Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿尔茨海默氏病小鼠模型中顺行性失忆与完整逆行记忆的突触相关性

卷 17, 期 3, 2020

页: [259 - 268] 页: 10

弟呕挨: 10.2174/1567205017666200224122113

价格: $65

摘要

背景:临床证据表明,受阿尔茨海默氏病(AD)影响的患者尽管对旧事件的记忆完好无损,却无法形成新的记忆。这种记忆删除模式取决于对海马区AD神经神经变性的选择性脆弱性,该区域维持新记忆的形成的大脑区域,而存储远程记忆的皮质区域则被保留。 目的:确定AD小鼠模型中受损的近期记忆和完整的远程记忆的潜在细胞机制。 方法:通过膜片钳记录AD样Tg2576小鼠的急性海马和前扣带回皮层(aCC)切片以及经受情境恐惧条件(CFC)任务或处于幼稚条件下的野生型(Wt)同窝仔的谷氨酸能产生突触电流。 结果:我们在Tg2576小鼠中发现了最近记忆形成的缺陷,但没有发现远处记忆的缺陷。通过电生理学记录,我们在训练后一天检测到了Wt的CA1锥体细胞中CFC诱导的AMPA / NMDA比值的修饰,而Tg2576的小鼠中没有。训练后8天,在Wt和Tg2576小鼠的aCC中也检测到了CFC诱导的AMPA / NMDA比值的变化。 结论:我们的数据表明,在AD早期,CA1突触对形成新记忆至关重要的突触可塑性丧失,而aCC突触的可塑性却完好无损,并有助于长期记忆的持久性。

关键词: 阿尔茨海默氏病,近期记忆,远程记忆,海马,前扣带回皮层,突触可塑性,AMPA,NMDA。

[1]
Kopelman MD, Wilson BA, Baddeley AD. The autobiographical memory interview: a new assessment of autobiographical and personal semantic memory in amnesic patients. J Clin Exp Neuropsychol 1989; 11(5): 724-44.
[http://dx.doi.org/10.1080/01688638908400928] [PMID: 2808661]
[2]
Jagust W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 2013; 77(2): 219-34.
[http://dx.doi.org/10.1016/j.neuron.2013.01.002] [PMID: 23352159]
[3]
Leyhe T, Müller S, Milian M, Eschweiler GW, Saur R. Impairment of episodic and semantic autobiographical memory in patients with mild cognitive impairment and early Alzheimer’s disease. Neuropsychologia 2009; 47(12): 2464-9.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.04.018] [PMID: 19409401]
[4]
Meeter M, Eijsackers EV, Mulder JL. Retrograde amnesia for autobiographical memories and public events in mild and moderate Alzheimer’s disease. J Clin Exp Neuropsychol 2006; 28(6): 914-27.
[http://dx.doi.org/10.1080/13803390591001043] [PMID: 16822732]
[5]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[6]
Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52(7): 1397-403.
[http://dx.doi.org/10.1212/WNL.52.7.1397] [PMID: 10227624]
[7]
Schuff N, Woerner N, Boreta L, et al. Alzheimer’s Disease Neuroimaging Initiative.MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 2009; 132(Pt 4): 1067-77.
[http://dx.doi.org/10.1093/brain/awp007] [PMID: 19251758]
[8]
Alvarez P, Squire LR. Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci USA 1994; 91(15): 7041-5.
[http://dx.doi.org/10.1073/pnas.91.15.7041] [PMID: 8041742]
[9]
Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci 2004; 27: 279-306.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144130] [PMID: 15217334]
[10]
Squire LR, Ed. Encyclopedia of Neuroscience. Elsevier Science, USA 2009.
[11]
Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ. Stability of recent and remote contextual fear memory. Learn Mem 2006; 13(4): 451-7.
[http://dx.doi.org/10.1101/lm.183406] [PMID: 16882861]
[12]
Tomadesso C, Perrotin A, Mutlu J, et al. Brain structural, functional, and cognitive correlates of recent versus remote autobiographical memories in amnestic Mild Cognitive Impairment. Neuroimage Clin 2015; 8: 473-82.
[http://dx.doi.org/10.1016/j.nicl.2015.05.010] [PMID: 26106572]
[13]
Middei S, Ammassari-Teule M, Marie H. Synaptic plasticity under learning challenge. Neurobiol Learn Mem 2014; 115: 108-15.
[http://dx.doi.org/10.1016/j.nlm.2014.08.001] [PMID: 25132316]
[14]
Squire LR, Bayley PJ. The neuroscience of remote memory. Curr Opin Neurobiol 2007; 17(2): 185-96.
[http://dx.doi.org/10.1016/j.conb.2007.02.006] [PMID: 17336513]
[15]
Restivo L, Vetere G, Bontempi B, Ammassari-Teule M. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 2009; 29(25): 8206-14.
[http://dx.doi.org/10.1523/JNEUROSCI.0966-09.2009] [PMID: 19553460]
[16]
Aceti M, Vetere G, Novembre G, Restivo L, Ammassari-Teule M. Progression of activity and structural changes in the anterior cingulate cortex during remote memory formation. Neurobiol Learn Mem 2015; 123: 67-71.
[http://dx.doi.org/10.1016/j.nlm.2015.05.003] [PMID: 26001597]
[17]
Abate G, Colazingari S, Accoto A, Conversi D, Bevilacqua A. Dendritic spine density and EphrinB2 levels of hippocampal and anterior cingulate cortex neurons increase sequentially during formation of recent and remote fear memory in the mouse. Behav Brain Res 2018; 344: 120-31.
[http://dx.doi.org/10.1016/j.bbr.2018.02.011] [PMID: 29444449]
[18]
Vetere G, Restivo L, Cole CJ, et al. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc Natl Acad Sci USA 2011; 108(20): 8456-60.
[http://dx.doi.org/10.1073/pnas.1016275108] [PMID: 21531906]
[19]
Cole CJ, Mercaldo V, Restivo L, et al. MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nat Neurosci 2012; 15(9): 1255-64.
[http://dx.doi.org/10.1038/nn.3189] [PMID: 22885849]
[20]
Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science 2004; 305(5680): 96-9.
[http://dx.doi.org/10.1126/science.1098180] [PMID: 15232109]
[21]
Zhou M, Conboy L, Sandi C, Joëls M, Krugers HJ. Fear conditioning enhances spontaneous AMPA receptor-mediated synaptic transmission in mouse hippocampal CA1 area. Eur J Neurosci 2009; 30(8): 1559-64.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06951.x] [PMID: 19811531]
[22]
Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science 2015; 348(6238): 1007-13.
[http://dx.doi.org/10.1126/science.aaa5542] [PMID: 26023136]
[23]
Marchetti C, Marie H. Hippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models? Rev Neurosci 2011; 22(4): 373-402.
[http://dx.doi.org/10.1515/rns.2011.035] [PMID: 21732714]
[24]
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat Neurosci 2018; 21(4): 463-73.
[http://dx.doi.org/10.1038/s41593-018-0080-x] [PMID: 29403035]
[25]
D’Amelio M, Cavallucci V, Middei S, et al. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 2011; 14(1): 69-76.
[http://dx.doi.org/10.1038/nn.2709] [PMID: 21151119]
[26]
Pignataro A, Meli G, Pagano R, et al. Activity-induced amyloid-beta oligomers drive compensatory synaptic rearrangements in brain circuits controlling memory of presymptomatic Alzheimer’s disease mice. Biol Psychiatry 2019; 86(3): 185-95.
[PMID: 30528194]
[27]
Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274(5284): 99-102.
[http://dx.doi.org/10.1126/science.274.5284.99] [PMID: 8810256]
[28]
Marchetti C, Tafi E, Middei S, et al. Synaptic adaptations of CA1 pyramidal neurons induced by a highly effective combinational antidepressant therapy. Biol Psychiatry 2010; 67(2): 146-54.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.017] [PMID: 19892321]
[29]
Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci 2005; 6(2): 119-30.
[http://dx.doi.org/10.1038/nrn1607] [PMID: 15685217]
[30]
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 2002; 64: 355-405.
[http://dx.doi.org/10.1146/annurev.physiol.64.092501.114547] [PMID: 11826273]
[31]
Teng E, Squire LR. Memory for places learned long ago is intact after hippocampal damage. Nature 1999; 400(6745): 675-7.
[http://dx.doi.org/10.1038/23276] [PMID: 10458163]
[32]
Müller S, Mychajliw C, Hautzinger M, Fallgatter AJ, Saur R, Leyhe T. Memory for past public events depends on retrieval frequency but not memory age in Alzheimer’s disease. J Alzheimers Dis 2014; 38(2): 379-90.
[http://dx.doi.org/10.3233/JAD-130923] [PMID: 23969995]
[33]
El Haj M, Antoine P, Nandrino JL, Kapogiannis D, et al. Autobiographical memory decline in Alzheimer's disease, a theoretical and clinical overview Ageing Res Rev 2015; 23(Pt B): 183-92.
[http://dx.doi.org/10.1016/j.arr.2015.07.001]
[34]
Philippi N, Rousseau F, Noblet V, et al. Different temporal patterns of specific and general autobiographical memories across the lifespan in Alzheimer’s disease. Behav Neurol 2015; 2015963460
[http://dx.doi.org/10.1155/2015/963460] [PMID: 26175549]
[35]
Langlois R, Joubert S, Benoit S, Dostie V, Rouleau I. Memory for public events in mild cognitive impairment and Alzheimer’s disease: The importance of rehearsal. J Alzheimers Dis 2016; 50(4): 1023-33.
[http://dx.doi.org/10.3233/JAD-150722] [PMID: 26836162]
[36]
Pause BM, Zlomuzica A, Kinugawa K, Mariani J, Pietrowsky R, Dere E. Perspectives on episodic-like and episodic memory. Front Behav Neurosci 2013; 7: 33.
[http://dx.doi.org/10.3389/fnbeh.2013.00033] [PMID: 23616754]
[37]
Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 2004; 82(3): 171-7.
[http://dx.doi.org/10.1016/j.nlm.2004.06.005] [PMID: 15464402]
[38]
Liu X, Ramirez S, Pang PT, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012; 484(7394): 381-5.
[http://dx.doi.org/10.1038/nature11028] [PMID: 22441246]
[39]
Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 2014; 513(7518): 426-30.
[http://dx.doi.org/10.1038/nature13725] [PMID: 25162525]
[40]
Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science 2006; 313(5790): 1093-7.
[http://dx.doi.org/10.1126/science.1128134] [PMID: 16931756]
[41]
Andersen P, Morris R, Amaral D, Bliss T, O’Keefee J, Eds. The Hippocampus Book. Oxford University Press 2006.
[42]
McHugh TJ, Jones MW, Quinn JJ, et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 2007; 317(5834): 94-9.
[http://dx.doi.org/10.1126/science.1140263] [PMID: 17556551]
[43]
Dimsdale-Zucker HR, Ritchey M, Ekstrom AD, Yonelinas AP, Ranganath C. CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nat Commun 2018; 9(1): 294.
[http://dx.doi.org/10.1038/s41467-017-02752-1] [PMID: 29348512]
[44]
Ji J, Maren S. Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn Mem 2008; 15(4): 244-51.
[http://dx.doi.org/10.1101/lm.794808] [PMID: 18391185]
[45]
Leutgeb JK, Leutgeb S, Moser MB, Moser EI. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 2007; 315(5814): 961-6.
[http://dx.doi.org/10.1126/science.1135801] [PMID: 17303747]
[46]
Wykes R, Kalmbach A, Eliava M, Waters J. Changes in the physiology of CA1 hippocampal pyramidal neurons in preplaque CRND8 mice. Neurobiol Aging 2012; 33(8): 1609-23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.001] [PMID: 21676499]
[47]
Bezzina C, Verret L, Juan C, et al. Early onset of hypersynchronous network activity and expression of a marker of chronic seizures in the Tg2576 mouse model of Alzheimer’s disease. PLoS One 2015; 10(3)e0119910
[http://dx.doi.org/10.1371/journal.pone.0119910] [PMID: 25768013]
[48]
Kam K, Duffy ÁM, Moretto J, LaFrancois JJ, Scharfman HE. Interictal spikes during sleep are an early defect in the Tg2576 mouse model of β-amyloid neuropathology. Sci Rep 2016; 6: 20119.
[http://dx.doi.org/10.1038/srep20119] [PMID: 26818394]
[49]
Hamm V, Héraud C, Bott JB, et al. Differential contribution of APP metabolites to early cognitive deficits in a TgCRND8 mouse model of Alzheimer’s disease. Sci Adv 2017; 3(2)e1601068
[http://dx.doi.org/10.1126/sciadv.1601068] [PMID: 28275722]
[50]
Gruart A, López-Ramos JC, Muñoz MD, Delgado-García JM. Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Dis 2008; 30(3): 439-50.
[http://dx.doi.org/10.1016/j.nbd.2008.03.001] [PMID: 18442916]
[51]
Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 2004; 5(1): 45-54.
[http://dx.doi.org/10.1038/nrn1301] [PMID: 14708003]
[52]
Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009; 61(3): 340-50.
[http://dx.doi.org/10.1016/j.neuron.2009.01.015] [PMID: 19217372]
[53]
Descalzi G, Li XY, Chen T, Mercaldo V, Koga K, Zhuo M. Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning. Mol Brain 2012; 5: 6.
[http://dx.doi.org/10.1186/1756-6606-5-6] [PMID: 22304729]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy