Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Assessment of Ploy Dopamine Coated Fe3O4 Nanoparticles for Melanoma (B16-F10 and A-375) Cells Detection

Author(s): Fahimeh H. Beigi, Soheil Fatahian, Sogand Shahbazi-Gahrouei, Daryoush Shahbazi-Gahrouei* and Amin Farzadniya

Volume 20, Issue 16, 2020

Page: [1918 - 1926] Pages: 9

DOI: 10.2174/1871520620666200513084616

Price: $65

Abstract

Objective: Polydopamine coated iron oxide nanoparticles (Fe3O4@PDA NPs) were synthesized, characterized, and their MR imaging contrast agents and photothermal potency were evaluated on melanoma (B16-F10 and A-375) cells and normal skin cells. To this end, MTT assay, Fe concentration, and MR imaging of both coated and uncoated NPs were assessed in C57BL/6 mice.

Methods: Fe3O4 nanoparticles were synthesized using co-precipitation, and coated with polydopamine. The cytotoxicity of Fe3O4 and Fe3O4@PDA NPs on melanoma cells, with different concentrations, were obtained using MTT assay. MR images and Fe concentrations of nanoprobe and nanoparticles were evaluated under in vivo conditions.

Results: Findings indicated that uncoated Fe3O4 showed the highest toxicity in animal (B16-F10) cells at 450μg/ml after 72h, while the highest toxicity in human (A-375) cells were observed at 350μg/ml. These nanoparticles did not reveal any cytotoxicity to normal skin cells, despite having some toxicity features in A-375 cells. MR image signals in the tumor were low compared with other tissues. The iron concentration in the tumor was higher than that of other organs.

Conclusion: It is concluded that the cytotoxicity of Fe3O4@PDA was found to be significantly lower than uncoated nanoparticles (p <0.001), which allows some positive effects on reducing toxicity. The prepared nanoprobe may be used as a contrast agent in MR imaging.

Keywords: Fe3O4, Fe3O4@PDA NPs, B16-F10, A-375, cytotoxicity, MR imaging.

Graphical Abstract

[1]
Chou, S.W.; Shau, Y.H.; Wu, P.C.; Yang, Y.S.; Shieh, D.B.; Chen, C.C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc., 2010, 132(38), 13270-13278.
[http://dx.doi.org/10.1021/ja1035013 ] [PMID: 20572667]
[2]
Lee, I.S.; Lee, N.; Park, J.; Kim, B.H.; Yi, Y.W.; Kim, T.; Kim, T.K.; Lee, I.H.; Paik, S.R.; Hyeon, T. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc., 2006, 128(33), 10658-10659.
[http://dx.doi.org/10.1021/ja063177n ] [PMID: 16910642]
[3]
Pankhurst, Q.; Thanh, N.; Jones, S.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 2009, 42(22)224001
[http://dx.doi.org/10.1088/0022-3727/42/22/224001]]
[4]
Shahbazi-Gahrouei, D.; Moradi Khaniabadi, P.; Moradi Khaniabadi, B.; Shahbazi-Gahrouei, S. Medical imaging modalities using nanoprobes for cancer diagnosis: A literature review on recent findings. J. Res. Med. Sci., 2019, 24, 38.
[http://dx.doi.org/10.4103/jrms.JRMS_437_18 ] [PMID: 31143239]
[5]
Salehnia, Z.; Shahbazi-Gahrouei, D.; Akbarzadeh, A.; Baradaran, B.; Farajnia, S.; Naghibi, M. Synthesis and physicochemical characterisation of superparamagnetic iron oxide nanoparticles conjugated with Epidermal Growth Factor Receptor (EGFR) monoclonal antibody as a novel targeting cancer detection. IET Nanobiotechnol., 2019, 13(4), 400-406.
[http://dx.doi.org/10.1049/iet-nbt.2018.5285 ] [PMID: 31171745]
[6]
Xie, J.; Xu, C.; Kohler, N.; Hou, Y.; Sun, S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non‐specific uptake by macrophage cells. Adv. Mater., 2007, 19(20), 3163-3166.
[http://dx.doi.org/10.1002/adma.200701975]
[7]
Majewski, A.P.; Schallon, A.; Jérôme, V.; Freitag, R.; Müller, A.H.; Schmalz, H. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules, 2012, 13(3), 857-866.
[http://dx.doi.org/10.1021/bm2017756 ] [PMID: 22296556]
[8]
Laurencin, M.; Cam, N.; Georgelin, T.; Clément, O.; Autret, G.; Siaugue, J.M.; Ménager, C. Human erythrocytes covered with magnetic core-shell nanoparticles for multimodal imaging. Adv. Healthc. Mater., 2013, 2(9), 1209-1212.
[http://dx.doi.org/10.1002/adhm.201200384 ] [PMID: 23568859]
[9]
Liu, X.; Cao, J.; Li, H.; Li, J.; Jin, Q.; Ren, K.; Ji, J. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano, 2013, 7(10), 9384-9395.
[http://dx.doi.org/10.1021/nn404117j ] [PMID: 24010584]
[10]
Gu, X.; Zhang, Y.; Sun, H.; Song, X.; Fu, C.; Dong, P. Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. J. Nanomater., 2015, 2015, 3.
[http://dx.doi.org/10.1155/2015/154592]
[11]
Liao, N.; Wu, M.; Pan, F.; Lin, J.; Li, Z.; Zhang, D.; Wang, Y.; Zheng, Y.; Peng, J.; Liu, X.; Liu, J. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells. Sci. Rep., 2016, 6, 18746.
[http://dx.doi.org/10.1038/srep18746 ] [PMID: 26728448]
[12]
Zhang, T.; Li, Y.; Hong, W.; Chen, Z.; Peng, P.; Yuan, S.; Qu, J.; Xiao, M.; Xu, L. Glucose oxidase and polydopamine functionalized iron oxide nanoparticles: Combination of the photothermal effect and reactive oxygen species generation for dual-modality selective cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(13), 2190-2200.
[PMID: 32073578] [http://dx.doi.org/10.1039/C8TB03320J]
[13]
Fatahian, S.; Shahbazi-Gahrouei, D.; Pouladian, M.; Yousefi, M.H.; Amiri, G.; Shahi, Z.; Jahanbakhsh, H. Preparation and magnetic properties investigation of Fe3O4 nanoparticles 99mTc labeled and Fe3O4 nanoparticles DMSA coated. Dig. J. Nanomater. Biostruct., 2011, 6(3), 1161-1165.
[14]
Tamat, S.R.; Moore, D.E.; Allen, B.J. Determination of the concentration of complex boronated compounds in biological tissues by inductively coupled plasma atomic emission spectrometry. Pigment Cell Res., 1989, 2(4), 281-285.
[http://dx.doi.org/10.1111/j.1600-0749.1989.tb00205.x ] [PMID: 2798320]
[15]
Hossein Beigi, F.; Fatahian, S.; Shahbazi-Gahrouei, D. In vitro toxicity assessment of polydopamine-coated and uncoated Fe3O4 nanoparticles in cell line B16-F10 (melanoma cell). Majallah-i Danishkadah-i Pizishki-i Isfahan, 2019, 37(533), 762-767.
[16]
Abu Zaid, M.I.; Sesso, H.D.; Fung, C.; Feldman, D.R.; Hamilton, R.J.; Vaughn, D.J. Chronic Health Conditions (CHCs) following cisplatin-based Chemotherapy (CHEM): A multi-institutional study of 680 Testicular Cancer Survivors (TCS). J. Clin. Oncol., 2015, 33, 9519.
[17]
Wu, J.; Ding, T.; Sun, J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology, 2013, 34, 243-253.
[http://dx.doi.org/10.1016/j.neuro.2012.09.006 ] [PMID: 22995439]
[18]
Raju, H.B.; Hu, Y.; Vedula, A.; Dubovy, S.R.; Goldberg, J.L. Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS One, 2011, 6(5)e17452
[PMID: 21637340] [http://dx.doi.org/10.1371/journal.pone.0017452]
[19]
Weissleder, R.; Stark, D.D.; Engelstad, B.L.; Bacon, B.R.; Compton, C.C.; White, D.L.; Jacobs, P.; Lewis, J. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol., 1989, 152(1), 167-173.
[http://dx.doi.org/10.2214/ajr.152.1.167 ] [PMID: 2783272]
[20]
Khan, M.I.; Mohammad, A.; Patil, G.; Naqvi, S.A.; Chauhan, L.K.; Ahmad, I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials, 2012, 33(5), 1477-1488.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.080 ] [PMID: 22098780]
[21]
Lv, Y.; Ding, G.; Zhai, J.; Guo, Y.; Nie, G.; Xu, L. A superparamagnetic Fe3O4-loaded polymeric nanocarrier for targeted delivery of evodiamine with enhanced antitumor efficacy. Colloids Surf. B Biointerfaces, 2013, 110, 411-418.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.038 ] [PMID: 23759382]
[22]
Wang, L.S.; Chuang, M.C.; Ho, J.A. Nanotheranostics--a review of recent publications. Int. J. Nanomedicine, 2012, 7, 4679-4695.
[PMID: 22956869]
[23]
Ankamwar, B.; Lai, T.C.; Huang, J.H.; Liu, R.S.; Hsiao, M.; Chen, C.H.; Hwu, Y.K. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 2010, 21(7), 75102.
[http://dx.doi.org/10.1088/0957-4484/21/7/075102 ] [PMID: 20090199]
[24]
Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Indian Chem. Soc., 2010, 7(1), 1-37.
[http://dx.doi.org/10.1007/BF03245856]
[25]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m ] [PMID: 18672949]
[26]
Mahmoudi, M.; Simchi, A.; Imani, M.; Shokrgozar, M.A.; Milani, A.S.; Häfeli, U.O.; Stroeve, P. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B Biointerfaces, 2010, 75(1), 300-309.
[http://dx.doi.org/10.1016/j.colsurfb.2009.08.044 ] [PMID: 19781921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy