Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Emerging Molecular Targets for Imaging of Atherosclerotic Plaque using Positron Emission Tomography

Author(s): Rudolf A. Werner, Frank M. Bengel and Thorsten Derlin*

Volume 14, Issue 3, 2021

Published on: 05 May, 2020

Page: [173 - 183] Pages: 11

DOI: 10.2174/1874471013666200505102353

Price: $65

Abstract

Positron-emission-tomography (PET) using the radiopharmaceutical 18F-fluorodeoxyglucose (FDG) has become an established and validated molecular imaging modality for characterization of the inflammatory activity of atherosclerotic plaque. In the latest years, new innovative radiopharmaceuticals and applications have emerged, providing specific information on atherosclerotic plaque biology, particularly focused on inflammatory processes. To review and highlight recent evidence on the role of PET for atherosclerosis imaging using emerging radiotracers. A comprehensive computer literature search of PubMed/MEDLINE was carried out to find relevant published articles concerning the usefulness of nuclear hybrid imaging in atherosclerosis imaging using 18F-- sodium fluoride PET, CXCR4-targeted PET, and amyloid-β-targeted PET. Atherosclerosis imaging with PET using emerging, specific tracers holds promise in improving our understanding of the pathophysiologic processes that underlie plaque progression and adverse cardiovascular events. There is increasing, high-quality evidence on the usefulness of 18F-sodium fluoride PET and – to a lesser extent – CXCR4-targeted PET, whereas amyloid-β-targeted PET is still in its infancy. F-sodium fluoride PET, CXCR4-targeted PET and amyloid-β-targeted PET may be used to obtain molecular information on different aspects of plaque biology. Further work is required to improve the technical aspects of these imaging techniques and to elucidate their ability to predict adverse cardiac events prospectively.

Keywords: Atherosclerosis, plaque, positron-emission tomography, PET/CT, CXCR4, sodium fluoride, amyloid.

Graphical Abstract

[1]
Rudd, J.H.; Myers, K.S.; Bansilal, S.; Machac, J.; Rafique, A.; Farkouh, M.; Fuster, V.; Fayad, Z.A. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J. Am. Coll. Cardiol., 2007, 50(9), 892-896.
[http://dx.doi.org/10.1016/j.jacc.2007.05.024] [PMID: 17719477]
[2]
Tawakol, A.; Fayad, Z.A.; Mogg, R.; Alon, A.; Klimas, M.T.; Dansky, H.; Subramanian, S.S.; Abdelbaky, A.; Rudd, J.H.; Farkouh, M.E.; Nunes, I.O.; Beals, C.R.; Shankar, S.S. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J. Am. Coll. Cardiol., 2013, 62(10), 909-917.
[http://dx.doi.org/10.1016/j.jacc.2013.04.066] [PMID: 23727083]
[3]
Emami, H.; Vucic, E.; Subramanian, S.; Abdelbaky, A.; Fayad, Z.A.; Du, S.; Roth, E.; Ballantyne, C.M.; Mohler, E.R.; Farkouh, M.E.; Kim, J.; Farmer, M.; Li, L.; Ehlgen, A.; Langenickel, T.H.; Velasquez, L.; Hayes, W.; Tawakol, A. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis, 2015, 240(2), 490-496.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.03.039] [PMID: 25913664]
[4]
Tawakol, A.; Migrino, R.Q.; Bashian, G.G.; Bedri, S.; Vermylen, D.; Cury, R.C.; Yates, D.; LaMuraglia, G.M.; Furie, K.; Houser, S.; Gewirtz, H.; Muller, J.E.; Brady, T.J.; Fischman, A.J. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol., 2006, 48(9), 1818-1824.
[http://dx.doi.org/10.1016/j.jacc.2006.05.076] [PMID: 17084256]
[5]
Bessueille, L.; Magne, D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell. Mol. Life Sci., 2015, 72(13), 2475-2489.
[http://dx.doi.org/10.1007/s00018-015-1876-4] [PMID: 25746430]
[6]
Zernecke, A.; Shagdarsuren, E.; Weber, C. Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol., 2008, 28(11), 1897-1908.
[http://dx.doi.org/10.1161/ATVBAHA.107.161174] [PMID: 18566299]
[7]
Tangestani Fard, M.; Stough, C. A review and hypothesized model of the mechanisms that underpin the relationship between inflammation and cognition in the elderly. Front. Aging Neurosci., 2019, 11, 56.
[http://dx.doi.org/10.3389/fnagi.2019.00056] [PMID: 30930767]
[8]
Høilund-Carlsen, P.F.; Sturek, M.; Alavi, A.; Gerke, O. Atherosclerosis imaging with 18F-sodium fluoride PET: state-of-the-art review. Eur. J. Nucl. Med. Mol. Imaging, 2019, 47(6), 1538-1551.
[http://dx.doi.org/10.1007/s00259-019-04603-1] [PMID: 31773235]
[9]
Weiberg, D.; Thackeray, J.T.; Daum, G.; Sohns, J.M.; Kropf, S.; Wester, H.J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Clinical molecular imaging of chemokine receptor cxcr4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J. Nucl. Med., 2018, 59(2), 266-272.
[http://dx.doi.org/10.2967/jnumed.117.196485] [PMID: 28775206]
[10]
Evans, N.R.; Tarkin, J.M.; Buscombe, J.R.; Markus, H.S.; Rudd, J.H.F.; Warburton, E.A. PET imaging of the neurovascular interface in cerebrovascular disease. Nat. Rev. Neurol., 2017, 13(11), 676-688.
[http://dx.doi.org/10.1038/nrneurol.2017.129] [PMID: 28984315]
[11]
Blomberg, B.A.; Thomassen, A.; Takx, R.A.; Vilstrup, M.H.; Hess, S.; Nielsen, A.L.; Diederichsen, A.C.; Mickley, H.; Alavi, A.; Høilund-Carlsen, P.F. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J. Nucl. Cardiol., 2014, 21(2), 293-304.
[http://dx.doi.org/10.1007/s12350-013-9829-5] [PMID: 24307262]
[12]
Kwiecinski, J.; Berman, D.S.; Lee, S.E.; Dey, D.; Cadet, S.; Lassen, M.L.; Germano, G.; Jansen, M.A.; Dweck, M.R.; Newby, D.E.; Chang, H.J.; Yun, M.; Slomka, P.J. Three-Hour Delayed Imaging Improves Assessment of Coronary 18F-Sodium Fluoride PET. J. Nucl. Med., 2019, 60(4), 530-535.
[http://dx.doi.org/10.2967/jnumed.118.217885] [PMID: 30213848]
[13]
Lassen, M.L.; Kwiecinski, J.; Dey, D.; Cadet, S.; Germano, G.; Berman, D.S.; Adamson, P.D.; Moss, A.J.; Dweck, M.R.; Newby, D.E.; Slomka, P.J. Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(12), 2610-2620.
[http://dx.doi.org/10.1007/s00259-019-04437-x] [PMID: 31385011]
[14]
Lassen, M.L.; Kwiecinski, J.; Cadet, S.; Dey, D.; Wang, C.; Dweck, M.R.; Berman, D.S.; Germano, G.; Newby, D.E.; Slomka, P.J. Data-driven gross patient motion detection and compensation: implications for coronary 18F-NaF PET imaging. J. Nucl. Med., 2019, 60(6), 830-836.
[http://dx.doi.org/10.2967/jnumed.118.217877] [PMID: 30442755]
[15]
Rubeaux, M.; Joshi, N.V.; Dweck, M.R.; Fletcher, A.; Motwani, M.; Thomson, L.E.; Germano, G.; Dey, D.; Li, D.; Berman, D.S.; Newby, D.E.; Slomka, P.J. Motion correction of 18F-NaF PET for imaging coronary atherosclerotic plaques. J. Nucl. Med., 2016, 57(1), 54-59.
[http://dx.doi.org/10.2967/jnumed.115.162990] [PMID: 26471691]
[16]
Cal-González, J.; Tsoumpas, C.; Lassen, M.L.; Rasul, S.; Koller, L.; Hacker, M.; Schäfers, K.; Beyer, T. Impact of motion compensation and partial volume correction for 18F-NaF PET/CT imaging of coronary plaque. Phys. Med. Biol., 2017, 63(1), 015005.
[http://dx.doi.org/10.1088/1361-6560/aa97c8] [PMID: 29240557]
[17]
Koenen, R.R.; von Hundelshausen, P.; Nesmelova, I.V.; Zernecke, A.; Liehn, E.A.; Sarabi, A.; Kramp, B.K.; Piccinini, A.M.; Paludan, S.R.; Kowalska, M.A.; Kungl, A.J.; Hackeng, T.M.; Mayo, K.H.; Weber, C. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med., 2009, 15(1), 97-103.
[http://dx.doi.org/10.1038/nm.1898] [PMID: 19122657]
[18]
Saederup, N.; Chan, L.; Lira, S.A.; Charo, I.F. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation, 2008, 117(13), 1642-1648.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.743872] [PMID: 18165355]
[19]
Döring, Y.; Pawig, L.; Weber, C.; Noels, H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front. Physiol., 2014, 5, 212.
[PMID: 24966838]
[20]
Döring, Y.; Noels, H.; van der Vorst, E.P.C.; Neideck, C.; Egea, V.; Drechsler, M.; Mandl, M.; Pawig, L.; Jansen, Y.; Schröder, K.; Bidzhekov, K.; Megens, R.T.A.; Theelen, W.; Klinkhammer, B.M.; Boor, P.; Schurgers, L.; van Gorp, R.; Ries, C.; Kusters, P.J.H.; van der Wal, A.; Hackeng, T.M.; Gäbel, G.; Brandes, R.P.; Soehnlein, O.; Lutgens, E.; Vestweber, D.; Teupser, D.; Holdt, L.M.; Rader, D.J.; Saleheen, D.; Weber, C. Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation, 2017, 136(4), 388-403.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027646] [PMID: 28450349]
[21]
Zernecke, A.; Weber, C. Chemokines in atherosclerosis: proceedings resumed. Arterioscler. Thromb. Vasc. Biol., 2014, 34(4), 742-750.
[http://dx.doi.org/10.1161/ATVBAHA.113.301655] [PMID: 24436368]
[22]
Gupta, S.K.; Pillarisetti, K.; Lysko, P.G. Modulation of CXCR4 expression and SDF-1alpha functional activity during differentiation of human monocytes and macrophages. J. Leukoc. Biol., 1999, 66(1), 135-143.
[http://dx.doi.org/10.1002/jlb.66.1.135] [PMID: 10411001]
[23]
Petit, I.; Jin, D.; Rafii, S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol., 2007, 28(7), 299-307.
[http://dx.doi.org/10.1016/j.it.2007.05.007] [PMID: 17560169]
[24]
Gao, J.H.; Yu, X.H.; Tang, C.K. CXC chemokine ligand 12 (CXCL12) in atherosclerosis: An underlying therapeutic target. Clin. Chim. Acta, 2019, 495, 538-544.
[http://dx.doi.org/10.1016/j.cca.2019.05.022] [PMID: 31145896]
[25]
Philipp-Abbrederis, K.; Herrmann, K.; Knop, S.; Schottelius, M.; Eiber, M.; Lückerath, K.; Pietschmann, E.; Habringer, S.; Gerngroß, C.; Franke, K.; Rudelius, M.; Schirbel, A.; Lapa, C.; Schwamborn, K.; Steidle, S.; Hartmann, E.; Rosenwald, A.; Kropf, S.; Beer, A.J.; Peschel, C.; Einsele, H.; Buck, A.K.; Schwaiger, M.; Götze, K.; Wester, H.J.; Keller, U. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol. Med., 2015, 7(4), 477-487.
[http://dx.doi.org/10.15252/emmm.201404698] [PMID: 25736399]
[26]
Werner, R.A.; Kircher, S.; Higuchi, T.; Kircher, M.; Schirbel, A.; Wester, H.J.; Buck, A.K.; Pomper, M.G.; Rowe, S.P.; Lapa, C. CXCR4-directed imaging in solid tumors. Front. Oncol., 2019, 9, 770.
[http://dx.doi.org/10.3389/fonc.2019.00770] [PMID: 31475113]
[27]
Haug, A.R.; Leisser, A.; Wadsak, W.; Mitterhauser, M.; Pfaff, S.; Kropf, S.; Wester, H.J.; Hacker, M.; Hartenbach, M.; Kiesewetter-Wiederkehr, B.; Raderer, M.; Mayerhoefer, M.E. Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using [68Ga]Ga-Pentixafor-PET/MRI. Theranostics, 2019, 9(12), 3653-3658.
[http://dx.doi.org/10.7150/thno.31032] [PMID: 31281504]
[28]
Derlin, T.; Wester, H.J.; Bengel, F.M.; Hueper, K. Visualization of posttraumatic splenosis on chemokine receptor CXCR4-targeted PET/CT. Clin. Nucl. Med., 2017, 42(6), e317-e318.
[http://dx.doi.org/10.1097/RLU.0000000000001590] [PMID: 28195912]
[29]
Derlin, T.; Gueler, F.; Bräsen, J.H.; Schmitz, J.; Hartung, D.; Herrmann, T.R.; Ross, T.L.; Wacker, F.; Wester, H.J.; Hiss, M.; Haller, H.; Bengel, F.M.; Hueper, K. Integrating MRI and chemokine receptor CXCR4-targeted PET for detection of leukocyte infiltration in complicated urinary tract infections after kidney transplantation. J. Nucl. Med., 2017, 58(11), 1831-1837.
[http://dx.doi.org/10.2967/jnumed.117.193037] [PMID: 28450555]
[30]
Poschenrieder, A.; Osl, T.; Schottelius, M.; Hoffmann, F.; Wirtz, M.; Schwaiger, M.; Wester, H.J. First 18F-labeled pentixafor-based imaging agent for PET imaging of CXCR4 expression in vivo. Tomography, 2016, 2(2), 85-93.
[http://dx.doi.org/10.18383/j.tom.2016.00130] [PMID: 30042959]
[31]
Thackeray, J.T.; Derlin, T.; Haghikia, A.; Napp, L.C.; Wang, Y.; Ross, T.L.; Schäfer, A.; Tillmanns, J.; Wester, H.J.; Wollert, K.C.; Bauersachs, J.; Bengel, F.M. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging, 2015, 8(12), 1417-1426.
[http://dx.doi.org/10.1016/j.jcmg.2015.09.008] [PMID: 26577262]
[32]
Reiter, T.; Kircher, M.; Schirbel, A.; Werner, R.A.; Kropf, S.; Ertl, G.; Buck, A.K.; Wester, H.J.; Bauer, W.R.; Lapa, C. Imaging of C-X-C motif chemokine receptor CXCR4 expression after myocardial infarction with [68Ga]Pentixafor-PET/CT in correlation with cardiac MRI. JACC Cardiovasc. Imaging, 2018, 11(10), 1541-1543.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.001] [PMID: 29454781]
[33]
Hyafil, F.; Pelisek, J.; Laitinen, I.; Schottelius, M.; Mohring, M.; Döring, Y.; van der Vorst, E.P.; Kallmayer, M.; Steiger, K.; Poschenrieder, A.; Notni, J.; Fischer, J.; Baumgartner, C.; Rischpler, C.; Nekolla, S.G.; Weber, C.; Eckstein, H.H.; Wester, H.J.; Schwaiger, M. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga-pentixafor for PET. J. Nucl. Med., 2017, 58(3), 499-506.
[http://dx.doi.org/10.2967/jnumed.116.179663] [PMID: 27789718]
[34]
Grosse, G.M.; Bascuñana, P.; Schulz-Schaeffer, W.J.; Teebken, O.E.; Wilhelmi, M.; Worthmann, H.; Ross, T.L.; Wester, H.J.; Kropf, S.; Derlin, T.; Bengel, F.M.; Bankstahl, J.P.; Weissenborn, K. Targeting Chemokine Receptor CXCR4 and Translocator Protein for Characterization of High-Risk Plaque in Carotid Stenosis Ex Vivo. Stroke, 2018, 49(8), 1988-1991.
[http://dx.doi.org/10.1161/STROKEAHA.118.021070] [PMID: 30002148]
[35]
Kircher, M.; Tran-Gia, J.; Kemmer, L.; Zhang, X.; Schirbel, A.; Werner, R.A.; Buck, A.K.; Wester, H.J.; Hacker, M.; Lapa, C.; Li, X. Imaging inflammation in atherosclerosis with CXCR4-directed 68Ga-pentixafor PET/CT - correlation with 18F-FDG PET/CT. J. Nucl. Med., 2020, 61(5), 751-756.
[http://dx.doi.org/10.2967/jnumed.119.234484] [PMID: 31653710]
[36]
Li, X.; Yu, W.; Wollenweber, T.; Lu, X.; Wei, Y.; Beitzke, D.; Wadsak, W.; Kropf, S.; Wester, H.J.; Haug, A.R.; Zhang, X.; Hacker, M. [68Ga]Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(8), 1616-1625.
[http://dx.doi.org/10.1007/s00259-019-04322-7] [PMID: 31004184]
[37]
Li, X.; Heber, D.; Leike, T.; Beitzke, D.; Lu, X.; Zhang, X.; Wei, Y.; Mitterhauser, M.; Wadsak, W.; Kropf, S.; Wester, H.J.; Loewe, C.; Hacker, M.; Haug, A.R. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(4), 558-566.
[http://dx.doi.org/10.1007/s00259-017-3831-0] [PMID: 28932900]
[38]
Derlin, T.; Sedding, D.G.; Dutzmann, J.; Haghikia, A.; König, T.; Napp, L.C.; Schütze, C.; Owsianski-Hille, N.; Wester, H.J.; Kropf, S.; Thackeray, J.T.; Bankstahl, J.P.; Geworski, L.; Ross, T.L.; Bauersachs, J.; Bengel, F.M. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(11), 1934-1944.
[http://dx.doi.org/10.1007/s00259-018-4076-2] [PMID: 29967943]
[39]
Borchert, T.; Beitar, L.; Langer, L.B.N.; Polyak, A.; Wester, H.J.; Ross, T.L.; Hilfiker-Kleiner, D.; Bengel, F.M.; Thackeray, J.T. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J. Nucl. Cardiol., 2019, ••• Epub ahead of print
[http://dx.doi.org/10.1007/s12350-019-01929-z] [PMID: 31659697]
[40]
Heck, M.M.; Tauber, R.; Schwaiger, S.; Retz, M.; D’Alessandria, C.; Maurer, T.; Gafita, A.; Wester, H.J.; Gschwend, J.E.; Weber, W.A.; Schwaiger, M.; Knorr, K.; Eiber, M. Treatment outcome, toxicity, and predictive factors for radioligand therapy with 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur. Urol., 2019, 75(6), 920-926.
[http://dx.doi.org/10.1016/j.eururo.2018.11.016] [PMID: 30473431]
[41]
Schmuck, S.; Nordlohne, S.; von Klot, C.A.; Henkenberens, C.; Sohns, J.M.; Christiansen, H.; Wester, H.J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Comparison of standard and delayed imaging to improve the detection rate of [68Ga]PSMA I&T PET/CT in patients with biochemical recurrence or prostate-specific antigen persistence after primary therapy for prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 960-968.
[http://dx.doi.org/10.1007/s00259-017-3669-5] [PMID: 28280856]
[42]
Schmuck, S.; Mamach, M.; Wilke, F.; von Klot, C.A.; Henkenberens, C.; Thackeray, J.T.; Sohns, J.M.; Geworski, L.; Ross, T.L.; Wester, H.J.; Christiansen, H.; Bengel, F.M.; Derlin, T. Multiple time-point 68Ga-PSMA I&T PET/CT for characterization of primary prostate cancer: value of early dynamic and delayed imaging. Clin. Nucl. Med., 2017, 42(6), e286-e293.
[http://dx.doi.org/10.1097/RLU.0000000000001589] [PMID: 28221194]
[43]
Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; Bushnell, D.; O’Dorisio, T.M.; Baum, R.P.; Kulkarni, H.R.; Caplin, M.; Lebtahi, R.; Hobday, T.; Delpassand, E.; Van Cutsem, E.; Benson, A.; Srirajaskanthan, R.; Pavel, M.; Mora, J.; Berlin, J.; Grande, E.; Reed, N.; Seregni, E.; Öberg, K.; Lopera Sierra, M.; Santoro, P.; Thevenet, T.; Erion, J.L.; Ruszniewski, P.; Kwekkeboom, D.; Krenning, E. Phase 3 Trial of 177Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med., 2017, 376(2), 125-135.
[http://dx.doi.org/10.1056/NEJMoa1607427] [PMID: 28076709]
[44]
Derlin, T.; Weiberg, D.; von Klot, C.; Wester, H.J.; Henkenberens, C.; Ross, T.L.; Christiansen, H.; Merseburger, A.S.; Bengel, F.M. 68Ga-PSMA I&T PET/CT for assessment of prostate cancer: evaluation of image quality after forced diuresis and delayed imaging. Eur. Radiol., 2016, 26(12), 4345-4353.
[http://dx.doi.org/10.1007/s00330-016-4308-4] [PMID: 27011373]
[45]
Werner, R.A.; Weich, A.; Kircher, M.; Solnes, L.B.; Javadi, M.S.; Higuchi, T.; Buck, A.K.; Pomper, M.G.; Rowe, S.P.; Lapa, C. The theranostic promise for Neuroendocrine Tumors in the late 2010s - Where do we stand, where do we go? Theranostics, 2018, 8(22), 6088-6100.
[http://dx.doi.org/10.7150/thno.30357] [PMID: 30613284]
[46]
Werner, R.A.; Lapa, C.; Ilhan, H.; Higuchi, T.; Buck, A.K.; Lehner, S.; Bartenstein, P.; Bengel, F.; Schatka, I.; Muegge, D.O.; Papp, L.; Zsótér, N.; Große-Ophoff, T.; Essler, M.; Bundschuh, R.A. Survival prediction in patients undergoing radionuclide therapy based on intratumoral somatostatin-receptor heterogeneity. Oncotarget, 2017, 8(4), 7039-7049.
[http://dx.doi.org/10.18632/oncotarget.12402] [PMID: 27705948]
[47]
Schatka, I.; Wollenweber, T.; Haense, C.; Brunz, F.; Gratz, K.F.; Bengel, F.M. Peptide receptor-targeted radionuclide therapy alters inflammation in atherosclerotic plaques. J. Am. Coll. Cardiol., 2013, 62(24), 2344-2345.
[http://dx.doi.org/10.1016/j.jacc.2013.08.1624] [PMID: 24076295]
[48]
Li, X.; Kemmer, L.; Zhang, X.; Kircher, M.; Buck, A.K.; Wester, H.J.; Hacker, M.; Lapa, C. Anti-inflammatory effects on atherosclerotic lesions induced by CXCR4-directed endoradiotherapy. J. Am. Coll. Cardiol., 2018, 72(1), 122-123.
[http://dx.doi.org/10.1016/j.jacc.2018.04.035] [PMID: 29957221]
[49]
Karshovska, E.; Zagorac, D.; Zernecke, A.; Weber, C.; Schober, A. A small molecule CXCR4 antagonist inhibits neointima formation and smooth muscle progenitor cell mobilization after arterial injury. J. Thromb. Haemost., 2008, 6(10), 1812-1815.
[http://dx.doi.org/10.1111/j.1538-7836.2008.03086.x] [PMID: 18647221]
[50]
Weber, C.; Döring, Y.; Noels, H. Potential cell-specific functions of CXCR4 in atherosclerosis. Hamostaseologie, 2016, 36(2), 97-102.
[http://dx.doi.org/10.5482/HAMO-14-10-0054] [PMID: 25586789]
[51]
Eash, K.J.; Means, J.M.; White, D.W.; Link, D.C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, 113(19), 4711-4719.
[http://dx.doi.org/10.1182/blood-2008-09-177287] [PMID: 19264920]
[52]
Wagner, N.M.; Bierhansl, L.; Nöldge-Schomburg, G.; Vollmar, B.; Roesner, J.P. Toll-like receptor 2-blocking antibodies promote angiogenesis and induce ERK1/2 and AKT signaling via CXCR4 in endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2013, 33(8), 1943-1951.
[http://dx.doi.org/10.1161/ATVBAHA.113.301783] [PMID: 23723373]
[53]
Gomez, D.; Owens, G.K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res., 2012, 95(2), 156-164.
[http://dx.doi.org/10.1093/cvr/cvs115] [PMID: 22406749]
[54]
Barrett, H.E.; Van der Heiden, K.; Farrell, E.; Gijsen, F.J.H.; Akyildiz, A.C. Calcifications in atherosclerotic plaques and impact on plaque biomechanics. J. Biomech., 2019, 87, 1-12.
[http://dx.doi.org/10.1016/j.jbiomech.2019.03.005] [PMID: 30904335]
[55]
Wong, K.K.; Thavornpattanapong, P.; Cheung, S.C.; Sun, Z.; Tu, J. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc. Disord., 2012, 12, 7.
[http://dx.doi.org/10.1186/1471-2261-12-7] [PMID: 22336469]
[56]
Vengrenyuk, Y.; Carlier, S.; Xanthos, S.; Cardoso, L.; Ganatos, P.; Virmani, R.; Einav, S.; Gilchrist, L.; Weinbaum, S. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl. Acad. Sci. USA, 2006, 103(40), 14678-14683.
[http://dx.doi.org/10.1073/pnas.0606310103] [PMID: 17003118]
[57]
Doherty, T.M.; Asotra, K.; Fitzpatrick, L.A.; Qiao, J.H.; Wilkin, D.J.; Detrano, R.C.; Dunstan, C.R.; Shah, P.K.; Rajavashisth, T.B. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11201-11206.
[http://dx.doi.org/10.1073/pnas.1932554100] [PMID: 14500910]
[58]
Jeziorska, M.; McCollum, C.; Wooley, D.E. Observations on bone formation and remodelling in advanced atherosclerotic lesions of human carotid arteries. Virchows Arch., 1998, 433(6), 559-565.
[http://dx.doi.org/10.1007/s004280050289] [PMID: 9870690]
[59]
Schinke, T.; McKee, M.D.; Karsenty, G. Extracellular matrix calcification: where is the action? Nat. Genet., 1999, 21(2), 150-151.
[http://dx.doi.org/10.1038/5928] [PMID: 9988260]
[60]
Ge, Q.; Ruan, C.C.; Ma, Y.; Tang, X.F.; Wu, Q.H.; Wang, J.G.; Zhu, D.L.; Gao, P.J. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci. Rep., 2017, 7, 40253.
[http://dx.doi.org/10.1038/srep40253] [PMID: 28091516]
[61]
Addison, W.N.; Masica, D.L.; Gray, J.J.; McKee, M.D. Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J. Bone Miner. Res., 2010, 25(4), 695-705.
[PMID: 19775205]
[62]
Koltsova, E.K.; Hedrick, C.C.; Ley, K. Myeloid cells in atherosclerosis: a delicate balance of anti-inflammatory and proinflammatory mechanisms. Curr. Opin. Lipidol., 2013, 24(5), 371-380.
[http://dx.doi.org/10.1097/MOL.0b013e328363d298] [PMID: 24005215]
[63]
Aikawa, E.; Nahrendorf, M.; Figueiredo, J.L.; Swirski, F.K.; Shtatland, T.; Kohler, R.H.; Jaffer, F.A.; Aikawa, M.; Weissleder, R. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation, 2007, 116(24), 2841-2850.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.732867] [PMID: 18040026]
[64]
New, S.E.; Goettsch, C.; Aikawa, M.; Marchini, J.F.; Shibasaki, M.; Yabusaki, K.; Libby, P.; Shanahan, C.M.; Croce, K.; Aikawa, E. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ. Res., 2013, 113(1), 72-77.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301036] [PMID: 23616621]
[65]
Czernin, J.; Satyamurthy, N.; Schiepers, C. Molecular mechanisms of bone 18F-NaF deposition. J. Nucl. Med., 2010, 51(12), 1826-1829.
[http://dx.doi.org/10.2967/jnumed.110.077933] [PMID: 21078790]
[66]
Segall, G.; Delbeke, D.; Stabin, M.G.; Even-Sapir, E.; Fair, J.; Sajdak, R.; Smith, G.T. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J. Nucl. Med., 2010, 51(11), 1813-1820.
[http://dx.doi.org/10.2967/jnumed.110.082263] [PMID: 21051652]
[67]
Derlin, T.; Richter, U.; Bannas, P.; Begemann, P.; Buchert, R.; Mester, J.; Klutmann, S. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J. Nucl. Med., 2010, 51(6), 862-865.
[http://dx.doi.org/10.2967/jnumed.110.076471] [PMID: 20484438]
[68]
Derlin, T.; Wisotzki, C.; Richter, U.; Apostolova, I.; Bannas, P.; Weber, C.; Mester, J.; Klutmann, S. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J. Nucl. Med., 2011, 52(3), 362-368.
[http://dx.doi.org/10.2967/jnumed.110.081208] [PMID: 21321276]
[69]
Derlin, T.; Janssen, T.; Salamon, J.; Veldhoen, S.; Busch, J.D.; Schön, G.; Herrmann, J.; Henes, F.O.; Bannas, P.; Adam, G. Age-related differences in the activity of arterial mineral deposition and regional bone metabolism: a 18F-sodium fluoride positron emission tomography study. Osteoporos. Int., 2015, 26(1), 199-207.
[http://dx.doi.org/10.1007/s00198-014-2839-6] [PMID: 25124219]
[70]
Derlin, T.; Tóth, Z.; Papp, L.; Wisotzki, C.; Apostolova, I.; Habermann, C.R.; Mester, J.; Klutmann, S. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J. Nucl. Med., 2011, 52(7), 1020-1027.
[http://dx.doi.org/10.2967/jnumed.111.087452] [PMID: 21680686]
[71]
Irkle, A.; Vesey, A.T.; Lewis, D.Y.; Skepper, J.N.; Bird, J.L.; Dweck, M.R.; Joshi, F.R.; Gallagher, F.A.; Warburton, E.A.; Bennett, M.R.; Brindle, K.M.; Newby, D.E.; Rudd, J.H.; Davenport, A.P. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat. Commun., 2015, 6, 7495.
[http://dx.doi.org/10.1038/ncomms8495] [PMID: 26151378]
[72]
Zhang, Y.; Li, H.; Jia, Y.; Yang, P.; Zhao, F.; Wang, W.; Liu, W.; Chen, G.; Zhuang, X.; Li, J. Noninvasive Assessment of Carotid Plaques Calcification by 18F-Sodium Fluoride Accumulation: Correlation with Pathology. J. Stroke Cerebrovasc. Dis., 2018, 27(7), 1796-1801.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.011] [PMID: 29555399]
[73]
Creager, M.D.; Hohl, T.; Hutcheson, J.D.; Moss, A.J.; Schlotter, F.; Blaser, M.C.; Park, M.A.; Lee, L.H.; Singh, S.A.; Alcaide-Corral, C.J.; Tavares, A.A.S.; Newby, D.E.; Kijewski, M.F.; Aikawa, M.; Di Carli, M.; Dweck, M.R.; Aikawa, E. 18f-fluoride signal amplification identifies microcalcifications associated with atherosclerotic plaque instability in positron emission tomography/computed tomography images. Circ Cardiovasc Imaging, 2019, 12(1), e007835.
[http://dx.doi.org/10.1161/CIRCIMAGING.118.007835] [PMID: 30642216]
[74]
Blomberg, B.A.; Thomassen, A.; de Jong, P.A.; Lam, M.G.E.H.; Hess, S.; Olsen, M.H.; Mali, W.P.T.M.; Alavi, A.; Høilund-Carlsen, P.F. Reference values for fluorine-18-fluorodeoxyglucose and fluorine-18-sodium fluoride uptake in human arteries: a prospective evaluation of 89 healthy adults. Nucl. Med. Commun., 2017, 38(11), 998-1006.
[http://dx.doi.org/10.1097/MNM.0000000000000748] [PMID: 28902094]
[75]
Beheshti, M.; Saboury, B.; Mehta, N.N.; Torigian, D.A.; Werner, T.; Mohler, E.; Wilensky, R.; Newberg, A.B.; Basu, S.; Langsteger, W.; Alavi, A. Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography-a novel concept. Hell. J. Nucl. Med., 2011, 14(2), 114-120.
[PMID: 21761011]
[76]
Blomberg, B.A.; Thomassen, A.; de Jong, P.A.; Lam, M.G.E.; Diederichsen, A.C.P.; Olsen, M.H.; Mickley, H.; Mali, W.P.T.M.; Alavi, A.; Høilund-Carlsen, P.F. Coronary fluorine-18-sodium fluoride uptake is increased in healthy adults with an unfavorable cardiovascular risk profile: results from the CAMONA study. Nucl. Med. Commun., 2017, 38(11), 1007-1014.
[http://dx.doi.org/10.1097/MNM.0000000000000734] [PMID: 28877084]
[77]
Janssen, T.; Bannas, P.; Herrmann, J.; Veldhoen, S.; Busch, J.D.; Treszl, A.; Münster, S.; Mester, J.; Derlin, T. Association of linear ¹⁸F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study. J. Nucl. Cardiol., 2013, 20(4), 569-577.
[http://dx.doi.org/10.1007/s12350-013-9680-8] [PMID: 23588862]
[78]
Dweck, M.R.; Chow, M.W.; Joshi, N.V.; Williams, M.C.; Jones, C.; Fletcher, A.M.; Richardson, H.; White, A.; McKillop, G.; van Beek, E.J.; Boon, N.A.; Rudd, J.H.; Newby, D.E. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J. Am. Coll. Cardiol., 2012, 59(17), 1539-1548.
[http://dx.doi.org/10.1016/j.jacc.2011.12.037] [PMID: 22516444]
[79]
Fiz, F.; Morbelli, S.; Bauckneht, M.; Piccardo, A.; Ferrarazzo, G.; Nieri, A.; Artom, N.; Cabria, M.; Marini, C.; Canepa, M.; Sambuceti, G. Correlation between thoracic aorta 18F-natrium fluoride uptake and cardiovascular risk. World J. Radiol., 2016, 8(1), 82-89.
[http://dx.doi.org/10.4329/wjr.v8.i1.82] [PMID: 26834946]
[80]
Morbelli, S.; Fiz, F.; Piccardo, A.; Picori, L.; Massollo, M.; Pestarino, E.; Marini, C.; Cabria, M.; Democrito, A.; Cittadini, G.; Villavecchia, G.; Bruzzi, P.; Alavi, A.; Sambuceti, G. Divergent determinants of 18F-NaF uptake and visible calcium deposition in large arteries: relationship with Framingham risk score. Int. J. Cardiovasc. Imaging, 2014, 30(2), 439-447.
[http://dx.doi.org/10.1007/s10554-013-0342-3] [PMID: 24318613]
[81]
Joshi, N.V.; Vesey, A.T.; Williams, M.C.; Shah, A.S.; Calvert, P.A.; Craighead, F.H.; Yeoh, S.E.; Wallace, W.; Salter, D.; Fletcher, A.M.; van Beek, E.J.; Flapan, A.D.; Uren, N.G.; Behan, M.W.; Cruden, N.L.; Mills, N.L.; Fox, K.A.; Rudd, J.H.; Dweck, M.R.; Newby, D.E. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet, 2014, 383(9918), 705-713.
[http://dx.doi.org/10.1016/S0140-6736(13)61754-7] [PMID: 24224999]
[82]
Vesey, A.T.; Jenkins, W.S.; Irkle, A.; Moss, A.; Sng, G.; Forsythe, R.O.; Clark, T.; Roberts, G.; Fletcher, A.; Lucatelli, C.; Rudd, J.H.; Davenport, A.P.; Mills, N.L.; Al-Shahi Salman, R.; Dennis, M.; Whiteley, W.N.; van Beek, E.J.; Dweck, M.R.; Newby, D.E. 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study. Circ Cardiovasc Imaging, 2017, 10(3), e004976.
[http://dx.doi.org/10.1161/CIRCIMAGING.116.004976] [PMID: 28292859]
[83]
Marchesseau, S.; Seneviratna, A.; Sjöholm, A.T.; Qin, D.L.; Ho, J.X.M.; Hausenloy, D.J.; Townsend, D.W.; Richards, A.M.; Totman, J.J.; Chan, M.Y.Y. Hybrid PET/CT and PET/MRI imaging of vulnerable coronary plaque and myocardial scar tissue in acute myocardial infarction. J. Nucl. Cardiol., 2018, 25(6), 2001-2011.
[http://dx.doi.org/10.1007/s12350-017-0918-8] [PMID: 28500539]
[84]
Lee, J.M.; Bang, J.I.; Koo, B.K.; Hwang, D.; Park, J.; Zhang, J.; Yaliang, T.; Suh, M.; Paeng, J.C.; Shiono, Y.; Kubo, T.; Akasaka, T. Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease. Circ Cardiovasc Imaging, 2017, 10(11), e006704.
[http://dx.doi.org/10.1161/CIRCIMAGING.117.006704] [PMID: 29133478]
[85]
Li, L.; Li, X.; Jia, Y.; Fan, J.; Wang, H.; Fan, C.; Wu, L.; Si, X.; Hao, X.; Wu, P.; Yan, M.; Wang, R.; Hu, G.; Liu, J.; Wu, Z.; Hacker, M.; Li, S. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(12), 2181-2189.
[http://dx.doi.org/10.1007/s00259-018-4122-0] [PMID: 30171271]
[86]
Hop, H.; de Boer, S.A.; Reijrink, M.; Kamphuisen, P.W.; de Borst, M.H.; Pol, R.A.; Zeebregts, C.J.; Hillebrands, J.L.; Slart, R.H.J.A.; Boersma, H.H.; Doorduin, J.; Mulder, D.J. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J. Nucl. Cardiol., 2019, 26(4), 1064-1075.
[http://dx.doi.org/10.1007/s12350-018-1325-5] [PMID: 29943142]
[87]
Kitagawa, T.; Yamamoto, H.; Nakamoto, Y.; Sasaki, K.; Toshimitsu, S.; Tatsugami, F.; Awai, K.; Hirokawa, Y.; Kihara, Y. Predictive Value of 18F-Sodium Fluoride Positron Emission Tomography in Detecting High-Risk Coronary Artery Disease in Combination With Computed Tomography. J. Am. Heart Assoc., 2018, 7(20), e010224.
[http://dx.doi.org/10.1161/JAHA.118.010224] [PMID: 30371290]
[88]
Li, X.; Heber, D.; Cal-Gonzalez, J.; Karanikas, G.; Mayerhoefer, M.E.; Rasul, S.; Beitzke, D.; Zhang, X.; Agis, H.; Mitterhauser, M.; Wadsak, W.; Beyer, T.; Loewe, C.; Hacker, M. Association Between Osteogenesis and Inflammation During the Progression of Calcified Plaque Evaluated by 18F-Fluoride and 18F-FDG. J. Nucl. Med., 2017, 58(6), 968-974.
[http://dx.doi.org/10.2967/jnumed.116.182790] [PMID: 28232606]
[89]
Ishiwata, Y.; Kaneta, T.; Nawata, S.; Hino-Shishikura, A.; Yoshida, K.; Inoue, T. Quantification of temporal changes in calcium score in active atherosclerotic plaque in major vessels by 18F-sodium fluoride PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(9), 1529-1537.
[http://dx.doi.org/10.1007/s00259-017-3680-x] [PMID: 28349280]
[90]
Casserly, I.; Topol, E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet, 2004, 363(9415), 1139-1146.
[http://dx.doi.org/10.1016/S0140-6736(04)15900-X] [PMID: 15064035]
[91]
Kokjohn, T.A.; Van Vickle, G.D.; Maarouf, C.L.; Kalback, W.M.; Hunter, J.M.; Daugs, I.D.; Luehrs, D.C.; Lopez, J.; Brune, D.; Sue, L.I.; Beach, T.G.; Castaño, E.M.; Roher, A.E. Chemical characterization of pro-inflammatory amyloid-beta peptides in human atherosclerotic lesions and platelets. Biochim. Biophys. Acta, 2011, 1812(11), 1508-1514.
[http://dx.doi.org/10.1016/j.bbadis.2011.07.004] [PMID: 21784149]
[92]
Puglielli, L.; Friedlich, A.L.; Setchell, K.D.; Nagano, S.; Opazo, C.; Cherny, R.A.; Barnham, K.J.; Wade, J.D.; Melov, S.; Kovacs, D.M.; Bush, A.I. Alzheimer disease beta-amyloid activity mimics cholesterol oxidase. J. Clin. Invest., 2005, 115(9), 2556-2563.
[http://dx.doi.org/10.1172/JCI23610] [PMID: 16127459]
[93]
Thomas, T.; Thomas, G.; McLendon, C.; Sutton, T.; Mullan, M. beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature, 1996, 380(6570), 168-171.
[http://dx.doi.org/10.1038/380168a0] [PMID: 8600393]
[94]
Vukic, V.; Callaghan, D.; Walker, D.; Lue, L.F.; Liu, Q.Y.; Couraud, P.O.; Romero, I.A.; Weksler, B.; Stanimirovic, D.B.; Zhang, W. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol. Dis., 2009, 34(1), 95-106.
[http://dx.doi.org/10.1016/j.nbd.2008.12.007] [PMID: 19162185]
[95]
Bucerius, J.; Barthel, H.; Tiepolt, S.; Werner, P.; Sluimer, J.C.; Wildberger, J.E.; Patt, M.; Hesse, S.; Gertz, H.J.; Biessen, E.A.L.; Mottaghy, F.M.; Sabri, O. Feasibility of in vivo 18F-florbetaben PET/MR imaging of human carotid amyloid-β. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(7), 1119-1128.
[http://dx.doi.org/10.1007/s00259-017-3651-2] [PMID: 28321471]
[96]
Hellberg, S.; Silvola, J.M.U.; Liljenbäck, H.; Kiugel, M.; Eskola, O.; Hakovirta, H.; Hörkkö, S.; Morisson-Iveson, V.; Hirani, E.; Saukko, P.; Ylä-Herttuala, S.; Knuuti, J.; Saraste, A.; Roivainen, A. Amyloid-targeting pet tracer [18f]flutemetamol accumulates in atherosclerotic plaques. Molecules, 2019, 24(6), E1072.
[http://dx.doi.org/10.3390/molecules24061072] [PMID: 30893771]
[97]
Stamatelopoulos, K.; Sibbing, D.; Rallidis, L.S.; Georgiopoulos, G.; Stakos, D.; Braun, S.; Gatsiou, A.; Sopova, K.; Kotakos, C.; Varounis, C.; Tellis, C.C.; Kastritis, E.; Alevizaki, M.; Tselepis, A.D.; Alexopoulos, P.; Laske, C.; Keller, T.; Kastrati, A.; Dimmeler, S.; Zeiher, A.M.; Stellos, K. Amyloid-beta (1-40) and the risk of death from cardiovascular causes in patients with coronary heart disease. J. Am. Coll. Cardiol., 2015, 65(9), 904-916.
[http://dx.doi.org/10.1016/j.jacc.2014.12.035] [PMID: 25744007]
[98]
Stamatelopoulos, K.; Mueller-Hennessen, M.; Georgiopoulos, G.; Sachse, M.; Boeddinghaus, J.; Sopova, K.; Gatsiou, A.; Amrhein, C.; Biener, M.; Vafaie, M.; Athanasouli, F.; Stakos, D.; Pateras, K.; Twerenbold, R.; Badertscher, P.; Nestelberger, T.; Dimmeler, S.; Katus, H.A.; Zeiher, A.M.; Mueller, C.; Giannitsis, E.; Stellos, K. Amyloid-β (1-40) and mortality in patients with non-st-segment elevation acute coronary syndrome: a cohort study. Ann. Intern. Med., 2018, 168(12), 855-865.
[http://dx.doi.org/10.7326/M17-1540] [PMID: 29799975]
[99]
Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C.Y.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; Del Monte, F. Aβ amyloid pathology affects the hearts of patients with alzheimer’s disease: mind the heart. J. Am. Coll. Cardiol., 2016, 68(22), 2395-2407.
[http://dx.doi.org/10.1016/j.jacc.2016.08.073] [PMID: 27908343]
[100]
Johansen, M.C.; Mosley, T.H.; Knopman, D.S.; Wong, D.F.; Wagenknecht, L.E.; Shah, A.M.; Solomon, S.D.; Gottesman, R.F. Associations between left ventricular structure, function, and cerebral amyloid: the ARIC-PET study. Stroke, 2019, 50(12), 3622-3624.
[http://dx.doi.org/10.1161/STROKEAHA.119.027220] [PMID: 31597548]
[101]
Derlin, T.; Bengel, F.M. Canakinumab for atherosclerotic disease. N. Engl. J. Med., 2018, 378(2), 196-197.
[http://dx.doi.org/10.1056/NEJMc1714635] [PMID: 29322754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy