General Review Article

An Insight into the Current Perspective and Potential Drug Targets for Visceral Leishmaniasis (VL)

Author(s): Rani Mansuri*, Jagbir Singh and Anupama Diwan

Volume 21, Issue 11, 2020

Page: [1105 - 1129] Pages: 25

DOI: 10.2174/1389450121666200422083735

Price: $65

Abstract

Leishmaniasis is one of the six entities on the list of most important diseases of the World Health Organization/Tropical Disease Research (WHO/TDR). After Malaria, it is one of the most prevalent and lethal parasitic diseases. VL is the fatal form of this disease, especially if left untreated. The drugs that are currently available for the treatment of VL are expensive, toxic, or no longer effective, especially in endemic regions. Currently, no vaccine has been developed to immunize humans against VL. The major problems with the current drugs are the development of resistance and their adverse effects. Therefore, there is a strong urge to research and design drugs that have better efficacies and low toxicities as compared to current chemotherapeutic drugs. Leishmania has various enzymes involved in its metabolic pathways, which are unique to either the same genus or trypanosomatids, making them a very suitable, attractive and novel target sites for drug development. One of the significant pathways unique to trypanosomatids is the thiol metabolism pathway, which is involved in the maintenance of redox homeostasis as well as protection of the parasite in the macrophage from oxidative stress-induced damage. In this review the several pathways, their essential enzymes as well as the proposed changes in the parasites due to drug resistance have been discussed to help to understand the most suitable drug target. The thiol metabolism pathway is discussed in detail, providing evidence of this pathway being the most favorable choice for drug targeting in VL.

Keywords: Leishmania, drug resistance, metabolic processes, drug target, lethal parasitic diseases. trypanosomatids.

Graphical Abstract

[1]
Elmahallawy EK, Sampedro Martinez A, Rodriguez-Granger J, et al. Diagnosis of leishmaniasis. J Infect Dev Ctries 2014; 8(8): 961-72.
[http://dx.doi.org/10.3855/jidc.4310] [PMID: 25116660]
[2]
Schneider J, Seiger R, Mahon M. Leishmaniasis–case report with current diagnostic and treatment strategies. American Osteopathic College of Dermatology 2008; p. 11.
[3]
Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004; 27(5): 305-18.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[4]
Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 2001; 95(3): 239-43.
[http://dx.doi.org/10.1016/S0035-9203(01)90223-8] [PMID: 11490989]
[5]
Crompton DWT, et al. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases First WHO report on neglected tropical diseases. Organización Mundial de la SaludOrganización Mundial de la Salud 2010.
[6]
Stuart K, Brun R, Croft S, et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 2008; 118(4): 1301-10.
[http://dx.doi.org/10.1172/JCI33945] [PMID: 18382742]
[7]
Burkett D, et al. Puerto Rico and US Mainland, 1989-2000. Lancet 1999; 354: 1191-9.
[8]
Ul Bari U. Chronology of cutaneous leishmaniasis: An overview of the history of the disease. J Pak Assoc Dermatol 2006; 16: 24-7.
[9]
Chang K, Hendricks L, Bray R. Laboratory cultivation and maintenance of Leishmania. Leishmaniasis. In: Human Parasitic Diseases. 1985; vol. 1: pp. 213-44.
[10]
Chang KP, Reed SG, McGwire BS, Soong L. Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Trop 2003; 85(3): 375-90.
[http://dx.doi.org/10.1016/S0001-706X(02)00238-3] [PMID: 12659975]
[11]
Wheeler RJ, Gluenz E, Gull K. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 2011; 79(3): 647-62.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07479.x] [PMID: 21255109]
[12]
Vannier-Santos MA, Martiny A, de Souza W. Cell biology of Leishmania spp.: invading and evading. Curr Pharm Des 2002; 8(4): 297-318.
[http://dx.doi.org/10.2174/1381612023396230] [PMID: 11860368]
[13]
Gluenz E, Ginger ML, McKean PG. Flagellum assembly and function during the Leishmania life cycle. Curr Opin Microbiol 2010; 13(4): 473-9.
[http://dx.doi.org/10.1016/j.mib.2010.05.008] [PMID: 20541962]
[14]
Akhoundi M, Kuhls K, Cannet A, et al. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis 2016; 10(3)e0004349
[http://dx.doi.org/10.1371/journal.pntd.0004349] [PMID: 26937644]
[15]
Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 2007; 37(10): 1097-106.
[http://dx.doi.org/10.1016/j.ijpara.2007.04.003] [PMID: 17517415]
[16]
Narain JP, Dash AP, Parnell B, et al. Elimination of neglected tropical diseases in the South-East Asia Region of the World Health Organization. Bull World Health Organ 2010; 88(3): 206-10.
[http://dx.doi.org/10.2471/BLT.09.072322] [PMID: 20428388]
[17]
Singh RK, Pandey HP, Sundar S. Visceral leishmaniasis (kala-azar): challenges ahead. Indian J Med Res 2006; 123(3): 331-44.
[PMID: 16778314]
[18]
KIKUTH W. and H. SCHMIDT. Contribution to the Progress of Antimony Therapy of Kala-Azar. Chinese Medical Journal 1937; 52(3): 425-32.
[19]
Goodwin LG. Pentostam (sodium stibogluconate); a 50-year personal reminiscence. Trans R Soc Trop Med Hyg 1995; 89(3): 339-41.
[http://dx.doi.org/10.1016/0035-9203(95)90572-3] [PMID: 7660456]
[20]
Herwaldt BL, Berman JD. Recommendations for treating leishmaniasis with sodium stibogluconate (Pentostam) and review of pertinent clinical studies. Am J Trop Med Hyg 1992; 46(3): 296-306.
[http://dx.doi.org/10.4269/ajtmh.1992.46.296] [PMID: 1313656]
[21]
Hazarika AN. Treatment of kala-azar with pentamidine isothionate; a study of 55 cases. Ind Med Gaz 1949; 84(4): 140-5.
[PMID: 18152323]
[22]
Bray PG, Barrett MP, Ward SA, de Koning HP. Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends Parasitol 2003; 19(5): 232-9.
[http://dx.doi.org/10.1016/S1471-4922(03)00069-2] [PMID: 12763430]
[23]
Sundar S, More DK, Singh MK, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 2000; 31(4): 1104-7.
[http://dx.doi.org/10.1086/318121] [PMID: 11049798]
[24]
Das VN, Ranjan A, Sinha AN, et al. A randomized clinical trial of low dosage combination of pentamidine and allopurinol in the treatment of antimony unresponsive cases of visceral leishmaniasis. J Assoc Physicians India 2001; 49: 609-13.
[PMID: 11584934]
[25]
Appelbaum E, Shtokalko S. Cryptococcus meningitis arrested with amphotericin B. Ann Intern Med 1957; 47(2): 346-51.
[http://dx.doi.org/10.7326/0003-4819-47-2-346] [PMID: 13459113]
[26]
Ramos H, Valdivieso E, Gamargo M, Dagger F, Cohen BE. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol 1996; 152(1): 65-75.
[http://dx.doi.org/10.1007/s002329900086] [PMID: 8660406]
[27]
Matsumori N, Tahara K, Yamamoto H, et al. Direct interaction between amphotericin B and ergosterol in lipid bilayers as revealed by 2H NMR spectroscopy. J Am Chem Soc 2009; 131(33): 11855-60.
[http://dx.doi.org/10.1021/ja9033473] [PMID: 19645473]
[28]
Sundar S, Rai M. Advances in the treatment of leishmaniasis. Curr Opin Infect Dis 2002; 15(6): 593-8.
[http://dx.doi.org/10.1097/00001432-200212000-00007] [PMID: 12821836]
[29]
Organization WH. WHO. Tech Rep Ser (World Health Organ) 2010; 949.
[30]
Sundar S, Murray HW. Cure of antimony-unresponsive Indian visceral leishmaniasis with amphotericin B lipid complex. J Infect Dis 1996; 173(3): 762-5.
[http://dx.doi.org/10.1093/infdis/173.3.762] [PMID: 8627049]
[31]
Vicens Q, Westhof E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 2001; 9(8): 647-58.
[http://dx.doi.org/10.1016/S0969-2126(01)00629-3] [PMID: 11587639]
[32]
Chunge CN, Owate J, Pamba HO, Donno L. Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Trans R Soc Trop Med Hyg 1990; 84(2): 221-5.
[http://dx.doi.org/10.1016/0035-9203(90)90263-E] [PMID: 2167522]
[33]
Thakur CP, Olliaro P, Gothoskar S, et al. Treatment of visceral leishmaniasis (kala-azar) with aminosidine (= paromomycin)-antimonial combinations, a pilot study in Bihar, India. Trans R Soc Trop Med Hyg 1992; 86(6): 615-6.
[http://dx.doi.org/10.1016/0035-9203(92)90150-B] [PMID: 1337634]
[34]
Sundar S, Jha TK, Thakur CP, Sinha PK, Bhattacharya SK. Injectable paromomycin for Visceral leishmaniasis in India. N Engl J Med 2007; 356(25): 2571-81.
[http://dx.doi.org/10.1056/NEJMoa066536] [PMID: 17582067]
[35]
Sundar S, Chakravarty J. Paromomycin in the treatment of leishmaniasis. Expert Opin Investig Drugs 2008; 17(5): 787-94.
[http://dx.doi.org/10.1517/13543784.17.5.787] [PMID: 18447603]
[36]
Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One 2011; 6(10)e26660
[http://dx.doi.org/10.1371/journal.pone.0026660] [PMID: 22046323]
[37]
Jhingran A, Chawla B, Saxena S, Barrett MP, Madhubala R. Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol 2009; 164(2): 111-7.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.007] [PMID: 19146886]
[38]
Verweij J, Planting A, van der Burg M, Stoter G. A dose-finding study of miltefosine (hexadecylphosphocholine) in patients with metastatic solid tumours. J Cancer Res Clin Oncol 1992; 118(8): 606-8.
[http://dx.doi.org/10.1007/BF01211805] [PMID: 1325463]
[39]
Croft SL, Snowdon D, Yardley V. The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Antimicrob Chemother 1996; 38(6): 1041-7.
[http://dx.doi.org/10.1093/jac/38.6.1041] [PMID: 9023651]
[40]
Maly K, Uberall F, Schubert C, et al. Interference of new alkylphospholipid analogues with mitogenic signal transduction. Anticancer Drug Des 1995; 10(5): 411-25.
[PMID: 7639930]
[41]
Verma NK, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48(8): 3010-5.
[http://dx.doi.org/10.1128/AAC.48.8.3010-3015.2004] [PMID: 15273114]
[42]
Sundar S, Jha TK, Thakur CP, et al. Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 2002; 347(22): 1739-46.
[http://dx.doi.org/10.1056/NEJMoa021556] [PMID: 12456849]
[43]
Bhattacharya SK, Sinha PK, Sundar S, et al. Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 2007; 196(4): 591-8.
[http://dx.doi.org/10.1086/519690] [PMID: 17624846]
[44]
Sundar S, Sinha P, Jha TK, et al. Oral miltefosine for Indian post-kala-azar dermal leishmaniasis: a randomised trial. Trop Med Int Health 2013; 18(1): 96-100.
[http://dx.doi.org/10.1111/tmi.12015] [PMID: 23136856]
[45]
Sundar S, Singh A, Rai M, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 2012; 55(4): 543-50.
[http://dx.doi.org/10.1093/cid/cis474] [PMID: 22573856]
[46]
Chapman WL Jr, Hanson WL, Waits VB, Kinnamon KE. Antileishmanial activity of selected compounds in dogs experimentally infected with Leishmania donovani. Rev Inst Med Trop São Paulo 1979; 21(4): 189-93.
[PMID: 545640]
[47]
Carvalho L, Luque-Ortega JR, López-Martín C, Castanys S, Rivas L, Gamarro F. The 8-aminoquinoline analogue sitamaquine causes oxidative stress in Leishmania donovani promastigotes by targeting succinate dehydrogenase. Antimicrob Agents Chemother 2011; 55(9): 4204-10.
[http://dx.doi.org/10.1128/AAC.00520-11] [PMID: 21670183]
[48]
Sherwood JA, Gachihi GS, Muigai RK, et al. Phase 2 efficacy trial of an oral 8-aminoquinoline (WR6026) for treatment of visceral leishmaniasis. Clin Infect Dis 1994; 19(6): 1034-9.
[http://dx.doi.org/10.1093/clinids/19.6.1034] [PMID: 7888530]
[49]
Jha TK, Sundar S, Thakur CP, Felton JM, Sabin AJ, Horton J. A phase II dose-ranging study of sitamaquine for the treatment of visceral leishmaniasis in India. Am J Trop Med Hyg 2005; 73(6): 1005-11.
[http://dx.doi.org/10.4269/ajtmh.2005.73.1005] [PMID: 16354802]
[50]
Guerin PJ, Olliaro P, Sundar S, et al. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2002; 2(8): 494-501.
[http://dx.doi.org/10.1016/S1473-3099(02)00347-X] [PMID: 12150849]
[51]
Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006; 19(1): 111-26.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006] [PMID: 16418526]
[52]
Ouellette M, Drummelsmith J, Papadopoulou B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 2004; 7(4-5): 257-66.
[http://dx.doi.org/10.1016/j.drup.2004.07.002] [PMID: 15533763]
[53]
Orlowski S, Garrigos M. Multiple recognition of various amphiphilic molecules by the multidrug resistance P-glycoprotein: molecular mechanisms and pharmacological consequences coming from functional interactions between various drugs. Anticancer Res 1999; 19(4B): 3109-23.
[PMID: 10652600]
[54]
Bradshaw DM, Arceci RJ. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol 1998; 16(11): 3674-90.
[http://dx.doi.org/10.1200/JCO.1998.16.11.3674] [PMID: 9817290]
[55]
Borst P, Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol 1995; 49(1): 427-60.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.002235] [PMID: 8561467]
[56]
Ponte-Sucre A. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis 2003; 2(1): 14.
[http://dx.doi.org/10.1186/1475-9292-2-14] [PMID: 14613496]
[57]
Mbongo N, Loiseau PM, Billion MA, Robert-Gero M. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother 1998; 42(2): 352-7.
[PMID: 9527785]
[58]
Basselin M, Robert-Gero M. Alterations in membrane fluidity, lipid metabolism, mitochondrial activity, and lipophosphoglycan expression in pentamidine-resistant Leishmania. Parasitol Res 1998; 84(1): 78-83.
[http://dx.doi.org/10.1007/s004360050361] [PMID: 9491432]
[59]
Singh N. Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J Med Res 2006; 123(3): 411-22.
[PMID: 16778320]
[60]
Haldar AK, Sen P, Roy S. Use of antimony in the treatment of leishmaniasis: current status and future directions molecular biology international 2011 2011.
[http://dx.doi.org/10.4061/2011/571242]
[61]
Avila JL, Casanova MA. Comparative effects of 4-aminopyrazolopyrimidine, its 2′-deoxyriboside derivative, and allopurinol on in vitro growth of American Leishmania species. Antimicrob Agents Chemother 1982; 22(3): 380-5.
[http://dx.doi.org/10.1128/AAC.22.3.380] [PMID: 6982678]
[62]
Yeates C. Sitamaquine (GlaxoSmithKline/Walter Reed Army Institute). Curr Opin Investig Drugs 2002; 3(10): 1446-52.
[PMID: 12431016]
[63]
Seifert K, Pérez-Victoria FJ, Stettler M, et al. Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 2007; 30(3): 229-35.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.05.007] [PMID: 17628445]
[64]
Seifert K, Matu S, Javier Pérez-Victoria F, Castanys S, Gamarro F, Croft SL. Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int J Antimicrob Agents 2003; 22(4): 380-7.
[http://dx.doi.org/10.1016/S0924-8579(03)00125-0] [PMID: 14522101]
[65]
Pérez-Victoria FJ, Sánchez-Cañete MP, Seifert K, et al. Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use. Drug Resist Updat 2006; 9(1-2): 26-39.
[http://dx.doi.org/10.1016/j.drup.2006.04.001] [PMID: 16814199]
[66]
Rakotomanga M, Saint-Pierre-Chazalet M, Loiseau PM. Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrob Agents Chemother 2005; 49(7): 2677-86.
[http://dx.doi.org/10.1128/AAC.49.7.2677-2686.2005] [PMID: 15980336]
[67]
Purkait B, Kumar A, Nandi N, et al. Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 2012; 56(2): 1031-41.
[http://dx.doi.org/10.1128/AAC.00030-11] [PMID: 22123699]
[68]
van Griensven J, Balasegaram M, Meheus F, Alvar J, Lynen L, Boelaert M. Combination therapy for visceral leishmaniasis. Lancet Infect Dis 2010; 10(3): 184-94.
[http://dx.doi.org/10.1016/S1473-3099(10)70011-6] [PMID: 20185097]
[69]
Opperdoes FR, Coombs GH. Metabolism of Leishmania: proven and predicted. Trends Parasitol 2007; 23(4): 149-58.
[http://dx.doi.org/10.1016/j.pt.2007.02.004] [PMID: 17320480]
[70]
Naderer T, Ellis MA, Sernee MF, et al. Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA 2006; 103(14): 5502-7.
[http://dx.doi.org/10.1073/pnas.0509196103] [PMID: 16569701]
[71]
Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 2008; 22(2): 590-602.
[http://dx.doi.org/10.1096/fj.07-9254com] [PMID: 17884972]
[72]
Keegan FP, Blum JJ. Incorporation of label from acetate and laurate into the mannan of Leishmania donovani via the glyoxylate cycle. J Eukaryot Microbiol 1993; 40(6): 730-2.
[http://dx.doi.org/10.1111/j.1550-7408.1993.tb04467.x] [PMID: 7904877]
[73]
Denton H, McGregor JC, Coombs GH. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J 2004; 381(Pt 2): 405-12.
[http://dx.doi.org/10.1042/BJ20040283] [PMID: 15056070]
[74]
Pal S, Dolai S, Yadav RK, Adak S. Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress. PLoS One 2010; 5(6)e11271
[http://dx.doi.org/10.1371/journal.pone.0011271] [PMID: 20585663]
[75]
Cronín CN, Nolan DP, Voorheis HP. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei. FEBS Lett 1989; 244(1): 26-30.
[http://dx.doi.org/10.1016/0014-5793(89)81154-8] [PMID: 2924907]
[76]
Maugeri DA, Cazzulo JJ, Burchmore RJ, Barrett MP, Ogbunude PO. Pentose phosphate metabolism in Leishmania mexicana. Mol Biochem Parasitol 2003; 130(2): 117-25.
[http://dx.doi.org/10.1016/S0166-6851(03)00173-7] [PMID: 12946848]
[77]
Veitch NJ, Maugeri DA, Cazzulo JJ, Lindqvist Y, Barrett MP. Transketolase from Leishmania mexicana has a dual subcellular localization. Biochem J 2004; 382(Pt 2): 759-67.
[http://dx.doi.org/10.1042/BJ20040459] [PMID: 15149284]
[78]
Nare B, Luba J, Hardy LW, Beverley S. New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology 1997; 114(07)(Suppl.): S101-10.
[http://dx.doi.org/10.1017/S0031182097001133] [PMID: 9309772]
[79]
Ouellette M, Drummelsmith J, El-Fadili A, Kündig C, Richard D, Roy G. Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Int J Parasitol 2002; 32(4): 385-98.
[http://dx.doi.org/10.1016/S0020-7519(01)00346-0] [PMID: 11849635]
[80]
Beverley SM, Ellenberger TE, Cordingley JS. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci USA 1986; 83(8): 2584-8.
[http://dx.doi.org/10.1073/pnas.83.8.2584] [PMID: 3458220]
[81]
Kheirandish F, Bandehpour M, Haghighi A, Mahboudi F, Mohebali M, Kazemi B. Inhibition of Leishmania major PTR1 gene expression by antisense in Escherichia coli. Iran J Public Health 2012; 41(6): 65-71.
[PMID: 23113195]
[82]
Ginger ML, Chance ML, Sadler IH, Goad LJ. The biosynthetic incorporation of the intact leucine skeleton into sterol by the trypanosomatid Leishmania mexicana. J Biol Chem 2001; 276(15): 11674-82.
[http://dx.doi.org/10.1074/jbc.M006850200] [PMID: 11148203]
[83]
Naderer T, McConville MJ. The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 2008; 10(2): 301-8.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01096.x] [PMID: 18070117]
[84]
McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 2007; 23(8): 368-75.
[http://dx.doi.org/10.1016/j.pt.2007.06.009] [PMID: 17606406]
[85]
Geraldo MV, Silber AM, Pereira CA, Uliana SR. Characterisation of a developmentally regulated amino acid transporter gene from Leishmania amazonensis. FEMS Microbiol Lett 2005; 242(2): 275-80.
[http://dx.doi.org/10.1016/j.femsle.2004.11.030] [PMID: 15621448]
[86]
Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T, Holland N, Zilberstein D, Rentsch D. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol 2006; 60(1): 30-8.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05060.x] [PMID: 16556218]
[87]
Besteiro S, Williams RA, Coombs GH, Mottram JC. Protein turnover and differentiation in Leishmania. Int J Parasitol 2007; 37(10): 1063-75.
[http://dx.doi.org/10.1016/j.ijpara.2007.03.008] [PMID: 17493624]
[88]
Ivens AC, Peacock CS, Worthey EA, et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309(5733): 436-42.
[http://dx.doi.org/10.1126/science.1112680] [PMID: 16020728]
[89]
McConville MJ, Blackwell JM. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem 1991; 266(23): 15170-9.
[PMID: 1831200]
[90]
Zhang K, Hsu FF, Scott DA, Docampo R, Turk J, Beverley SM. Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 2005; 55(5): 1566-78.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04493.x] [PMID: 15720561]
[91]
Winter G, Fuchs M, McConville MJ, Stierhof YD, Overath P. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci 1994; 107(Pt 9): 2471-82.
[PMID: 7844164]
[92]
Zhang K, Pompey JM, Hsu FF, et al. Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO J 2007; 26(4): 1094-104.
[http://dx.doi.org/10.1038/sj.emboj.7601565] [PMID: 17290222]
[93]
Naderer T, McConville MJ, McConville MJ. Intracellular growth and pathogenesis of Leishmania parasites. Essays Biochem 2011; 51: 81-95.
[http://dx.doi.org/10.1042/bse0510081] [PMID: 22023443]
[94]
Ortiz D, Sanchez MA, Pierce S, et al. Molecular genetic analysis of purine nucleobase transport in Leishmania major. Mol Microbiol 2007; 64(5): 1228-43.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05730.x] [PMID: 17542917]
[95]
Huynh C, Sacks DL, Andrews NW. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J Exp Med 2006; 203(10): 2363-75.
[http://dx.doi.org/10.1084/jem.20060559] [PMID: 17000865]
[96]
Sundar S, Agrawal G, Rai M, Makharia MK, Murray HW. Treatment of Indian visceral leishmaniasis with single or daily infusions of low dose liposomal amphotericin B: randomised trial. BMJ 2001; 323(7310): 419-22.
[http://dx.doi.org/10.1136/bmj.323.7310.419] [PMID: 11520836]
[97]
Nafchi HR, Kazemi-Rad E, Mohebali M, et al. Expression analysis of viscerotropic leishmaniasis gene in Leishmania species by real-time RT-PCR. Acta Parasitol 2016; 61(1): 93-7.
[http://dx.doi.org/10.1515/ap-2016-0011] [PMID: 26751877]
[98]
Jeszenői N, Bálint M, Horváth I, van der Spoel D, Hetényi C. Exploration of Interfacial Hydration Networks of Target-Ligand Complexes. J Chem Inf Model 2016; 56(1): 148-58.
[http://dx.doi.org/10.1021/acs.jcim.5b00638] [PMID: 26704050]
[99]
Hart DT, Coombs GH. Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol 1982; 54(3): 397-409.
[http://dx.doi.org/10.1016/0014-4894(82)90049-2] [PMID: 7151947]
[100]
Coombs GH, Tetley L, Moss VA, Vickerman K. Three dimensional structure of the Leishmania amastigote as revealed by computer-aided reconstruction from serial sections. Parasitology 1986; 92(Pt 1): 13-23.
[http://dx.doi.org/10.1017/S0031182000063411] [PMID: 3754324]
[101]
Tetley L, Vickerman K. The glycosomes of trypanosomes: number and distribution as revealed by electron spectroscopic imaging and 3-D reconstruction. J Microsc 1991; 162(Pt 1): 83-90.
[http://dx.doi.org/10.1111/j.1365-2818.1991.tb03118.x] [PMID: 1870115]
[102]
Mottram JC, Coombs GH. Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Exp Parasitol 1985; 59(3): 265-74.
[http://dx.doi.org/10.1016/0014-4894(85)90081-5] [PMID: 3158538]
[103]
Chawla B, Madhubala R. Drug targets in Leishmania. J Parasit Dis 2010; 34(1): 1-13.
[http://dx.doi.org/10.1007/s12639-010-0006-3] [PMID: 21526026]
[104]
Urbina JA, Concepcion JL, Rangel S, Visbal G, Lira R. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Mol Biochem Parasitol 2002; 125(1-2): 35-45.
[http://dx.doi.org/10.1016/S0166-6851(02)00206-2] [PMID: 12467972]
[105]
Bhargava P, Kumar K, Chaudhaery SS, Saxena AK, Roy U. Cloning, overexpression and characterization of Leishmania donovani squalene synthase. FEMS Microbiol Lett 2010; 311(1): 82-92.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02071.x] [PMID: 20722739]
[106]
Leañez J, Nuñez J, García-Marchan Y, et al. Anti-leishmanial effect of spiro dihydroquinoline-oxindoles on volume regulation decrease and sterol biosynthesis of Leishmania braziliensis. Exp Parasitol 2019; 198: 31-8.
[http://dx.doi.org/10.1016/j.exppara.2019.01.011] [PMID: 30690024]
[107]
Opperdoes FR. Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 1987; 41(1): 127-51.
[http://dx.doi.org/10.1146/annurev.mi.41.100187.001015] [PMID: 3120638]
[108]
Aronov AM, Suresh S, Buckner FS, et al. Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 1999; 96(8): 4273-8.
[http://dx.doi.org/10.1073/pnas.96.8.4273] [PMID: 10200252]
[109]
Verlinde CL, Hannaert V, Blonski C, et al. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat 2001; 4(1): 50-65.
[http://dx.doi.org/10.1054/drup.2000.0177] [PMID: 11512153]
[110]
Verlinde CL, Witmans CJ, Pijning T, et al. Structure of the complex between trypanosomal triosephosphate isomerase and N-hydroxy-4-phosphono-butanamide: binding at the active site despite an “open” flexible loop conformation. Protein Sci 1992; 1(12): 1578-84.
[http://dx.doi.org/10.1002/pro.5560011205] [PMID: 1304889]
[111]
Cooper RA. Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 1984; 38(1): 49-68.
[http://dx.doi.org/10.1146/annurev.mi.38.100184.000405] [PMID: 6093685]
[112]
Vickers TJ, Greig N, Fairlamb AH. A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major. Proc Natl Acad Sci USA 2004; 101(36): 13186-91.
[http://dx.doi.org/10.1073/pnas.0402918101] [PMID: 15329410]
[113]
Chauhan SC, Madhubala R. Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification. PLoS One 2009; 4(8)e6805
[http://dx.doi.org/10.1371/journal.pone.0006805] [PMID: 19710909]
[114]
Lages NF, et al. Potential role of the glyoxalase pathway as a drug target in Leishmania infantum: an exact steady-state model analysis. BMC Syst Biol 2007; 1(1): S8.
[http://dx.doi.org/10.1186/1752-0509-1-S1-S8]
[115]
Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 2002; 1(5): 657-62.
[http://dx.doi.org/10.1128/EC.1.5.657-662.2002] [PMID: 12455685]
[116]
Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 2004; 3(5): 1076-87.
[http://dx.doi.org/10.1128/EC.3.5.1076-1087.2004] [PMID: 15470236]
[117]
Muñoz-Elías EJ, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 2005; 11(6): 638-44.
[http://dx.doi.org/10.1038/nm1252] [PMID: 15895072]
[118]
Soysa R, Wilson ZN, Elferich J, et al. Substrate inhibition of uracil phosphoribosyltransferase by uracil can account for the uracil growth sensitivity of Leishmania donovani pyrimidine auxotrophs. J Biol Chem 2013; 288(41): 29954-64.
[http://dx.doi.org/10.1074/jbc.M113.478826] [PMID: 23986453]
[119]
Marr JJ, Berens RL. Antileishmanial effect of allopurinol. II. Relationship of adenine metabolism in Leishmania species to the action of allopurinol. J Infect Dis 1977; 136(6): 724-32.
[http://dx.doi.org/10.1093/infdis/136.6.724] [PMID: 925380]
[120]
Patel B, Patel D, Parmar K, Chauhan R, Singh DD, Pappachan A. L. donovani XPRT: Molecular characterization and evaluation of inhibitors. Biochim Biophys Acta Proteins Proteomics 2018; 1866(3): 426-41.
[http://dx.doi.org/10.1016/j.bbapap.2017.12.002] [PMID: 29233758]
[121]
Ambrozin AR, Leite AC, Silva M, et al. Screening of Leishmania APRT enzyme inhibitors. Pharmazie 2005; 60(10): 781-4.
[PMID: 16259128]
[122]
Mishra AK, Singh N, Agnihotri P, et al. Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization. J Comput Aided Mol Des 2017; 31(6): 547-62.
[http://dx.doi.org/10.1007/s10822-017-0022-9] [PMID: 28551817]
[123]
Vieira PS, Souza TACB, Honorato RV, et al. Pyrrole-indolinone SU11652 targets the nucleoside diphosphate kinase from Leishmania parasites. Biochem Biophys Res Commun 2017; 488(3): 461-5.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.048] [PMID: 28499874]
[124]
Li Q, Leija C, Rijo-Ferreira F, et al. GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway. Mol Microbiol 2015; 97(5): 1006-20.
[http://dx.doi.org/10.1111/mmi.13083] [PMID: 26043892]
[125]
Hofer A, Steverding D, Chabes A, Brun R, Thelander L. Trypanosoma brucei CTP synthetase: a target for the treatment of African sleeping sickness. Proc Natl Acad Sci USA 2001; 98(11): 6412-6.
[http://dx.doi.org/10.1073/pnas.111139498] [PMID: 11353848]
[126]
Neal RA, Croft SL. An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. J Antimicrob Chemother 1984; 14(5): 463-75.
[http://dx.doi.org/10.1093/jac/14.5.463] [PMID: 6096347]
[127]
Hardy LW, Matthews W, Nare B, Beverley SM. Biochemical and genetic tests for inhibitors ofLeishmaniapteridine pathways. Exp Parasitol 1997; 87(3): 158-70.
[http://dx.doi.org/10.1006/expr.1997.4207] [PMID: 9398595]
[128]
Kaur J, Kumar P, Tyagi S, et al. In silico screening, structure-activity relationship, and biologic evaluation of selective pteridine reductase inhibitors targeting visceral leishmaniasis. Antimicrob Agents Chemother 2011; 55(2): 659-66.
[http://dx.doi.org/10.1128/AAC.00436-10] [PMID: 21115787]
[129]
Cavazzuti A, Paglietti G, Hunter WN, et al. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc Natl Acad Sci USA 2008; 105(5): 1448-53.
[http://dx.doi.org/10.1073/pnas.0704384105] [PMID: 18245389]
[130]
Yoshida N, Camargo EP. Ureotelism and ammonotelism in trypanosomatids. J Bacteriol 1978; 136(3): 1184-6.
[http://dx.doi.org/10.1128/JB.136.3.1184-1186.1978] [PMID: 721777]
[131]
Sardar AH, Jardim A, Ghosh AK, et al. Genetic manipulation of Leishmania donovani to explore the involvement of argininosuccinate synthase in oxidative stress management. PLoS Negl Trop Dis 2016; 10(3)e0004308
[http://dx.doi.org/10.1371/journal.pntd.0004308] [PMID: 26939071]
[132]
Lakhal-Naouar I, Jardim A, Strasser R, et al. Leishmania donovani argininosuccinate synthase is an active enzyme associated with parasite pathogenesis. PLoS Negl Trop Dis 2012; 6(10)e1849
[http://dx.doi.org/10.1371/journal.pntd.0001849] [PMID: 23094117]
[133]
dos Reis MBG, Manjolin LC, Maquiaveli Cdo C, Santos-Filho OA, da Silva ER. Inhibition of Leishmania (Leishmania) amazonensis and rat arginases by green tea EGCG, (+)-catechin and (-)-epicatechin: a comparative structural analysis of enzyme-inhibitor interactions. PLoS One 2013; 8(11)e78387
[http://dx.doi.org/10.1371/journal.pone.0078387] [PMID: 24260115]
[134]
Tavares J, Ouaissi A, Lin PK, Tomás A, Cordeiro-da-Silva A. Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes. Int J Parasitol 2005; 35(6): 637-46.
[http://dx.doi.org/10.1016/j.ijpara.2005.01.008] [PMID: 15862577]
[135]
Vannier-Santos MA, Menezes D, Oliveira MF, de Mello FG. The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis, transport, ultrastructure and intracellular survival in Leishmania amazonensis. Microbiology 2008; 154(Pt 10): 3104-11.
[http://dx.doi.org/10.1099/mic.0.2007/013896-0] [PMID: 18832316]
[136]
Kandpal M, Tekwani BL, Chauhan PM, Bhaduri AP. Correlation between inhibition of growth and arginine transport of Leishmania donovani promastigotes in vitro by diamidines. Life Sci 1996; 59(7): PL75-80.
[http://dx.doi.org/10.1016/0024-3205(96)00341-4] [PMID: 8761349]
[137]
Schmidt A, Krauth-Siegel RL. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr Top Med Chem 2002; 2(11): 1239-59.
[http://dx.doi.org/10.2174/1568026023393048] [PMID: 12171583]
[138]
Roberts SC, Jiang Y, Gasteier J, et al. Leishmania donovani polyamine biosynthetic enzyme overproducers as tools to investigate the mode of action of cytotoxic polyamine analogs. Antimicrob Agents Chemother 2007; 51(2): 438-45.
[http://dx.doi.org/10.1128/AAC.01193-06] [PMID: 17116678]
[139]
Das M, Singh S, Dubey VK. Novel Inhibitors of Ornithine Decarboxylase of Leishmania Parasite (LdODC): The Parasite Resists LdODC Inhibition by Overexpression of Spermidine Synthase. Chem Biol Drug Des 2016; 87(3): 352-60.
[http://dx.doi.org/10.1111/cbdd.12665] [PMID: 26362015]
[140]
Bacchi CJ, Nathan HC, Hutner SH, McCann PP, Sjoerdsma A. Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 1980; 210(4467): 332-4.
[http://dx.doi.org/10.1126/science.6775372] [PMID: 6775372]
[141]
Alexander J, Coombs GH, Mottram JC. Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol 1998; 161(12): 6794-801.
[PMID: 9862710]
[142]
Mackey ZB, O’Brien TC, Greenbaum DC, Blank RB, McKerrow JH. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 2004; 279(46): 48426-33.
[http://dx.doi.org/10.1074/jbc.M402470200] [PMID: 15326171]
[143]
Kerr ID, Wu P, Marion-Tsukamaki R, Mackey ZB, Brinen LS. Crystal Structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl Trop Dis 2010; 4(6)e701
[http://dx.doi.org/10.1371/journal.pntd.0000701] [PMID: 20544024]
[144]
Hassan P, Fergusson D, Grant KM, Mottram JC. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol Biochem Parasitol 2001; 113(2): 189-98.
[http://dx.doi.org/10.1016/S0166-6851(01)00220-1] [PMID: 11295173]
[145]
Grant KM, Hassan P, Anderson JS, Mottram JC. The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with p12. J Biol Chem 1998; 273(17): 10153-9.
[http://dx.doi.org/10.1074/jbc.273.17.10153] [PMID: 9553063]
[146]
Grant KM, Dunion MH, Yardley V, et al. Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity. Antimicrob Agents Chemother 2004; 48(8): 3033-42.
[http://dx.doi.org/10.1128/AAC.48.8.3033-3042.2004] [PMID: 15273118]
[147]
Wiese M, Kuhn D, Grünfelder CG. Protein kinase involved in flagellar-length control. Eukaryot Cell 2003; 2(4): 769-77.
[http://dx.doi.org/10.1128/EC.2.4.769-777.2003] [PMID: 12912896]
[148]
Bengs F, Scholz A, Kuhn D, Wiese M. LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol Microbiol 2005; 55(5): 1606-15.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04498.x] [PMID: 15720564]
[149]
Raj S, Saha G, Sasidharan S, Dubey VK, Saudagar P. Biochemical characterization and chemical validation of Leishmania MAP Kinase-3 as a potential drug target. Sci Rep 2019; 9(1): 16209.
[http://dx.doi.org/10.1038/s41598-019-52774-6] [PMID: 31700105]
[150]
Das A, Dasgupta A, Sengupta T, Majumder HK. Topoisomerases of kinetoplastid parasites as potential chemotherapeutic targets. Trends Parasitol 2004; 20(8): 381-7.
[http://dx.doi.org/10.1016/j.pt.2004.06.005] [PMID: 15246322]
[151]
Sen N, Banerjee B, Das BB, et al. Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. Cell Death Differ 2007; 14(2): 358-67.
[http://dx.doi.org/10.1038/sj.cdd.4402002] [PMID: 16841091]
[152]
Das BB, Sen N, Ganguly A, Majumder HK. Reconstitution and functional characterization of the unusual bi-subunit type I DNA topoisomerase from Leishmania donovani. FEBS Lett 2004; 565(1-3): 81-8.
[http://dx.doi.org/10.1016/j.febslet.2004.03.078] [PMID: 15135057]
[153]
Bodley AL, Shapiro TA. Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on trypanosomes and Leishmania. Proc Natl Acad Sci USA 1995; 92(9): 3726-30.
[http://dx.doi.org/10.1073/pnas.92.9.3726] [PMID: 7731973]
[154]
Ray S, Hazra B, Mittra B, Das A, Majumder HK. Diospyrin, a bisnaphthoquinone: a novel inhibitor of type I DNA topoisomerase of Leishmania donovani. Mol Pharmacol 1998; 54(6): 994-9.
[http://dx.doi.org/10.1124/mol.54.6.994] [PMID: 9855627]
[155]
Sen N, Das BB, Ganguly A, et al. Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death Differ 2004; 11(8): 924-36.
[http://dx.doi.org/10.1038/sj.cdd.4401435] [PMID: 15118764]
[156]
Strauss PR, Wang JC. The TOP2 gene of Trypanosoma brucei: a single-copy gene that shares extensive homology with other TOP2 genes encoding eukaryotic DNA topoisomerase II. Mol Biochem Parasitol 1990; 38(1): 141-50.
[http://dx.doi.org/10.1016/0166-6851(90)90214-7] [PMID: 2157153]
[157]
Fragoso SP, Goldenberg S. Cloning and characterization of the gene encoding Trypanosoma cruzi DNA topoisomerase II. Mol Biochem Parasitol 1992; 55(1-2): 127-34.
[http://dx.doi.org/10.1016/0166-6851(92)90133-5] [PMID: 1331785]
[158]
Das M, Mukherjee SB, Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 2001; 114(Pt 13): 2461-9.
[PMID: 11559754]
[159]
Figgitt D, Denny W, Chavalitshewinkoon P, Wilairat P, Ralph R. In vitro study of anticancer acridines as potential antitrypanosomal and antimalarial agents. Antimicrob Agents Chemother 1992; 36(8): 1644-7.
[http://dx.doi.org/10.1128/AAC.36.8.1644] [PMID: 1416846]
[160]
Mamidala R, Majumdar P, Jha KK, et al. Identification of Leishmania donovani Topoisomerase 1 inhibitors via intuitive scaffold hopping and bioisosteric modification of known Top 1 inhibitors. Sci Rep 2016; 6: 26603.
[http://dx.doi.org/10.1038/srep26603] [PMID: 27221589]
[161]
Saha S, Acharya C, Pal U, et al. A novel spirooxindole derivative inhibits the growth of Leishmania donovani parasites both In Vitro and In Vivo by targeting type IB topoisomerase. Antimicrob Agents Chemother 2016; 60(10): 6281-93.
[http://dx.doi.org/10.1128/AAC.00352-16] [PMID: 27503653]
[162]
Carter NS, Drew ME, Sanchez M, Vasudevan G, Landfear SM, Ullman B. Cloning of a novel inosine-guanosine transporter gene from Leishmania donovani by functional rescue of a transport-deficient mutant. J Biol Chem 2000; 275(27): 20935-41.
[http://dx.doi.org/10.1074/jbc.M002418200] [PMID: 10783393]
[163]
Aronow B, Kaur K, McCartan K, Ullman B. Two high affinity nucleoside transporters in Leishmania donovani. Mol Biochem Parasitol 1987; 22(1): 29-37.
[http://dx.doi.org/10.1016/0166-6851(87)90066-1] [PMID: 3807949]
[164]
Kandpal M, Tekwani BL. Polyamine transport systems of Leishmania donovani promastigotes. Life Sci 1997; 60(20): 1793-801.
[http://dx.doi.org/10.1016/S0024-3205(97)00139-2] [PMID: 9150419]
[165]
Burchmore RJ, Barrett MP. Life in vacuoles--nutrient acquisition by Leishmania amastigotes. Int J Parasitol 2001; 31(12): 1311-20.
[http://dx.doi.org/10.1016/S0020-7519(01)00259-4] [PMID: 11566299]
[166]
Van Assche T, Deschacht M, da Luz RA, Maes L, Cos P. Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 2011; 51(2): 337-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.011] [PMID: 21620959]
[167]
Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407(6805): 770-6.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[168]
Shaha C. Apoptosis in Leishmania species & its relevance to disease pathogenesis. Indian J Med Res 2006; 123(3): 233-44.
[PMID: 16778307]
[169]
Channon JY, Blackwell JM. A study of the sensitivity of Leishmania donovani promastigotes and amastigotes to hydrogen peroxide. II. Possible mechanisms involved in protective H2O2 scavenging. Parasitology 1985; 91(Pt 2): 207-17.
[http://dx.doi.org/10.1017/S0031182000057310] [PMID: 4069752]
[170]
Trachootham D, et al. Redox regulation of cell survival Antioxidants & redox signaling 2008; 10(8): 1343-74.
[http://dx.doi.org/10.1089/ars.2007.1957]
[171]
Zaccagnino P, Saltarella M, D’Oria S, Corcelli A, Saponetti MS, Lorusso M. N-arachidonylglycine causes ROS production and cytochrome c release in liver mitochondria. Free Radic Biol Med 2009; 47(5): 585-92.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.038] [PMID: 19501648]
[172]
Sapone A, Vaira D, Trespidi S, et al. The clinical role of cytochrome p450 genotypes in Helicobacter pylori management. Am J Gastroenterol 2003; 98(5): 1010-5.
[http://dx.doi.org/10.1111/j.1572-0241.2003.07427.x] [PMID: 12809821]
[173]
Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 2007; 8(1): 125.
[http://dx.doi.org/10.1186/1471-2164-8-125] [PMID: 17519032]
[174]
Cullinan SB, Whitesell L. Heat shock protein 90: a unique chemotherapeutic targetSeminars in oncology. Elsevier 2006.
[http://dx.doi.org/10.1053/j.seminoncol.2006.04.001]
[175]
Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 2007; 47: 143-83.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105122] [PMID: 17029566]
[176]
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007; 19(9): 1807-19.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.009] [PMID: 17570640]
[177]
Zarley JH, Britigan BE, Wilson ME. Hydrogen peroxide-mediated toxicity for Leishmania donovani chagasi promastigotes. Role of hydroxyl radical and protection by heat shock. J Clin Invest 1991; 88(5): 1511-21.
[http://dx.doi.org/10.1172/JCI115461] [PMID: 1658042]
[178]
Channon JY, Roberts MB, Blackwell JM. A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 1984; 53(2): 345-55.
[PMID: 6490087]
[179]
Murray HW. Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes. J Immunol 1982; 129(1): 351-7.
[PMID: 6282967]
[180]
Cunha FQ, Assreuy J, Moncada S, Liew FY. Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology 1993; 79(3): 408-11.
[PMID: 7691724]
[181]
Diefenbach A, Schindler H, Donhauser N, et al. Type 1 interferon (IFNalpha/β) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity 1998; 8(1): 77-87.
[http://dx.doi.org/10.1016/S1074-7613(00)80460-4] [PMID: 9462513]
[182]
Evans TG, Thai L, Granger DL, Hibbs JB Jr. Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis. J Immunol 1993; 151(2): 907-15.
[PMID: 8335918]
[183]
Cunningham ML, Fairlamb AH. Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Eur J Biochem 1995; 230(2): 460-8.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20583.x] [PMID: 7607216]
[184]
Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci USA 1998; 95(9): 5311-6.
[http://dx.doi.org/10.1073/pnas.95.9.5311] [PMID: 9560272]
[185]
Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996; 381(6583): 571-9.
[http://dx.doi.org/10.1038/381571a0] [PMID: 8637592]
[186]
Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 2008; 1780(11): 1236-48.
[http://dx.doi.org/10.1016/j.bbagen.2008.03.006] [PMID: 18395526]
[187]
Berriman M, et al. the genome of the african trypanosome trypanosoma brucei. science 2005; 309(5733): 416-22.
[188]
Oza SL, Shaw MP, Wyllie S, Fairlamb AH. Trypanothione biosynthesis in Leishmania major. Mol Biochem Parasitol 2005; 139(1): 107-16.
[http://dx.doi.org/10.1016/j.molbiopara.2004.10.004] [PMID: 15610825]
[189]
Pratt C, Nguyen S, Phillips MA. Genetic validation of Trypanosoma brucei glutathione synthetase as an essential enzyme. Eukaryot Cell 2014; 13(5): 614-24.
[http://dx.doi.org/10.1128/EC.00015-14] [PMID: 24610661]
[190]
Benítez D, Medeiros A, Fiestas L, et al. Identification of novel chemical scaffolds inhibiting trypanothione synthetase from pathogenic trypanosomatids. PLoS Negl Trop Dis 2016; 10(4)e0004617
[http://dx.doi.org/10.1371/journal.pntd.0004617] [PMID: 27070550]
[191]
Ariyanayagam MR, Oza SL, Guther ML, Fairlamb AH. Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome. Biochem J 2005; 391(Pt 2): 425-32.
[http://dx.doi.org/10.1042/BJ20050911] [PMID: 16008527]
[192]
Romão PR, Tovar J, Fonseca SG, et al. Glutathione and the redox control system trypanothione/trypanothione reductase are involved in the protection of Leishmania spp. against nitrosothiol-induced cytotoxicity. Braz J Med Biol Res 2006; 39(3): 355-63.
[http://dx.doi.org/10.1590/S0100-879X2006000300006] [PMID: 16501815]
[193]
Chan C, Yin H, Garforth J, et al. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J Med Chem 1998; 41(2): 148-56.
[http://dx.doi.org/10.1021/jm960814j] [PMID: 9457238]
[194]
Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem 2004; 279(38): 39925-32.
[http://dx.doi.org/10.1074/jbc.M405635200] [PMID: 15252045]
[195]
Holloway GA, Charman WN, Fairlamb AH, et al. Trypanothione reductase high-throughput screening campaign identifies novel classes of inhibitors with antiparasitic activity. Antimicrob Agents Chemother 2009; 53(7): 2824-33.
[http://dx.doi.org/10.1128/AAC.01568-08] [PMID: 19364854]
[196]
Turcano L, Torrente E, Missineo A, et al. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. PLoS Negl Trop Dis 2018; 12(11)e0006969
[http://dx.doi.org/10.1371/journal.pntd.0006969] [PMID: 30475811]
[197]
Matadamas-Martínez F, Hernández-Campos A, Téllez-Valencia A, et al. Leishmania mexicana Trypanothione Reductase Inhibitors: Computational and Biological Studies. Molecules 2019; 24(18): 3216.
[http://dx.doi.org/10.3390/molecules24183216] [PMID: 31487860]
[198]
Schlecker T, Comini MA, Melchers J, Ruppert T, Krauth-Siegel RL. Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei. Biochem J 2007; 405(3): 445-54.
[http://dx.doi.org/10.1042/BJ20070259] [PMID: 17456049]
[199]
Harder S, Bente M, Isermann K, Bruchhaus I. Expression of a mitochondrial peroxiredoxin prevents programmed cell death in Leishmania donovani. Eukaryot Cell 2006; 5(5): 861-70.
[http://dx.doi.org/10.1128/EC.5.5.861-870.2006] [PMID: 16682463]
[200]
Castro H, Teixeira F, Romao S, et al. Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: insight into its novel chaperone activity. PLoS Pathog 2011; 7(10)e1002325
[http://dx.doi.org/10.1371/journal.ppat.1002325] [PMID: 22046130]
[201]
Fueller F, Jehle B, Putzker K, Lewis JD, Krauth-Siegel RL. High throughput screening against the peroxidase cascade of African trypanosomes identifies antiparasitic compounds that inactivate tryparedoxin. J Biol Chem 2012; 287(12): 8792-802.
[http://dx.doi.org/10.1074/jbc.M111.338285] [PMID: 22275351]
[202]
Castro H, Rocha MI, Silva R, et al. Functional insight into the glycosomal peroxiredoxin of Leishmania. Acta Trop 2020.201105217
[http://dx.doi.org/10.1016/j.actatropica.2019.105217] [PMID: 31605692]
[203]
Birkholtz L-M, Williams M, Niemand J, Louw AI, Persson L, Heby O. Polyamine homoeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities. Biochem J 2011; 438(2): 229-44.
[http://dx.doi.org/10.1042/BJ20110362] [PMID: 21834794]
[204]
Iyer JP, Kaprakkaden A, Choudhary ML, Shaha C. Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence. Mol Microbiol 2008; 68(2): 372-91.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06154.x] [PMID: 18312262]
[205]
Brindisi M, Brogi S, Relitti N, et al. Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci Rep 2015; 5: 9705.
[http://dx.doi.org/10.1038/srep09705] [PMID: 25951439]
[206]
Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 1995; 3(3): 239-43.
[http://dx.doi.org/10.1016/S0969-2126(01)00153-8] [PMID: 7788289]
[207]
Longoni SS, Marín C, Sánchez-Moreno M. Excreted Leishmania peruviana and Leishmania amazonensis iron-superoxide dismutase purification: specific antibody detection in Colombian patients with cutaneous leishmaniasis. Free Radic Biol Med 2014; 69: 26-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.012] [PMID: 24440468]
[208]
Plewes KA, Barr SD, Gedamu L. Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infect Immun 2003; 71(10): 5910-20.
[http://dx.doi.org/10.1128/IAI.71.10.5910-5920.2003] [PMID: 14500512]
[209]
Mittra B, Laranjeira-Silva MF, Miguel DC, Perrone Bezerra de Menezes J, Andrews NW. The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence. J Biol Chem 2017; 292(29): 12324-38.
[http://dx.doi.org/10.1074/jbc.M116.772624] [PMID: 28550086]
[210]
Oliveira LB, Celes FS, Paiva CN, de Oliveira CI. The paradoxical leishmanicidal effects of Superoxide Dismutase (SOD)-mimetic Tempol in Leishmania braziliensis infection in vitro. Front Cell Infect Microbiol 2019; 9: 237.
[http://dx.doi.org/10.3389/fcimb.2019.00237] [PMID: 31297344]
[211]
Brito CCB, Silva HVCD, Brondani DJ, et al. Synthesis and biological evaluation of thiazole derivatives as LbSOD inhibitors. J Enzyme Inhib Med Chem 2019; 34(1): 333-42.
[http://dx.doi.org/10.1080/14756366.2018.1550752] [PMID: 30734600]
[212]
Dolai S, Pal S, Yadav RK, Adak S. Endoplasmic reticulum stress-induced apoptosis in Leishmania through Ca2+-dependent and caspase-independent mechanism. J Biol Chem 2011; 286(15): 13638-46.
[http://dx.doi.org/10.1074/jbc.M110.201889] [PMID: 21330370]
[213]
Adak S, Datta AK. Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J 2005; 390(Pt 2): 465-74.
[http://dx.doi.org/10.1042/BJ20050311] [PMID: 15850459]
[214]
Dolai S, Yadav RK, Datta AK, Adak S. Effect of thiocyanate on the peroxidase and pseudocatalase activities of Leishmania major ascorbate peroxidase. Biochim Biophys Acta 2007; 1770(2): 247-56.
[http://dx.doi.org/10.1016/j.bbagen.2006.10.001] [PMID: 17118560]
[215]
Dolai S, Yadav RK, Pal S, Adak S. Leishmania major ascorbate peroxidase overexpression protects cells against reactive oxygen species-mediated cardiolipin oxidation. Free Radic Biol Med 2008; 45(11): 1520-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.029] [PMID: 18822369]
[216]
Kumar A, Das S, Purkait B, et al. Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 2014; 58(10): 6172-84.
[http://dx.doi.org/10.1128/AAC.02834-14] [PMID: 25114128]
[217]
Mansuri R, Kumar A, Rana S, et al. In vitro evaluation of antileishmanial activity of computationally screened compounds against ascorbate peroxidase to combat amphotericin B drug resistance. Antimicrob Agents Chemother 2017; 61(7): e02429-16.
[http://dx.doi.org/10.1128/AAC.02429-16] [PMID: 28461317]
[218]
Lill R. Function and biogenesis of iron-sulphur proteins. Nature 2009; 460(7257): 831-8.
[http://dx.doi.org/10.1038/nature08301] [PMID: 19675643]
[219]
Milman N, Motyka SA, Englund PT, Robinson D, Shlomai J. Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. Proc Natl Acad Sci USA 2007; 104(49): 19250-5.
[http://dx.doi.org/10.1073/pnas.0706858104] [PMID: 18048338]
[220]
Singh R, Purkait B, Abhishek K, et al. Universal minicircle sequence binding protein of Leishmania donovani regulates pathogenicity by controlling expression of cytochrome-b. Cell Biosci 2016; 6(1): 13.
[http://dx.doi.org/10.1186/s13578-016-0072-z] [PMID: 26889377]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy