Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Recent Progress on the Discovery of NLRP3 Inhibitors and their Therapeutic Potential

Author(s): Ma Su, Weiwei Wang, Feng Liu* and Huanqiu Li*

Volume 28, Issue 3, 2021

Published on: 23 January, 2020

Page: [569 - 582] Pages: 14

DOI: 10.2174/0929867327666200123093544

Price: $65

Abstract

Background: Inflammation is the body’s immune system’s fast coordinating response to irritants caused by pathogens, external injuries, and chemical or radiation effects. The nucleotidebinding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. The dysfunction of NLRP3 inflammasome contributes to various pathogeneses of complex diseases, such as uncontrolled infection, autoimmune diseases, neurodegenerative diseases, and metabolic disorders. This review describes recent progress on the discovery of NLRP3 inflammasome inhibitors and their therapeutic potential.

Methods: Based on the mechanism of NLRP3 activation, several types of NLRP3 inhibitors are described and summarized according to their origins, structures, bioactivity, and mechanism of action. Structure-Activity Relationship (SAR) is also listed for different scaffolds, as well as effective pharmacophore.

Results: Over one-hundred papers were included in the review. The development of NLRP3 inhibitors has been described from the earliest glyburide in 2001 to the latest progress in 2019. Several series of inhibitors have been categorized, such as JC-series based on glyburide and BC-series based on 2APB. Many other small molecules such as NLRP3 inhibitors are also listed. SAR, application in related therapeutic models, and five different action mechanisms are described.

Conclusion: The findings of this review confirmed the importance of developing NLRP3 inflammasome inhibitors. Various NLRP3 inhibitors have been discovered as effective therapeutic treatments for multiple diseases, such as type II diabetes, experimental autoimmune encephalomyelitis, stressrelated mood disorders, etc. The development of a full range of NLRP3 inflammasome inhibitors is still at its foundational phase. We are looking forward to the identification of inhibitory agents that provide the most potent therapeutic strategies and efficiently treat NLRP3 inflammasome-related inflammatory diseases.

Keywords: NLRP3 inflammasome, inhibitors, inflammatory diseases, interleukin-1β, innate immunity, therapeutic potential.

[1]
Guo, H.; Callaway, J.B.; Ting, J.P.Y. Inflammasomes: mechanism of action, role in disease and therapeutics. Nat. Med., 2015, 21(7), 677-687.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[2]
Zhang, Y.; Gu, R.; Jia, J.; Hou, T.; Zheng, L.T.; Zhen, X. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity suppresses microglia-mediated inflammatory responses. Clin. Exp. Pharmacol. Physiol., 2016, 43(11), 1134-1144.
[http://dx.doi.org/10.1111/1440-1681.12647] [PMID: 27543936]
[3]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[4]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[5]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[http://dx.doi.org/10.1016/j.cell.2010.01.040] [PMID: 20303873]
[6]
Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell, 2002, 10(2), 417-426.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[7]
Li, Y.; Ju, D. The application, neurotoxicity and related mechanism of cationic polymers; Neurotox. Nanomat. Nanomed, 2017, pp. pp. 285-329.
[http://dx.doi.org/10.1016/B978-0-12-804598-5.00012-X]
[8]
Chen, J.; Chen, Z.J. PtdIns4P on dispersed trans-golgi network mediates NLRP3 inflammasome activation. Nature, 2018, 564(7734), 71-76.
[http://dx.doi.org/10.1038/s41586-018-0761-3] [PMID: 30487600]
[9]
Strowig, T.; Henao-Mejia, J.; Elinav, E.; Flavell, R. Inflammasomes in health and disease. Nature, 2012, 481(7381), 278-286.
[http://dx.doi.org/10.1038/nature10759] [PMID: 22258606]
[10]
Lamkanfi, M.; Dixit, V.M. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev., 2009, 227(1), 95-105.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00730.x] [PMID: 19120479]
[11]
Zhong, Y.; Kinio, A.; Saleh, M. Functions of NOD-like receptors in human diseases. Front. Immunol., 2013, 4, 333.
[http://dx.doi.org/10.3389/fimmu.2013.00333] [PMID: 24137163]
[12]
Inoue, M.; Shinohara, M.L. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis., 2013, 2013859145
[http://dx.doi.org/10.1155/2013/859145] [PMID: 23365725]
[13]
Próchnicki, T.; Mangan, M.S.; Latz, E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000 Res., 2016, 5, F1000.
[http://dx.doi.org/10.12688/f1000research.8614.1] [PMID: 27508077]
[14]
Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis., 2019, 10(2), 128.
[http://dx.doi.org/10.1038/s41419-019-1413-8] [PMID: 30755589]
[15]
Pelegrin, P.; Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J., 2006, 25(21), 5071-5082.
[http://dx.doi.org/10.1038/sj.emboj.7601378] [PMID: 17036048]
[16]
Compan, V.; Baroja-Mazo, A.; López-Castejón, G.; Gomez, A.I.; Martínez, C.M.; Angosto, D.; Montero, M.T.; Herranz, A.S.; Bazán, E.; Reimers, D.; Mulero, V.; Pelegrín, P. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity, 2012, 37(3), 487-500.
[http://dx.doi.org/10.1016/j.immuni.2012.06.013] [PMID: 22981536]
[17]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[18]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[19]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[20]
Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol., 2016, 13(2), 148-159.
[http://dx.doi.org/10.1038/cmi.2015.95] [PMID: 26549800]
[21]
Ozaki, E.; Campbell, M.; Doyle, S.L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm. Res., 2015, 8, 15-27.
[http://dx.doi.org/10.2147/jir.s51250] [PMID: 25653548]
[22]
Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol., 2015, 6(262), 262.
[http://dx.doi.org/10.3389/fphar.2015.00262] [PMID: 26594174]
[23]
Lamkanfi, M.; Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, 28, 137-161.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155745] [PMID: 22974247]
[24]
Lee, H.M.; Kim, J.J.; Kim, H.J.; Shong, M.; Ku, B.J.; Jo, E.K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes, 2013, 62(1), 194-204.
[http://dx.doi.org/10.2337/db12-0420] [PMID: 23086037]
[25]
Jin, Y.; Fu, J. Novel insights into the NLRP 3 inflammasome in atherosclerosis. J. Am. Heart Assoc., 2019, 8(12)e012219
[http://dx.doi.org/10.1161/JAHA.119.012219] [PMID: 31184236]
[26]
Sandanger, Ø.; Ranheim, T.; Vinge, L.E.; Bliksøen, M.; Alfsnes, K.; Finsen, A.V.; Dahl, C.P.; Askevold, E.T.; Florholmen, G.; Christensen, G.; Fitzgerald, K.A.; Lien, E.; Valen, G.; Espevik, T.; Aukrust, P.; Yndestad, A. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc. Res., 2013, 99(1), 164-174.
[http://dx.doi.org/10.1093/cvr/cvt091] [PMID: 23580606]
[27]
Ito, M.; Shichita, T.; Okada, M.; Komine, R.; Noguchi, Y.; Yoshimura, A.; Morita, R. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat. Commun., 2015, 6, 7360.
[http://dx.doi.org/10.1038/ncomms8360] [PMID: 26059659]
[28]
Hong, P.; Gu, R.N.; Li, F.X.; Xiong, X.X.; Liang, W.B.; You, Z.J.; Zhang, H.F. NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J. Neuroinflammation, 2019, 16(1), 121.
[http://dx.doi.org/10.1186/s12974-019-1498-0] [PMID: 31174550]
[29]
Zhang, Y.; Liu, L.; Liu, Y.Z.; Shen, X.L.; Wu, T.Y.; Zhang, T.; Wang, W.; Wang, Y.X.; Jiang, C.L. NLRP3 Inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int. J. Neuropsychopharmacol., 2015, 18(8)pyv006
[http://dx.doi.org/10.1093/ijnp/pyv006] [PMID: 25603858]
[30]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[31]
Kim, Y.K.; Na, K.S.; Myint, A.M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 277-284.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.008] [PMID: 26111720]
[32]
Szabo, G.; Csak, T. Inflammasomes in liver diseases. J. Hepatol., 2012, 57(3), 642-654.
[http://dx.doi.org/10.1016/j.jhep.2012.03.035] [PMID: 22634126]
[33]
Anders, H.J.; Muruve, D.A. The inflammasomes in kidney disease. J. Am. Soc. Nephrol., 2011, 22(6), 1007-1018.
[http://dx.doi.org/10.1681/ASN.2010080798] [PMID: 21566058]
[34]
De Nardo, D.; De Nardo, C.M.; Latz, E. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am. J. Pathol., 2014, 184(1), 42-54.
[http://dx.doi.org/10.1016/j.ajpath.2013.09.007] [PMID: 24183846]
[35]
Huang, X.L.; Wei, X.C.; Guo, L.Q.; Zhao, L.; Chen, X.H.; Cui, Y.D.; Yuan, J.; Chen, D.F.; Zhang, J. The therapeutic effects of jaceosidin on lipopolysaccharide-induced acute lung injury in mice. J. Pharmacol. Sci., 2019, 140(3), 228-235.
[http://dx.doi.org/10.1016/j.jphs.2019.07.004] [PMID: 31358372]
[36]
Youm, Y.H.; Grant, R.W.; McCabe, L.R.; Albarado, D.C.; Nguyen, K.Y.; Ravussin, A.; Pistell, P.; Newman, S.; Carter, R.; Laque, A.; Münzberg, H.; Rosen, C.J.; Ingram, D.K.; Salbaum, J.M.; Dixit, V.D. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab., 2013, 18(4), 519-532.
[http://dx.doi.org/10.1016/j.cmet.2013.09.010] [PMID: 24093676]
[37]
Mezzaroma, E.; Toldo, S.; Farkas, D.; Seropian, I.M.; Van Tassell, B.W.; Salloum, F.N.; Kannan, H.R.; Menna, A.C.; Voelkel, N.F.; Abbate, A. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19725-19730.
[http://dx.doi.org/10.1073/pnas.1108586108] [PMID: 22106299]
[38]
Davis, B.K.; Wen, H.; Ting, J.P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol., 2011, 29, 707-735.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101405] [PMID: 21219188]
[39]
Martinon, F.; Mayor, A.; Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol., 2009, 27, 229-265.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132715] [PMID: 19302040]
[40]
Perregaux, D.G.; McNiff, P.; Laliberte, R.; Hawryluk, N.; Peurano, H.; Stam, E.; Eggler, J.; Griffiths, R.; Dombroski, M.A.; Gabel, C.A. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther., 2001, 299(1), 187-197.
[PMID: 11561079]
[41]
Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.G.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A.J. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[42]
Salla, M.; Butler, M.S.; Pelingon, R.; Kaeslin, G.; Croker, D.E.; Reid, J.C.; Baek, J.M.; Bernhardt, P.V.; Gillam, E.M.; Cooper, M.A.; Robertson, A.A. Identification, synthesis, and biological evaluation of the major human metabolite of NLRP3 inflammasome inhibitor MCC950. ACS Med. Chem. Lett., 2016, 7(12), 1034-1038.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00198] [PMID: 27994733]
[43]
Hill, J.R.; Coll, R.C.; Sue, N.; Reid, J.C.; Dou, J.; Holley, C.L.; Pelingon, R.; Dickinson, J.B.; Biden, T.J.; Schroder, K.; Cooper, M.A.; Robertson, A.A.B. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem, 2017, 12(17), 1449-1457.
[http://dx.doi.org/10.1002/cmdc.201700270] [PMID: 28703484]
[44]
Marchetti, C.; Chojnacki, J.; Toldo, S.; Mezzaroma, E.; Tranchida, N.; Rose, S.W.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol., 2014, 63(4), 316-322.
[http://dx.doi.org/10.1097/FJC.0000000000000053] [PMID: 24336017]
[45]
Marchetti, C.; Toldo, S.; Chojnacki, J.; Mezzaroma, E.; Liu, K.; Salloum, F.N.; Nordio, A.; Carbone, S.; Mauro, A.G.; Das, A.; Zalavadia, A.A.; Halquist, M.S.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J. Cardiovasc. Pharmacol., 2015, 66(1), 1-8.
[http://dx.doi.org/10.1097/FJC.0000000000000247] [PMID: 25915511]
[46]
Yin, J.; Zhao, F.; Chojnacki, J.E.; Fulp, J.; Klein, W.L.; Zhang, S.; Zhu, X. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2018, 55(3), 1977-1987.
[http://dx.doi.org/10.1007/s12035-017-0467-9] [PMID: 28255908]
[47]
Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00733] [PMID: 29877709]
[48]
Guo, C.; Fulp, J.W.; Jiang, Y.; Li, X.; Chojnacki, J.E.; Wu, J.; Wang, X.Y.; Zhang, S. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a Novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci., 2017, 8(10), 2194-2201.
[http://dx.doi.org/10.1021/acschemneuro.7b00124] [PMID: 28653829]
[49]
Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00733] [PMID: 29877709]
[50]
Bootman, M.D.; Berridge, M.J.; Roderick, H.L. Calcium signalling: more messengers, more channels, more complexity. Curr. Biol., 2002, 12(16), R563-R565.
[http://dx.doi.org/10.1016/S0960-9822(02)01055-2] [PMID: 12194839]
[51]
Peppiatt, C.M.; Collins, T.J.; Mackenzie, L.; Conway, S.J.; Holmes, A.B.; Bootman, M.D.; Berridge, M.J.; Seo, J.T.; Roderick, H.L. 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium, 2003, 34(1), 97-108.
[http://dx.doi.org/10.1016/S0143-4160(03)00026-5] [PMID: 12767897]
[52]
Lee, G.S.; Subramanian, N.; Kim, A.I.; Aksentijevich, I.; Goldbach-Mansky, R.; Sacks, D.B.; Germain, R.N.; Kastner, D.L.; Chae, J.J. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012, 492(7427), 123-127.
[http://dx.doi.org/10.1038/nature11588] [PMID: 23143333]
[53]
Lopez-Castejon, G.; Luheshi, N.M.; Compan, V.; High, S.; Whitehead, R.C.; Flitsch, S.; Kirov, A.; Prudovsky, I.; Swanton, E.; Brough, D. Deubiquitinases regulate the activity of caspase-1 and interleukin-1β secretion via assembly of the inflammasome. J. Biol. Chem., 2013, 288(4), 2721-2733.
[http://dx.doi.org/10.1074/jbc.M112.422238] [PMID: 23209292]
[54]
Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.011] [PMID: 28943355]
[55]
Baldwin, A.G.; Tapia, V.S.; Swanton, T.; White, C.S.; Beswick, J.A.; Brough, D.; Freeman, S. Design, synthesis and evaluation of oxazaborine inhibitors of the NLRP3 inflammasome. ChemMedChem, 2018, 13(4), 312-320.
[http://dx.doi.org/10.1002/cmdc.201700731] [PMID: 29331080]
[56]
Cotter, D.G.; Schugar, R.C.; Crawford, P.A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(8), H1060-H1076.
[http://dx.doi.org/10.1152/ajpheart.00646.2012] [PMID: 23396451]
[57]
Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab., 2014, 25(1), 42-52.
[http://dx.doi.org/10.1016/j.tem.2013.09.002] [PMID: 24140022]
[58]
Tieu, K.; Perier, C.; Caspersen, C.; Teismann, P.; Wu, D.C.; Yan, S.D.; Naini, A.; Vila, M.; Jackson-Lewis, V.; Ramasamy, R.; Przedborski, S. D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest., 2003, 112(6), 892-901.
[http://dx.doi.org/10.1172/JCI200318797] [PMID: 12975474]
[59]
Lim, S.; Chesser, A.S.; Grima, J.C.; Rappold, P.M.; Blum, D.; Przedborski, S.; Tieu, K. D-β-hydroxybutyrate is protective in mouse models of Huntington’s disease. PLoS One, 2011, 6(9), e24620-e24620.
[http://dx.doi.org/10.1371/journal.pone.0024620] [PMID: 21931779]
[60]
Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; Kang, S.; Horvath, T.L.; Fahmy, T.M.; Crawford, P.A.; Biragyn, A.; Alnemri, E.; Dixit, V.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med., 2015, 21(3), 263-269.
[http://dx.doi.org/10.1038/nm.3804] [PMID: 25686106]
[61]
Yamanashi, T.; Iwata, M.; Kamiya, N.; Tsunetomi, K.; Kajitani, N.; Wada, N.; Iitsuka, T.; Yamauchi, T.; Miura, A.; Pu, S.; Shirayama, Y.; Watanabe, K.; Duman, R.S.; Kaneko, K. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci. Rep., 2017, 7(1), 7677.
[http://dx.doi.org/10.1038/s41598-017-08055-1] [PMID: 28794421]
[62]
He, Y.; Varadarajan, S.; Muñoz-Planillo, R.; Burberry, A.; Nakamura, Y.; Núñez, G. 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem., 2014, 289(2), 1142-1150.
[http://dx.doi.org/10.1074/jbc.M113.515080] [PMID: 24265316]
[63]
Wang, W.Y.; Wu, Y.C.; Wu, C.C. Prevention of platelet glycoprotein IIb/IIIa activation by 3,4-methylenedioxy-beta-nitrostyrene, a novel tyrosine kinase inhibitor. Mol. Pharmacol., 2006, 70(4), 1380-1389.
[http://dx.doi.org/10.1124/mol.106.023986] [PMID: 16837624]
[64]
Kim, J.H.; Kim, J.H.; Lee, G.E.; Lee, J.E.; Chung, I.K. Potent inhibition of human telomerase by nitrostyrene derivatives. Mol. Pharmacol., 2003, 63(5), 1117-1124.
[http://dx.doi.org/10.1124/mol.63.5.1117] [PMID: 12695540]
[65]
da Silva Corrêa, C.M.M.; Waters, W.A. Reactions of the free toluene-p-sulphonyl radical. Part I. Diagnostic reactions of free radicals. J. Chem. Soc. C. Organic., 1968, 1(0), 1874-1879.
[http://dx.doi.org/10.1039/J39680001874]]
[66]
Lee, J.; Rhee, M.H.; Kim, E.; Cho, J.Y. BAY 11-7082 is a broad-spectrum inhibitor with anti-inflammatory activity against multiple targets. Mediators Inflamm., 2012, 2012, 416036-416036.
[http://dx.doi.org/10.1155/2012/416036] [PMID: 22745523]
[67]
Strickson, S.; Campbell, D.G.; Emmerich, C.H.; Knebel, A.; Plater, L.; Ritorto, M.S.; Shpiro, N.; Cohen, P. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem. J., 2013, 451(3), 427-437.
[http://dx.doi.org/10.1042/BJ20121651] [PMID: 23441730]
[68]
Juliana, C.; Fernandes-Alnemri, T.; Wu, J.; Datta, P.; Solorzano, L.; Yu, J.W.; Meng, R.; Quong, A.A.; Latz, E.; Scott, C.P.; Alnemri, E.S. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem., 2010, 285(13), 9792-9802.
[http://dx.doi.org/10.1074/jbc.M109.082305] [PMID: 20093358]
[69]
Toldo, S.; Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol., 2018, 15(4), 203-214.
[http://dx.doi.org/10.1038/nrcardio.2017.161] [PMID: 29143812]
[70]
Marchetti, C.; Swartzwelter, B.; Koenders, M.I.; Azam, T.; Tengesdal, I.W.; Powers, N.; de Graaf, D.M.; Dinarello, C.A.; Joosten, L.A.B. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res. Ther., 2018, 20(1), 169-169.
[http://dx.doi.org/10.1186/s13075-018-1664-2] [PMID: 30075804]
[71]
Marchetti, C.; Swartzwelter, B.; Koenders, M.; Dinarello, C.; Joosten, L. OP0090 The human safe NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of experimental arthritis. Ann. Rheum. Dis., 2017, 76(Suppl. 2), 89-89.
[http://dx.doi.org/10.1136/annrheumdis-2017-eular.2775]]
[72]
Marchetti, C.; Swartzwelter, B.; Gamboni, F.; Neff, C.P.; Richter, K.; Azam, T.; Carta, S.; Tengesdal, I.; Nemkov, T.; D’Alessandro, A.; Henry, C.; Jones, G.S.; Goodrich, S.A.; St Laurent, J.P.; Jones, T.M.; Scribner, C.L.; Barrow, R.B.; Altman, R.D.; Skouras, D.B.; Gattorno, M.; Grau, V.; Janciauskiene, S.; Rubartelli, A.; Joosten, L.A.B.; Dinarello, C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl. Acad. Sci. USA, 2018, 115(7), E1530-E1539.
[http://dx.doi.org/10.1073/pnas.1716095115] [PMID: 29378952]
[73]
Duncan, J.A.; Bergstralh, D.T.; Wang, Y.; Willingham, S.B.; Ye, Z.; Zimmermann, A.G.; Ting, J.P. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 8041-8046.
[http://dx.doi.org/10.1073/pnas.0611496104] [PMID: 17483456]
[74]
Jiang, H.; He, H.; Chen, Y.; Huang, W.; Cheng, J.; Ye, J.; Wang, A.; Tao, J.; Wang, C.; Liu, Q.; Jin, T.; Jiang, W.; Deng, X.; Zhou, R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, 214(11), 3219-3238.
[http://dx.doi.org/10.1084/jem.20171419] [PMID: 29021150]
[75]
Cocco, M.; Garella, D.; Di Stilo, A.; Borretto, E.; Stevanato, L.; Giorgis, M.; Marini, E.; Fantozzi, R.; Miglio, G.; Bertinaria, M. Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. J. Med. Chem., 2014, 57(24), 10366-10382.
[http://dx.doi.org/10.1021/jm501072b] [PMID: 25418070]
[76]
Mastrocola, R.; Penna, C.; Tullio, F.; Femminò, S.; Nigro, D.; Chiazza, F.; Serpe, L.; Collotta, D.; Alloatti, G.; Cocco, M.; Bertinaria, M.; Pagliaro, P.; Aragno, M.; Collino, M. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell. Longev., 2016, 20165271251
[http://dx.doi.org/10.1155/2016/5271251] [PMID: 28053692]
[77]
Cocco, M.; Pellegrini, C.; Martínez-Banaclocha, H.; Giorgis, M.; Marini, E.; Costale, A.; Miglio, G.; Fornai, M.; Antonioli, L.; López-Castejón, G.; Tapia-Abellán, A.; Angosto, D.; Hafner-Bratkovič, I.; Regazzoni, L.; Blandizzi, C.; Pelegrín, P.; Bertinaria, M. Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J. Med. Chem., 2017, 60(9), 3656-3671.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01624] [PMID: 28410442]
[78]
Cocco, M.; Miglio, G.; Giorgis, M.; Garella, D.; Marini, E.; Costale, A.; Regazzoni, L.; Vistoli, G.; Orioli, M.; Massulaha-Ahmed, R.; Détraz-Durieux, I.; Groslambert, M.; Py, B.F.; Bertinaria, M. Design, synthesis, and evaluation of acrylamide derivatives as direct nlrp3 inflammasome inhibitors. ChemMedChem, 2016, 11(16), 1790-1803.
[http://dx.doi.org/10.1002/cmdc.201600055] [PMID: 26990578]
[79]
Abdullaha, M.; Mohammed, S.; Ali, M.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Discovery of quinazolin-4(3 H)-ones as NLRP3 inflammasome inhibitors: computational design, metal-free synthesis, and in vitro biological evaluation. J. Org. Chem., 2019, 84(9), 5129-5140.
[http://dx.doi.org/10.1021/acs.joc.9b00138] [PMID: 30896160]
[80]
Hu, Z.; Yan, C.; Liu, P.; Huang, Z.; Ma, R.; Zhang, C.; Wang, R.; Zhang, Y.; Martinon, F.; Miao, D.; Deng, H.; Wang, J.; Chang, J.; Chai, J. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science, 2013, 341(6142), 172-175.
[http://dx.doi.org/10.1126/science.1236381] [PMID: 23765277]
[81]
Hari, A.; Zhang, Y.; Tu, Z.; Detampel, P.; Stenner, M.; Ganguly, A.; Shi, Y. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci. Rep., 2014, 4, 7281.
[http://dx.doi.org/10.1038/srep07281] [PMID: 25445147]
[82]
Schmid-Burgk, J.L.; Gaidt, M.M.; Schmidt, T.; Ebert, T.S.; Bartok, E.; Hornung, V. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol., 2015, 45(10), 2911-2917.
[http://dx.doi.org/10.1002/eji.201545523] [PMID: 26174085]
[83]
van Bruggen, R.; Köker, M.Y.; Jansen, M.; van Houdt, M.; Roos, D.; Kuijpers, T.W.; van den Berg, T.K. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood, 2010, 115(26), 5398-5400.
[http://dx.doi.org/10.1182/blood-2009-10-250803] [PMID: 20407038]
[84]
Rajanbabu, V.; Galam, L.; Fukumoto, J.; Enciso, J.; Tadikonda, P.; Lane, T.N.; Bandyopadhyay, S.; Parthasarathy, P.T.; Cho, Y.; Cho, S.H.; Lee, Y.C.; Lockey, R.F.; Kolliputi, N. Genipin suppresses NLRP3 inflammasome activation through uncoupling protein-2. Cell. Immunol., 2015, 297(1), 40-45.
[http://dx.doi.org/10.1016/j.cellimm.2015.06.002] [PMID: 26123077]
[85]
Liu, W.; Yin, Y.; Zhou, Z.; He, M.; Dai, Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res., 2014, 63(1), 33-43.
[http://dx.doi.org/10.1007/s00011-013-0667-3] [PMID: 24121974]
[86]
Martín-Sánchez, F.; Diamond, C.; Zeitler, M.; Gomez, A.I.; Baroja-Mazo, A.; Bagnall, J.; Spiller, D.; White, M.; Daniels, M.J.; Mortellaro, A.; Peñalver, M.; Paszek, P.; Steringer, J.P.; Nickel, W.; Brough, D.; Pelegrín, P. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ., 2016, 23(7), 1219-1231.
[http://dx.doi.org/10.1038/cdd.2015.176] [PMID: 26868913]
[87]
Mortimer, L.; Moreau, F.; MacDonald, J.A.; Chadee, K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat. Immunol., 2016, 17(10), 1176-1186.
[http://dx.doi.org/10.1038/ni.3538] [PMID: 27548431]
[88]
MacDonald, J.A.; Wijekoon, C.P.; Liao, K.C.; Muruve, D.A. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life, 2013, 65(10), 851-862.
[http://dx.doi.org/10.1002/iub.1210] [PMID: 24078393]
[89]
Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol., 2009, 27, 519-550.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[90]
Lee, H.E.; Yang, G.; Kim, N.D.; Jeong, S.; Jung, Y.; Choi, J.Y.; Park, H.H.; Lee, J.Y. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout. Sci. Rep., 2016, 6, 38622.
[http://dx.doi.org/10.1038/srep38622] [PMID: 27934918]
[91]
Nicholson, D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 1999, 6(11), 1028-1042.
[http://dx.doi.org/10.1038/sj.cdd.4400598] [PMID: 10578171]
[92]
Martinon, F.; Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ., 2007, 14(1), 10-22.
[http://dx.doi.org/10.1038/sj.cdd.4402038] [PMID: 16977329]
[93]
Thornberry, N.A.; Bull, H.G.; Calaycay, J.R.; Chapman, K.T.; Howard, A.D.; Kostura, M.J.; Miller, D.K.; Molineaux, S.M.; Weidner, J.R.; Aunins, J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 1992, 356(6372), 768-774.
[http://dx.doi.org/10.1038/356768a0] [PMID: 1574116]
[94]
Cerretti, D.P.; Kozlosky, C.J.; Mosley, B.; Nelson, N.; Van Ness, K.; Greenstreet, T.A.; March, C.J.; Kronheim, S.R.; Druck, T.; Cannizzaro, L.A. Molecular cloning of the interleukin-1 beta converting enzyme. Science, 1992, 256(5053), 97-100.
[http://dx.doi.org/10.1126/science.1373520] [PMID: 1373520]
[95]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247.
[http://dx.doi.org/10.1038/ni.1703] [PMID: 19221555]
[96]
Yamasaki, K.; Muto, J.; Taylor, K.R.; Cogen, A.L.; Audish, D.; Bertin, J.; Grant, E.P.; Coyle, A.J.; Misaghi, A.; Hoffman, H.M.; Gallo, R.L. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem., 2009, 284(19), 12762-12771.
[http://dx.doi.org/10.1074/jbc.M806084200] [PMID: 19258328]
[97]
Rada, B.; Park, J.J.; Sil, P.; Geiszt, M.; Leto, T.L. NLRP3 inflammasome activation and interleukin-1beta release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm. Res., 2014, 63(10), 821-830.
[http://dx.doi.org/10.1007/s00011-014-0756-y] [PMID: 25048991]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy