Abstract
As the heterodimerization partner for a large number of nuclear receptors, the retinoid X receptor (RXR) is important for a large and diverse set of biochemical pathways. Activation and regulation of RXR heterodimers is achieved by complex allosteric mechanisms, which involve the binding of ligands, DNA, coactivators and corepressors, and entail large and subtle conformational motions. Complementing experiments, computer simulations have provided detailed insights into the origins of the allostery by investigating the changes in structure, motion, and interactions upon dimerization, ligand and cofactor binding. This review will summarize a number of simulation studies that have furthered the understanding of the conformational dynamics and the allosteric activation and control of RXR complexes. While the review focuses on the RXR and RXR heterodimers, relevant simulation studies of other nuclear receptors will be discussed as well.
Keywords: Retinoid X receptor, Nuclear receptor, Simulation, Molecular dynamics, Allostery, Conformational dynamics.
Graphical Abstract
Current Topics in Medicinal Chemistry
Title:Computer Simulations of the Retinoid X Receptor: Conformational Dynamics and Allosteric Networks
Volume: 17 Issue: 6
Author(s): Arjan van der Vaart, Alexander Lorkowski, Ning Ma and Geoffrey M. Gray
Affiliation:
Keywords: Retinoid X receptor, Nuclear receptor, Simulation, Molecular dynamics, Allostery, Conformational dynamics.
Abstract: As the heterodimerization partner for a large number of nuclear receptors, the retinoid X receptor (RXR) is important for a large and diverse set of biochemical pathways. Activation and regulation of RXR heterodimers is achieved by complex allosteric mechanisms, which involve the binding of ligands, DNA, coactivators and corepressors, and entail large and subtle conformational motions. Complementing experiments, computer simulations have provided detailed insights into the origins of the allostery by investigating the changes in structure, motion, and interactions upon dimerization, ligand and cofactor binding. This review will summarize a number of simulation studies that have furthered the understanding of the conformational dynamics and the allosteric activation and control of RXR complexes. While the review focuses on the RXR and RXR heterodimers, relevant simulation studies of other nuclear receptors will be discussed as well.
Export Options
About this article
Cite this article as:
Vaart van der Arjan, Lorkowski Alexander, Ma Ning and Gray M. Geoffrey, Computer Simulations of the Retinoid X Receptor: Conformational Dynamics and Allosteric Networks, Current Topics in Medicinal Chemistry 2017; 17 (6) . https://dx.doi.org/10.2174/1568026616666160617084745
DOI https://dx.doi.org/10.2174/1568026616666160617084745 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Expression and Function of MicroRNAs in Heart Disease
Current Drug Targets Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/ Phosphodiesterases (PDEs)
Current Topics in Medicinal Chemistry Human Leukemia and Lymphoma Cell Lines as Models and Resources
Current Medicinal Chemistry Identification of Inhibitors Based on Molecular Docking: Thyroid Hormone Transmembrane Transporter MCT8 as a Target
Current Drug Discovery Technologies Apolipoprotein B Antisense Inhibition -Update on Mipomersen
Current Pharmaceutical Design Anti-Angiogenic Agents in Pancreatic Cancer: A Review
Anti-Cancer Agents in Medicinal Chemistry Targeting the PI3K/AKT/mTOR Signaling Pathway in Medulloblastoma
Current Molecular Medicine Target Acquired: Progress and Promise of Targeted Therapeutics in the Treatment of Prostate Cancer
Current Cancer Drug Targets Glucocorticoid Measurements in Health and Disease - Metabolic Implications and the Potential of 24-h Urine Analyses
Mini-Reviews in Medicinal Chemistry Impact of the Somatotrope Growth Hormone (GH)/Insulin-Like Growth Factor 1 (IGF-1) Axis Upon Thymus Function: Pharmacological Implications in Regeneration of Immune Functions
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Emerging Immunotargets in Bladder Cancer
Current Drug Targets Ent-11α-Hydroxy-15-Oxo-Kaur-16-en-19-Oic-Acid Induces Apoptosis of Human Malignant Cancer Cells
Current Drug Targets Selective Acetyl- and Butyrylcholinesterase Inhibitors Reduce Amyloid-β Ex Vivo Activation of Peripheral Chemo-cytokines From Alzheimer's Disease Subjects: Exploring the Cholinergic Anti-inflammatory Pathway
Current Alzheimer Research Hydroxysteroid Dehydrogenase (17β -HSD3, 17β-HSD5, and 3α-HSD3) Inhibitors:Extragonadal Regulation of Intracellular Sex Steroid Hormone Levels
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) The Biphasic Expression Pattern of miR-200a and E-cadherin in Epithelial Ovarian Cancer and its Correlation with Clinicopathological Features
Current Pharmaceutical Design Neuropeptides as Autocrine Growth Factors in Cancer Cells
Current Pharmaceutical Design Steroid Biosynthesis Inhibitors in the Therapy of Hypercortisolism: Theory and Practice
Current Medicinal Chemistry DNMT Inhibitors in Cancer, Current Treatments and Future Promising Approach: Inhibition of Specific DNMT-Including Complexes
Epigenetic Diagnosis & Therapy (Discontinued) Prediction and Targeting of Interaction Interfaces in G-protein Coupled Receptor Oligomers
Current Topics in Medicinal Chemistry Pentoxifylline Use in Dermatology
Inflammation & Allergy - Drug Targets (Discontinued)