead AJ, Fowden AL. The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol 2009; 587(Pt 6): 1145-52.
[http://dx.doi.org/10.1113/jphysiol.2008.167072] [PMID: 19188249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy