[1]
Ferrini, A.; Stevens, M.M.; Sattler, S.; Rosenthal, N. Toward regeneration of the heart: bioengineering strategies for immunomodulation. Front. Cardiovasc. Med., 2019, 6, 26.
[2]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[3]
Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; Berry, C.; López-Sendón, J.; Ostadal, P.; Koenig, W.; Angoulvant, D.; Grégoire, J.C.; Lavoie, M-A.; Dubé, M-P.; Rhainds, D.; Provencher, M.; Blondeau, L.; Orfanos, A.; L’Allier, P.L.; Guertin, M-C.; Roubille, F. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med., 2019, 381(26), 2497-2505.
[4]
Bengel, F.M.; Ross, T.L. Emerging imaging targets for infiltrative cardiomyopathy: Inflammation and fibrosis. J. Nucl. Cardiol., 2019, 26(1), 208-216.
[5]
Kempf, T.; Zarbock, A.; Vestweber, D.; Wollert, K.C. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J. Mol. Med., 2012, 90, 361-369.
[6]
Taqueti, V.R.; Mitchell, R.N.; Lichtman, A.H. Protecting the pump: controlling myocardial inflammatory responses. Annu. Rev. Physiol., 2006, 68, 67-95.
[7]
Lin, Y.; Zhu, W.; Chen, X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res. Ther., 2020, 11(1), 216.
[8]
Taqueti, V.R.; Jaffer, F.A. High-resolution molecular imaging via intravital microscopy: illuminating vascular biology in vivo. Integrative biology:
quantitative biosciences from nano to macro. 2013, 5, 278-290.
[9]
Taqueti, V.R.; Di Carli, M.F.; Jerosch-Herold, M.; Sukhova, G.K.; Murthy, V.L.; Folco, E.J.; Kwong, R.Y.; Ozaki, C.K.; Belkin, M.; Nahrendorf, M.; Weissleder, R.; Libby, P. Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging, 2014, 7(6), 920-929.
[10]
Osborne, M.T.; Hulten, E.A.; Murthy, V.L.; Skali, H.; Taqueti, V.R.; Dorbala, S.; DiCarli, M.F.; Blankstein, R. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J. Nucl. Cardiol., 2017, 24(1), 86-99.
[11]
Genovesi, D.; Bauckneht, M.; Altini, C.; Popescu, C.E.; Ferro, P.; Monaco, L.; Borra, A.; Ferrari, C.; Caobelli, F. The role of positron emission tomography in the assessment of cardiac sarcoidosis. Br. J. Radiol., 2019, 92(1100)20190247
[12]
Chareonthaitawee, P.; Beanlands, R.S.; Chen, W.; Dorbala, S.; Miller, E.J.; Murthy, V.L.; Birnie, D.H.; Chen, E.S.; Cooper, L.T.; Tung, R.H.; White, E.S.; Borges-Neto, S.; Di Carli, M.F.; Gropler, R.J.; Ruddy, T.D.; Schindler, T.H.; Blankstein, R. Collab Group. Joint SNMMI-ASNC expert consensus document on the role of 18 F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J. Nucl. Med., 2017, 58(8), 1341-1353.
[13]
Taqueti, V.R.; Nahrendorf, M.; Di Carli, M.F. Translational molecular imaging: repurposing an old technique to track cell migration into human atheroma. J. Am. Coll. Cardiol., 2014, 64(10), 1030-1032.
[14]
Taqueti, V.R.; Grabie, N.; Colvin, R.; Pang, H.; Jarolim, P.; Luster, A.D.; Glimcher, L.H.; Lichtman, A.H. T-bet controls pathogenicity of CTLs in the heart by separable effects on migration and effector activity. J. Immunol., 2006, 177(9), 5890-5901.
[15]
Jung, K.; Kim, P.; Leuschner, F.; Gorbatov, R.; Kim, J.K.; Ueno, T.; Nahrendorf, M.; Yun, S.H. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ. Res., 2013, 112(6), 891-899.
[16]
Thackeray, J.T.; Bengel, F.M. Molecular imaging of myocardial inflammation with positron emission tomography post-ischemia: a determinant of subsequent remodeling or recovery. JACC Cardiovasc. Imaging, 2018, 11(9), 1340-1355.
[17]
Horckmans, M.; Ring, L.; Duchene, J.; Santovito, D.; Schloss, M.J.; Drechsler, M.; Weber, C.; Soehnlein, O.; Steffens, S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J., 2017, 38(3), 187-197.
[PMID: 28158426]
[PMID: 28158426]
[18]
Thackeray, J.T.; Bankstahl, J.P.; Wang, Y.; Wollert, K.C.; Bengel, F.M. Targeting amino acid metabolism for molecular imaging of inflammation early after myocardial infarction. Theranostics, 2016, 6(11), 1768-1779.
[19]
Thackeray, J.T.; Derlin, T.; Haghikia, A.; Napp, L.C.; Wang, Y.; Ross, T.L.; Schäfer, A.; Tillmanns, J.; Wester, H.J.; Wollert, K.C.; Bauersachs, J.; Bengel, F.M. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. J. Am. Coll. Cardiol. Img, 2015, 8(12), 1417-1426.
[20]
Li, X.; Bauer, W.; Kreissl, M.C.; Weirather, J.; Bauer, E.; Israel, I.; Richter, D.; Riehl, G.; Buck, A.; Samnick, S. Specific somatostatin receptor II expression in arterial plaque: (68)Ga-DOTATATE autoradiographic, immunohistochemical and flow cytometric studies in apoE-deficient mice. Atherosclerosis, 2013, 230(1), 33-39.
[21]
Gaemperli, O.; Shalhoub, J.; Owen, D.R.; Lamare, F.; Johansson, S.; Fouladi, N.; Davies, A.H.; Rimoldi, O.E.; Camici, P.G. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur. Heart J., 2012, 33(15), 1902-1910.
[22]
Higuchi, T.; Bengel, F.M.; Seidl, S.; Watzlowik, P.; Kessler, H.; Hegenloh, R.; Reder, S.; Nekolla, S.G.; Wester, H.J.; Schwaiger, M. Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc. Res., 2008, 78(2), 395-403.
[23]
Ramasamy, A.; Serruys, P.W.; Jones, D.A.; Johnson, T.W.; Torii, R.; Madden, S.P.; Amersey, R.; Krams, R.; Baumbach, A.; Mathur, A.; Bourantas, C.V. Reliable in vivo intravascular imaging plaque characterization: A challenge unmet. Am. Heart J., 2019, 218, 20-31.
[24]
Hyafil, F.; Schindler, A.; Sepp, D.; Obenhuber, T.; Bayer-Karpinska, A.; Boeckh-Behrens, T.; Höhn, S.; Hacker, M.; Nekolla, S.G.; Rominger, A.; Dichgans, M.; Schwaiger, M.; Saam, T.; Poppert, H. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(2), 270-279.
[25]
Joshi, N.V.; Vesey, A.T.; Williams, M.C.; Shah, A.S.V.; Calvert, P.A.; Craighead, F.H.M.; Yeoh, S.E.; Wallace, W.; Salter, D.; Fletcher, A.M.; van Beek, E.J.R.; Flapan, A.D.; Uren, N.G.; Behan, M.W.H.; Cruden, N.L.; Mills, N.L.; Fox, K.A.; Rudd, J.H.; Dweck, M.R.; Newby, D.E. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet, 2014, 383(9918), 705-713.
[26]
Lairez, O.; Hyafil, F. A clinical role of pet in atherosclerosis and vulnerable plaques? Semin. Nucl. Med., 2020, 50(4), 311-318.