Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Synaptic Correlates of Anterograde Amnesia and Intact Retrograde Memory in a Mouse Model of Alzheimer’s Disease

Author(s): Emanuela Rizzello, Silvia Middei* and Cristina Marchetti*

Volume 17, Issue 3, 2020

Page: [259 - 268] Pages: 10

DOI: 10.2174/1567205017666200224122113

Price: $65

Abstract

Background: Clinical evidence indicates that patients affected by Alzheimer's Disease (AD) fail to form new memories although their memories for old events are intact. This amnesic pattern depends on the selective vulnerability to AD-neurodegeneration of the hippocampus, the brain region that sustains the formation of new memories, while cortical regions that store remote memories are spared.

Objective: To identify the cellular mechanisms underlying impaired recent memories and intact remote memories in a mouse model of AD.

Methods: Glutamatergic synaptic currents were recorded by patch-clamp in acute hippocampal and anterior Cingulate Cortical (aCC) slices of AD-like Tg2576 mice and Wild-type (Wt) littermates subjected to the Contextual Fear Conditioning (CFC) task or in naïve conditions.

Results: We identified a deficit in the formation of recent memories, but not in the recall of remote ones, in Tg2576 mice. With electrophysiological recordings, we detected CFC-induced modifications of the AMPA/NMDA ratio in CA1 pyramidal cells of Wt, but not Tg2576, mice one day after training. CFC-induced changes in the AMPA/NMDA ratio were also detected in the aCC of both Wt and Tg2576 mice 8 days after training.

Conclusion: Our data suggest that in the early AD stages synaptic plasticity of CA1 synapses, crucial to form new memories, is lost, while plasticity of aCC synapses is intact and contributes to the persistence of long-term memories.

Keywords: Alzheimer’s disease, recent memory, remote memory, hippocampus, anterior cingulate cortex, synaptic plasticity, AMPA, NMDA.

[1]
Kopelman MD, Wilson BA, Baddeley AD. The autobiographical memory interview: a new assessment of autobiographical and personal semantic memory in amnesic patients. J Clin Exp Neuropsychol 1989; 11(5): 724-44.
[http://dx.doi.org/10.1080/01688638908400928] [PMID: 2808661]
[2]
Jagust W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 2013; 77(2): 219-34.
[http://dx.doi.org/10.1016/j.neuron.2013.01.002] [PMID: 23352159]
[3]
Leyhe T, Müller S, Milian M, Eschweiler GW, Saur R. Impairment of episodic and semantic autobiographical memory in patients with mild cognitive impairment and early Alzheimer’s disease. Neuropsychologia 2009; 47(12): 2464-9.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.04.018] [PMID: 19409401]
[4]
Meeter M, Eijsackers EV, Mulder JL. Retrograde amnesia for autobiographical memories and public events in mild and moderate Alzheimer’s disease. J Clin Exp Neuropsychol 2006; 28(6): 914-27.
[http://dx.doi.org/10.1080/13803390591001043] [PMID: 16822732]
[5]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[6]
Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52(7): 1397-403.
[http://dx.doi.org/10.1212/WNL.52.7.1397] [PMID: 10227624]
[7]
Schuff N, Woerner N, Boreta L, et al. Alzheimer’s Disease Neuroimaging Initiative.MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 2009; 132(Pt 4): 1067-77.
[http://dx.doi.org/10.1093/brain/awp007] [PMID: 19251758]
[8]
Alvarez P, Squire LR. Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci USA 1994; 91(15): 7041-5.
[http://dx.doi.org/10.1073/pnas.91.15.7041] [PMID: 8041742]
[9]
Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci 2004; 27: 279-306.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144130] [PMID: 15217334]
[10]
Squire LR, Ed. Encyclopedia of Neuroscience. Elsevier Science, USA 2009.
[11]
Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ. Stability of recent and remote contextual fear memory. Learn Mem 2006; 13(4): 451-7.
[http://dx.doi.org/10.1101/lm.183406] [PMID: 16882861]
[12]
Tomadesso C, Perrotin A, Mutlu J, et al. Brain structural, functional, and cognitive correlates of recent versus remote autobiographical memories in amnestic Mild Cognitive Impairment. Neuroimage Clin 2015; 8: 473-82.
[http://dx.doi.org/10.1016/j.nicl.2015.05.010] [PMID: 26106572]
[13]
Middei S, Ammassari-Teule M, Marie H. Synaptic plasticity under learning challenge. Neurobiol Learn Mem 2014; 115: 108-15.
[http://dx.doi.org/10.1016/j.nlm.2014.08.001] [PMID: 25132316]
[14]
Squire LR, Bayley PJ. The neuroscience of remote memory. Curr Opin Neurobiol 2007; 17(2): 185-96.
[http://dx.doi.org/10.1016/j.conb.2007.02.006] [PMID: 17336513]
[15]
Restivo L, Vetere G, Bontempi B, Ammassari-Teule M. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 2009; 29(25): 8206-14.
[http://dx.doi.org/10.1523/JNEUROSCI.0966-09.2009] [PMID: 19553460]
[16]
Aceti M, Vetere G, Novembre G, Restivo L, Ammassari-Teule M. Progression of activity and structural changes in the anterior cingulate cortex during remote memory formation. Neurobiol Learn Mem 2015; 123: 67-71.
[http://dx.doi.org/10.1016/j.nlm.2015.05.003] [PMID: 26001597]
[17]
Abate G, Colazingari S, Accoto A, Conversi D, Bevilacqua A. Dendritic spine density and EphrinB2 levels of hippocampal and anterior cingulate cortex neurons increase sequentially during formation of recent and remote fear memory in the mouse. Behav Brain Res 2018; 344: 120-31.
[http://dx.doi.org/10.1016/j.bbr.2018.02.011] [PMID: 29444449]
[18]
Vetere G, Restivo L, Cole CJ, et al. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc Natl Acad Sci USA 2011; 108(20): 8456-60.
[http://dx.doi.org/10.1073/pnas.1016275108] [PMID: 21531906]
[19]
Cole CJ, Mercaldo V, Restivo L, et al. MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nat Neurosci 2012; 15(9): 1255-64.
[http://dx.doi.org/10.1038/nn.3189] [PMID: 22885849]
[20]
Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science 2004; 305(5680): 96-9.
[http://dx.doi.org/10.1126/science.1098180] [PMID: 15232109]
[21]
Zhou M, Conboy L, Sandi C, Joëls M, Krugers HJ. Fear conditioning enhances spontaneous AMPA receptor-mediated synaptic transmission in mouse hippocampal CA1 area. Eur J Neurosci 2009; 30(8): 1559-64.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06951.x] [PMID: 19811531]
[22]
Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science 2015; 348(6238): 1007-13.
[http://dx.doi.org/10.1126/science.aaa5542] [PMID: 26023136]
[23]
Marchetti C, Marie H. Hippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models? Rev Neurosci 2011; 22(4): 373-402.
[http://dx.doi.org/10.1515/rns.2011.035] [PMID: 21732714]
[24]
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat Neurosci 2018; 21(4): 463-73.
[http://dx.doi.org/10.1038/s41593-018-0080-x] [PMID: 29403035]
[25]
D’Amelio M, Cavallucci V, Middei S, et al. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 2011; 14(1): 69-76.
[http://dx.doi.org/10.1038/nn.2709] [PMID: 21151119]
[26]
Pignataro A, Meli G, Pagano R, et al. Activity-induced amyloid-beta oligomers drive compensatory synaptic rearrangements in brain circuits controlling memory of presymptomatic Alzheimer’s disease mice. Biol Psychiatry 2019; 86(3): 185-95.
[PMID: 30528194]
[27]
Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274(5284): 99-102.
[http://dx.doi.org/10.1126/science.274.5284.99] [PMID: 8810256]
[28]
Marchetti C, Tafi E, Middei S, et al. Synaptic adaptations of CA1 pyramidal neurons induced by a highly effective combinational antidepressant therapy. Biol Psychiatry 2010; 67(2): 146-54.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.017] [PMID: 19892321]
[29]
Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci 2005; 6(2): 119-30.
[http://dx.doi.org/10.1038/nrn1607] [PMID: 15685217]
[30]
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 2002; 64: 355-405.
[http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547] [PMID: 11826273]
[31]
Teng E, Squire LR. Memory for places learned long ago is intact after hippocampal damage. Nature 1999; 400(6745): 675-7.
[http://dx.doi.org/10.1038/23276] [PMID: 10458163]
[32]
Müller S, Mychajliw C, Hautzinger M, Fallgatter AJ, Saur R, Leyhe T. Memory for past public events depends on retrieval frequency but not memory age in Alzheimer’s disease. J Alzheimers Dis 2014; 38(2): 379-90.
[http://dx.doi.org/10.3233/JAD-130923] [PMID: 23969995]
[33]
El Haj M, Antoine P, Nandrino JL, Kapogiannis D, et al. Autobiographical memory decline in Alzheimer's disease, a theoretical and clinical overview Ageing Res Rev 2015; 23(Pt B): 183-92.
[http://dx.doi.org/10.1016/j.arr.2015.07.001]
[34]
Philippi N, Rousseau F, Noblet V, et al. Different temporal patterns of specific and general autobiographical memories across the lifespan in Alzheimer’s disease. Behav Neurol 2015; 2015963460
[http://dx.doi.org/10.1155/2015/963460] [PMID: 26175549]
[35]
Langlois R, Joubert S, Benoit S, Dostie V, Rouleau I. Memory for public events in mild cognitive impairment and Alzheimer’s disease: The importance of rehearsal. J Alzheimers Dis 2016; 50(4): 1023-33.
[http://dx.doi.org/10.3233/JAD-150722] [PMID: 26836162]
[36]
Pause BM, Zlomuzica A, Kinugawa K, Mariani J, Pietrowsky R, Dere E. Perspectives on episodic-like and episodic memory. Front Behav Neurosci 2013; 7: 33.
[http://dx.doi.org/10.3389/fnbeh.2013.00033] [PMID: 23616754]
[37]
Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 2004; 82(3): 171-7.
[http://dx.doi.org/10.1016/j.nlm.2004.06.005] [PMID: 15464402]
[38]
Liu X, Ramirez S, Pang PT, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012; 484(7394): 381-5.
[http://dx.doi.org/10.1038/nature11028] [PMID: 22441246]
[39]
Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 2014; 513(7518): 426-30.
[http://dx.doi.org/10.1038/nature13725] [PMID: 25162525]
[40]
Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science 2006; 313(5790): 1093-7.
[http://dx.doi.org/10.1126/science.1128134] [PMID: 16931756]
[41]
Andersen P, Morris R, Amaral D, Bliss T, O’Keefee J, Eds. The Hippocampus Book. Oxford University Press 2006.
[42]
McHugh TJ, Jones MW, Quinn JJ, et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 2007; 317(5834): 94-9.
[http://dx.doi.org/10.1126/science.1140263] [PMID: 17556551]
[43]
Dimsdale-Zucker HR, Ritchey M, Ekstrom AD, Yonelinas AP, Ranganath C. CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nat Commun 2018; 9(1): 294.
[http://dx.doi.org/10.1038/s41467-017-02752-1] [PMID: 29348512]
[44]
Ji J, Maren S. Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn Mem 2008; 15(4): 244-51.
[http://dx.doi.org/10.1101/lm.794808] [PMID: 18391185]
[45]
Leutgeb JK, Leutgeb S, Moser MB, Moser EI. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 2007; 315(5814): 961-6.
[http://dx.doi.org/10.1126/science.1135801] [PMID: 17303747]
[46]
Wykes R, Kalmbach A, Eliava M, Waters J. Changes in the physiology of CA1 hippocampal pyramidal neurons in preplaque CRND8 mice. Neurobiol Aging 2012; 33(8): 1609-23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.001] [PMID: 21676499]
[47]
Bezzina C, Verret L, Juan C, et al. Early onset of hypersynchronous network activity and expression of a marker of chronic seizures in the Tg2576 mouse model of Alzheimer’s disease. PLoS One 2015; 10(3)e0119910
[http://dx.doi.org/10.1371/journal.pone.0119910] [PMID: 25768013]
[48]
Kam K, Duffy ÁM, Moretto J, LaFrancois JJ, Scharfman HE. Interictal spikes during sleep are an early defect in the Tg2576 mouse model of β-amyloid neuropathology. Sci Rep 2016; 6: 20119.
[http://dx.doi.org/10.1038/srep20119] [PMID: 26818394]
[49]
Hamm V, Héraud C, Bott JB, et al. Differential contribution of APP metabolites to early cognitive deficits in a TgCRND8 mouse model of Alzheimer’s disease. Sci Adv 2017; 3(2)e1601068
[http://dx.doi.org/10.1126/sciadv.1601068] [PMID: 28275722]
[50]
Gruart A, López-Ramos JC, Muñoz MD, Delgado-García JM. Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Dis 2008; 30(3): 439-50.
[http://dx.doi.org/10.1016/j.nbd.2008.03.001] [PMID: 18442916]
[51]
Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 2004; 5(1): 45-54.
[http://dx.doi.org/10.1038/nrn1301] [PMID: 14708003]
[52]
Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009; 61(3): 340-50.
[http://dx.doi.org/10.1016/j.neuron.2009.01.015] [PMID: 19217372]
[53]
Descalzi G, Li XY, Chen T, Mercaldo V, Koga K, Zhuo M. Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning. Mol Brain 2012; 5: 6.
[http://dx.doi.org/10.1186/1756-6606-5-6] [PMID: 22304729]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy