[1]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. [http://dx.doi.org/10.2174/157015909787602823]. [PMID: 19721819].
[2]
Freire, M.A.M. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med. J., 2012, 61(7), 751-755. [PMID: 23620976].
[3]
Guimarães, J.S.; Freire, M.A.M.; Lima, R.R.; Souza-Rodrigues, R.D.; Costa, A.M.; dos Santos, C.D.; Picanço-Diniz, C.W.; Gomes-Leal, W. Mechanisms of secondary degeneration in the central nervous system during acute neural disorders and white matter damage. Rev. Neurol., 2009, 48(6), 304-310. [PMID: 19291655].
[4]
Batista, P.; Pereira, A. Quality of life of patients with neurodegenerative diseases. J. Neurol. Neurosci., 2016, 7, 1-7. [http://dx.doi.org/10.21767/2171-6625.100074].
[5]
Norrara, B.; Doerl, J.G.; Guzen, F.P.; Cavalcanti, J.R.L.P.; Freire, M.A.M. Commentary: Localized vs. systematic neurodegeneration: A paradigm shift in understanding neurodegenerative diseases. Front. Syst. Neurosci., 2017, 11, 91. [http://dx.doi.org/10.3389/fnsys.2017.00091]. [PMID: 29270113].
[6]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A.M. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206. [http://dx.doi.org/10.3389/fnagi.2014.00206]. [PMID: 25221506].
[9]
Shaw, G. The economic burden of neurologic disease - $800 billion annually in the US. Neurol. Today, 2017, 17, 1-14. [http://dx.doi.org/10.1097/01.NT.0000521169.52982.7f].
[10]
Van Dam, D.; De Deyn, P.P. Drug discovery in dementia: the role of rodent models. Nat. Rev. Drug Discov., 2006, 5(11), 956-970. [http://dx.doi.org/10.1038/nrd2075]. [PMID: 17080031].
[11]
Hellewell, S.C.; Ziebell, J.M.; Lifshitz, J.; Morganti-Kossmann, M.C. Impact acceleration model of diffuse traumatic brain injury. Methods Mol. Biol., 2016, 1462, 253-266. [http://dx.doi.org/10.1007/978-1-4939-3816-2_15]. [PMID: 27604723].
[12]
Levy, H.; Assaf, Y.; Frenkel, D. Characterization of brain lesions in a mouse model of progressive multiple sclerosis. Exp. Neurol., 2010, 226(1), 148-158. [http://dx.doi.org/10.1016/j.expneurol.2010.08.017]. [PMID: 20736006].
[13]
Plantman, S.; Ng, K.C.; Lu, J.; Davidsson, J.; Risling, M. Characterization of a novel rat model of penetrating traumatic brain injury. J. Neurotrauma, 2012, 29(6), 1219-1232. [http://dx.doi.org/10.1089/neu.2011.2182]. [PMID: 22181060].
[14]
Santiago, L.F.; Rocha, E.G.; Freire, M.A.M.; Dias, I.A.; Lent, R.; Houzel, J.C.; Picanço-Diniz, C.W.; Pereira, A., Jr; Franca, J.G. The organizational variability of the rodent somatosensory cortex. Rev. Neurosci., 2007, 18(3-4), 283-294. [http://dx.doi.org/10.1515/REVNEURO.2007.18.3-4.283]. [PMID: 18019610].
[15]
Lopes, R.S.; Cardoso, M.M.; Sampaio, A.O.; Barbosa, M.S., Jr; Souza, C.C.; Silva, D.A. M.C.; Ferreira, E.M.; Freire, M.A.M.; Lima, R.R.; Gomes-Leal, W. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J. Biosci., 2016, 41(3), 381-394. [http://dx.doi.org/10.1007/s12038-016-9621-1]. [PMID: 27581930].
[16]
Freire, M.A.M.; Oliveira, R.B.; Picanço-Diniz, C.W.; Pereira, A., Jr Differential effects of methylmercury intoxication in the rat’s barrel field as evidenced by NADPH diaphorase histochemistry. Neurotoxicology, 2007, 28(1), 175-181. [http://dx.doi.org/10.1016/j.neuro.2006.06.007]. [PMID: 16930717].
[17]
Norrara, B.; Fiuza, F.P.; Arrais, A.C.; Costa, I.M.; Santos, J.R.; Engelberth, R.C.G.J.; Cavalcante, J.S.; Guzen, F.P.; Cavalcanti, J.R.L.P.; Freire, M.A.M. Pattern of tyrosine hydroxylase expression during aging of mesolimbic pathway of the rat. J. Chem. Neuroanat., 2018, 92, 83-91. [http://dx.doi.org/10.1016/j.jchemneu.2018.05.004]. [PMID: 29842891].
[18]
Pereira, A., Jr; Freire, M.A.M.; Bahia, C.P.; Franca, J.G.; Picanço-Diniz, C.W. The barrel field of the adult mouse SmI cortex as revealed by NADPH-diaphorase histochemistry. Neuroreport, 2000, 11(9), 1889-1892. [http://dx.doi.org/10.1097/00001756-200006260-00017]. [PMID: 10884038].
[19]
Sachan, A.; Singh, S.; Singh, H.K.; Shankar, P.; Kumar, D.; Sachan, A.K.; Nath, R.; Dixit, R. An experimental study to evaluate the effect of mucuna pruriens on learning and memory in mice. Int. J. Innov. Sci. Res., 2015, 4, 144-148.
[20]
Li, L.; Hou, X.; Xu, R.; Liu, C.; Tu, M. Research review on the pharmacological effects of astragaloside IV. Fundam. Clin. Pharmacol., 2017, 31(1), 17-36. [http://dx.doi.org/10.1111/fcp.12232]. [PMID: 27567103].
[21]
Xu, M.; Yin, J.; Xie, L.; Zhang, J.; Zou, C.; Zou, J.; Liu, F.; Ju, W.; Li, P. Pharmacokinetics and tolerance of toal astragalosides after intravenous infusion of astragalosides injection in healthy Chinese volunteers. Phytomedicine, 2013, 20(12), 1105-1111. [http://dx.doi.org/10.1016/j.phymed.2013.05.004]. [PMID: 23838148].
[22]
Ren, S.; Zhang, H.; Mu, Y.; Sun, M.; Liu, P. Pharmacological effects of Astragaloside IV: a literature review. J. Tradit. Chin. Med., 2013, 33(3), 413-416. [http://dx.doi.org/10.1016/S0254-6272(13)60189-2]. [PMID: 24024343].
[23]
Wagner, H.; Bauer, R.; Xiao, P.G.; Chen, J.M.; Michler, G. Chinese Drug Monographs and Analysis: Radix Astragali; Huangqi, 1997, pp. 1-17.
[24]
Zheng, X.Y. Pharmacopoeia of the Peoples Republic of China, Chinese edn.; , 2005, Vol. 1, .
[25]
Li, Z.P.; Cao, Q. Effects of astragaloside IV on myocardial calcium transport and cardiac function in ischemic rats. Acta Pharmacol. Sin., 2002, 23(10), 898-904. [PMID: 12370095].
[26]
Yang, J.; Wang, H.X.; Zhang, Y.J.; Yang, Y.H.; Lu, M.L.; Zhang, J.; Li, S.T.; Zhang, S.P.; Li, G. Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кB signaling pathway in isoproterenol-induced myocardial hypertrophy. J. Ethnopharmacol., 2013, 150(3), 1062-1070. [http://dx.doi.org/10.1016/j.jep.2013.10.017]. [PMID: 24432369].
[27]
Zhang, W.D.; Zhang, C.; Liu, R.H.; Li, H.L.; Zhang, J.T.; Mao, C.; Moran, S.; Chen, C.L. Preclinical pharmacokinetics and tissue distribution of a natural cardioprotective agent astragaloside IV in rats and dogs. Life Sci., 2006, 79(8), 808-815. [http://dx.doi.org/10.1016/j.lfs.2006.02.032]. [PMID: 16564551].
[28]
Qu, Y.Z.; Li, M.; Zhao, Y.L.; Zhao, Z.W.; Wei, X.Y.; Liu, J.P.; Gao, L.; Gao, G.D. Astragaloside IV attenuates cerebral ischemia-reperfusion-induced increase in permeability of the blood-brain barrier in rats. Eur. J. Pharmacol., 2009, 606(1-3), 137-141. [http://dx.doi.org/10.1016/j.ejphar.2009.01.022]. [PMID: 19374856].
[29]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90. [http://dx.doi.org/10.4103/0973-7847.99898]. [PMID: 23055633].
[30]
da Costa, I.M.; de Moura Freire, M.A.; de Paiva Cavalcanti, J.R.L.; de Araújo, D.P.; Norrara, B.; Moreira Rosa, I.M.M.; de Azevedo, E.P.; do Rego, A.C.M.; Filho, I.A.; Guzen, F.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: A systematic review. Curr. Neuropharmacol., 2019, 17(5), 406-421. [http://dx.doi.org/10.2174/0929867325666180117112610]. [PMID: 29338678].
[31]
Chan, W.S.; Durairajan, S.S.; Lu, J.H.; Wang, Y.; Xie, L.X.; Kum, W.F.; Koo, I.; Yung, K.K.; Li, M. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture. Neurochem. Int., 2009, 55(6), 414-422. [http://dx.doi.org/10.1016/j.neuint.2009.04.012]. [PMID: 19409437].
[32]
Zhang, X.; Chen, J. The mechanism of astragaloside IV promoting sciatic nerve regeneration. Neural Regen. Res., 2013, 8(24), 2256-2265. [PMID: 25206535].
[33]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91. [http://dx.doi.org/10.3389/fnana.2015.00091]. [PMID: 26217195].
[34]
Ding, Y.M.; Jaumotte, J.D.; Signore, A.P.; Zigmond, M.J. Effects of 6-hydroxydopamine on primary cultures of substantia nigra: specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor. J. Neurochem., 2004, 89(3), 776-787. [http://dx.doi.org/10.1111/j.1471-4159.2004.02415.x]. [PMID: 15086533].
[35]
Perese, D.A.; Ulman, J.; Viola, J.; Ewing, S.E.; Bankiewicz, K.S.A.A. 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res., 1989, 494(2), 285-293. [http://dx.doi.org/10.1016/0006-8993(89)90597-0]. [PMID: 2528389].
[36]
Schmidt, N.; Ferger, B. Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm. (Vienna), 2001, 108(11), 1263-1282. [http://dx.doi.org/10.1007/s007020100004]. [PMID: 11768626].
[37]
Zhang, Z.G.; Wu, L.; Wang, J.L.; Yang, J.D.; Zhang, J.; Zhang, J.; Li, L.H.; Xia, Y.; Yao, L.B.; Qin, H.Z.; Gao, G.D. Astragaloside IV prevents MPP+-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol. Cell. Biochem., 2012, 364(1-2), 209-216. [http://dx.doi.org/10.1007/s11010-011-1219-1]. [PMID: 22278385].
[38]
Kalimuthu, S.; Se-Kwon, K. Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int. J. Mol. Sci., 2013, 14(2), 2334-2354. [http://dx.doi.org/10.3390/ijms14022334]. [PMID: 23348928].
[39]
Levy, O.A.; Malagelada, C.; Greene, L.A. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis, 2009, 14(4), 478-500. [http://dx.doi.org/10.1007/s10495-008-0309-3]. [PMID: 19165601].
[40]
da Costa, I.M.; Cavalcanti, J.R.L.P.; de Queiroz, D.B.; de Azevedo, E.P.; do Rêgo, A.C.M.; Araújo, F.I.; Parente, P.; Botelho, M.A.; Guzen, F.P. Supplementation with herbal extracts to promote behavioral and neuroprotective effects in experimental models of Parkinson’s disease: A systematic review. Phytother. Res., 2017, 31(7), 959-970. [http://dx.doi.org/10.1002/ptr.5813]. [PMID: 28544038].
[41]
Cole, G.M.; Frautschy, S.A. Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr. Health, 2006, 18(3), 249-259. [http://dx.doi.org/10.1177/026010600601800307]. [PMID: 17180870].
[42]
Kasper, D.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, J.L.; Loscalzo, J. Harrison’s Principles of Internal Medicine, 19th ed; , 2015.
[43]
Machado, A.; Herrera, A.J.; de Pablos, R.M.; Espinosa-Oliva, A.M.; Sarmiento, M.; Ayala, A.; Venero, J.L.; Santiago, M.; Villarán, R.F.; Delgado-Cortés, M.J.; Argüelles, S.; Cano, J. Chronic stress as a risk factor for Alzheimer’s disease. Rev. Neurosci., 2014, 25(6), 785-804. [http://dx.doi.org/10.1515/revneuro-2014-0035]. [PMID: 25178904].
[44]
Dartigues, J.F. Alzheimer’s disease: a global challenge for the 21st century. Lancet Neurol., 2009, 8(12), 1082-1083. [http://dx.doi.org/10.1016/S1474-4422(09)70298-4]. [PMID: 19909903].
[45]
Sun, Q.; Jia, N.; Wang, W.; Jin, H.; Xu, J.; Hu, H. Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening. PLoS One, 2014, 9(6)e98866 [http://dx.doi.org/10.1371/journal.pone.0098866]. [PMID: 24905226].
[46]
Halestrap, A.P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem. Soc. Trans., 2006, 34(Pt 2), 232-237. [http://dx.doi.org/10.1042/BST0340232]. [PMID: 16545083].
[47]
Dong, H.; Yuede, C.M.; Yoo, H.S.; Martin, M.V.; Deal, C.; Mace, A.G.; Csernansky, J.G. Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576 mice. Neuroscience, 2008, 155(1), 154-163. [http://dx.doi.org/10.1016/j.neuroscience.2008.05.017]. [PMID: 18571864].
[48]
Li, W.Z.; Li, W.P.; Zhang, W.; Yin, Y.Y.; Sun, X.X.; Zhou, S.S.; Xu, X.Q.; Tao, C.R. Protective effect of extract of Astragalus on learning and memory impairments and neurons’ apoptosis induced by glucocorticoids in 12-month-old male mice. Anat. Rec. (Hoboken), 2011, 294(6), 1003-1014. [http://dx.doi.org/10.1002/ar.21386]. [PMID: 21538932].
[49]
Boissonneault, V.; Plante, I.; Rivest, S.; Provost, P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J. Biol. Chem., 2009, 284(4), 1971-1981. [http://dx.doi.org/10.1074/jbc.M807530200]. [PMID: 18986979].
[50]
Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J. Neurosci., 2011, 31(21), 7840-7847. [http://dx.doi.org/10.1523/JNEUROSCI.0730-11.2011]. [PMID: 21613497].
[51]
Morris, R.G.; Garrud, P.; Rawlins, J.N.; O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature, 1982, 297(5868), 681-683. [http://dx.doi.org/10.1038/297681a0]. [PMID: 7088155].
[52]
Mancini, M.; Nicholson, D.W.; Roy, S.; Thornberry, N.A.; Peterson, E.P.; Casciola-Rosen, L.A.; Rosen, A. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol., 1998, 140(6), 1485-1495. [http://dx.doi.org/10.1083/jcb.140.6.1485]. [PMID: 9508780].
[53]
Mulugeta, S.; Maguire, J.A.; Newitt, J.L.; Russo, S.J.; Kotorashvili, A.; Beers, M.F. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(3), L720-L729. [http://dx.doi.org/10.1152/ajplung.00025.2007]. [PMID: 17586700].
[54]
Haiyan, H.; Rensong, Y.; Guoqin, J.; Xueli, Z.; Huaying, X.; Yanwu, X. Effect of Astragaloside IV on neural stem cell transplantation in Alzheimer’s disease rat models. Evid. Based Complement. Alternat. Med., 2016, •••20163106980 [http://dx.doi.org/10.1155/2016/3106980]. [PMID: 27034688].
[55]
Hitoshi, S.; Alexson, T.; Tropepe, V.; Donoviel, D.; Elia, A.J.; Nye, J.S.; Conlon, R.A.; Mak, T.W.; Bernstein, A.; van der Kooy, D. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev., 2002, 16(7), 846-858. [http://dx.doi.org/10.1101/gad.975202]. [PMID: 11937492].
[56]
Cheng, C.Y.; Yao, C.H.; Liu, B.S.; Liu, C.J.; Chen, G.W.; Chen, Y.S. The role of astragaloside in regeneration of the peripheral nerve system. J. Biomed. Mater. Res. A, 2006, 76(3), 463-469. [http://dx.doi.org/10.1002/jbm.a.30249]. [PMID: 16315188].
[57]
Mittal, K.; Katare, D.P. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: A review. Diabetes Metab. Syndr., 2016, 10(2)(Suppl. 1), S144-S149. [http://dx.doi.org/10.1016/j.dsx.2016.01.021]. [PMID: 26907971].
[58]
Escribano, L.; Simón, A.M.; Gimeno, E.; Cuadrado-Tejedor, M.; López de Maturana, R.; García-Osta, A.; Ricobaraza, A.; Pérez-Mediavilla, A.; Del Río, J.; Frechilla, D. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 2010, 35(7), 1593-1604. [http://dx.doi.org/10.1038/npp.2010.32]. [PMID: 20336061].
[59]
Mandrekar-Colucci, S.; Karlo, J.C.; Landreth, G.E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J. Neurosci., 2012, 32(30), 10117-10128. [http://dx.doi.org/10.1523/JNEUROSCI.5268-11.2012]. [PMID: 22836247].
[60]
Sastre, M.; Klockgether, T.; Heneka, M.T. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int. J. Dev. Neurosci., 2006, 24(2-3), 167-176. [http://dx.doi.org/10.1016/j.ijdevneu.2005.11.014]. [PMID: 16472958].
[61]
Chan, A.; Tchantchou, F.; Rogers, E.J.; Shea, T.B. Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine. J. Neurochem., 2009, 110(3), 831-836. [http://dx.doi.org/10.1111/j.1471-4159.2009.06177.x]. [PMID: 19457069].
[62]
Wang, X.; Wang, Y.; Hu, J.P.; Yu, S.; Li, B.K.; Cui, Y.; Ren, L.; Zhang, L.D. Astragaloside IV, a natural PPARgamma agonist, reduces Abeta production in Alzheimer’s disease through inhibition of BACE1. Mol. Neurobiol., 2017, 54(4), 2939-2949. [http://dx.doi.org/10.1007/s12035-016-9874-6]. [PMID: 27023226].
[63]
Chang, C.P.; Liu, Y.F.; Lin, H.J.; Hsu, C.C.; Cheng, B.C.; Liu, W.P.; Lin, M.T.; Hsu, S.F.; Chang, L.S.; Lin, K.C. Beneficial effect of Astragaloside on Alzheimer’s disease condition using cultured primary cortical cells under beta-amyloid exposure. Mol. Neurobiol., 2016, 53(10), 7329-7340. [http://dx.doi.org/10.1007/s12035-015-9623-2]. [PMID: 26696494].
[64]
Yang, W.T.; Zheng, X.W.; Chen, S.; Shan, C.S.; Xu, Q.Q.; Zhu, J.Z.; Bao, X.Y.; Lin, Y.; Zheng, G.Q.; Wang, Y. Chinese herbal medicine for Alzheimer’s disease: Clinical evidence and possible mechanism of neurogenesis. Biochem. Pharmacol., 2017, 141, 143-155. [http://dx.doi.org/10.1016/j.bcp.2017.07.002]. [PMID: 28690138].
[65]
He, Y.; Du, M.; Gao, Y.; Liu, H.; Wang, H.; Wu, X.; Wang, Z. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels. PLoS One, 2013, 8(10)e76495 [http://dx.doi.org/10.1371/journal.pone.0076495]. [PMID: 24124567].
[66]
He, Y.X.; Du, M.; Shi, H.L.; Huang, F.; Liu, H.S.; Wu, H.; Zhang, B.B.; Dou, W.; Wu, X.J.; Wang, Z.T. Astragalosides from Radix Astragali benefits experimental autoimmune encephalomyelitis in C57BL /6 mice at multiple levels. BMC Complement. Altern. Med., 2014, 14, 313. [http://dx.doi.org/10.1186/1472-6882-14-313]. [PMID: 25150364].
[67]
Campanella, M.; Sciorati, C.; Tarozzo, G.; Beltramo, M. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke, 2002, 33(2), 586-592. [http://dx.doi.org/10.1161/hs0202.103399]. [PMID: 11823674].
[68]
Clark, R.K.; Lee, E.V.; Fish, C.J.; White, R.F.; Price, W.J.; Jonak, Z.L.; Feuerstein, G.Z.; Barone, F.C. Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res. Bull., 1993, 31(5), 565-572. [http://dx.doi.org/10.1016/0361-9230(93)90124-T]. [PMID: 8495380].
[69]
Kriz, J.; Lalancette-Hébert, M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol., 2009, 117(5), 497-509. [http://dx.doi.org/10.1007/s00401-009-0496-1]. [PMID: 19225790].
[70]
Shichita, T.; Hasegawa, E.; Kimura, A.; Morita, R.; Sakaguchi, R.; Takada, I.; Sekiya, T.; Ooboshi, H.; Kitazono, T.; Yanagawa, T.; Ishii, T.; Takahashi, H.; Mori, S.; Nishibori, M.; Kuroda, K.; Akira, S.; Miyake, K.; Yoshimura, A. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med., 2012, 18(6), 911-917. [http://dx.doi.org/10.1038/nm.2749]. [PMID: 22610280].
[71]
Li, M.; Li, H.; Fang, F.; Deng, X.; Ma, S. Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms. Neurosci. Lett., 2017, 639, 114-119. [http://dx.doi.org/10.1016/j.neulet.2016.12.046]. [PMID: 28011393].
[72]
Kim, S.; Kang, I.H.; Nam, J.B.; Cho, Y.; Chung, D.Y.; Kim, S.H.; Kim, J.S.; Cho, Y.D.; Hong, E.K.; Sohn, N.W.; Shin, J.W. Ameliorating the effect of astragaloside IV on learning and memory deficit after chronic cerebral hypoperfusion in rats. Molecules, 2015, 20(2), 1904-1921. [http://dx.doi.org/10.3390/molecules20021904]. [PMID: 25625683].
[73]
Wang, H.L.; Zhou, Q.H.; Xu, M.B.; Zhou, X.L.; Zheng, G.Q. Astragaloside IV for experimental focal cerebral ischemia: Preclinical evidence and possible mechanisms. Oxid. Med. Cell. Longev., 2017, •••20178424326 [http://dx.doi.org/10.1155/2017/8424326]. [PMID: 28303172].
[74]
Li, M.; Qu, Y.Z.; Zhao, Z.W.; Wu, S.X.; Liu, Y.Y.; Wei, X.Y.; Gao, L.; Gao, G.D. Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem. Int., 2012, 60(5), 458-465. [http://dx.doi.org/10.1016/j.neuint.2012.01.026]. [PMID: 22342823].
[75]
Yin, Y.Y.; Li, W.P.; Gong, H.L.; Zhu, F.F.; Li, W.Z.; Wu, G.C. Protective effect of astragaloside on focal cerebral ischemia/reperfusion injury in rats. Am. J. Chin. Med., 2010, 38(3), 517-527. [http://dx.doi.org/10.1142/S0192415X10008020]. [PMID: 20503469].
[76]
Rosenberg, G.A. Neurological diseases in relation to the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(7), 1139-1151. [http://dx.doi.org/10.1038/jcbfm.2011.197]. [PMID: 22252235].
[77]
Date, I.; Takagi, N.; Takagi, K.; Tanonaka, K.; Funakoshi, H.; Matsumoto, K.; Nakamura, T.; Takeo, S. Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood-brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci. Lett., 2006, 407(2), 141-145. [http://dx.doi.org/10.1016/j.neulet.2006.08.050]. [PMID: 16973272].
[78]
Li, M.; Ma, R.N.; Li, L.H.; Qu, Y.Z.; Gao, G.D. Astragaloside IV reduces cerebral edema post-ischemia/reperfusion correlating the suppression of MMP-9 and AQP4. Eur. J. Pharmacol., 2013, 715(1-3), 189-195. [http://dx.doi.org/10.1016/j.ejphar.2013.05.022]. [PMID: 23747593].
[79]
Shao, A.; Guo, S.; Tu, S.; Ammar, A.B.; Tang, J.; Hong, Y.; Wu, H.; Zhang, J. Astragaloside IV alleviates early brain injury following experimental subarachnoid hemorrhage in rats. Int. J. Med. Sci., 2014, 11(10), 1073-1081. [http://dx.doi.org/10.7150/ijms.9282]. [PMID: 25136262].
[80]
Chen, C.C.; Lee, H.C.; Chang, J.H.; Chen, S.S.; Li, T.C.; Tsai, C.H.; Cho, D.Y.; Hsieh, C.L. Chinese herb Astragalus membranaceus enhances recovery of hemorrhagic stroke: Double-blind, placebo-controlled, randomized study. Evid. Based Complement. Alternat. Med., 2012, 2012708452 [PMID: 22474516].
[81]
Sun, J.; Chen, X.L.; Zheng, J.Y.; Zhou, J.W.; Ma, Z.L. Astragaloside IV protects new born rats from anesthesia-induced apoptosis in the developing brain. Exp. Ther. Med., 2016, 12(3), 1829-1835. [http://dx.doi.org/10.3892/etm.2016.3519]. [PMID: 27588101].
[82]
Yang, J.; Li, J.; Lu, J.; Zhang, Y.; Zhu, Z.; Wan, H. Synergistic protective effect of astragaloside IV-tetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia. J. Ethnopharmacol., 2012, 140(1), 64-72. [http://dx.doi.org/10.1016/j.jep.2011.12.023]. [PMID: 22207211].
[83]
Liu, X.; Zhang, J.; Wang, S.; Qiu, J.; Yu, C. Astragaloside IV attenuates the H2O2-induced apoptosis of neuronal cells by inhibiting α-synuclein expression via the p38 MAPK pathway. Int. J. Mol. Med., 2017, 40(6), 1772-1780. [http://dx.doi.org/10.3892/ijmm.2017.3157]. [PMID: 29039448].
[84]
Liu, H.S.; Shi, H.L.; Huang, F.; Peterson, K.E.; Wu, H.; Lan, Y.Y.; Zhang, B.B.; He, Y.X.; Woods, T.; Du, M.; Wu, X.J.; Wang, Z.T. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci. Rep., 2016, 6, 19137. [http://dx.doi.org/10.1038/srep19137]. [PMID: 26750705].
[85]
Cao, J.; Chen, Z.; Zhu, Y.; Li, Y.; Guo, C.; Gao, K.; Chen, L.; Shi, X.; Zhang, X.; Yang, Z.; Wen, A. Huangqi-Honghua combination and its main components ameliorate cerebral infarction with Qi deficiency and blood stasis syndrome by antioxidant action in rats. J. Ethnopharmacol., 2014, 155(2), 1053-1060. [http://dx.doi.org/10.1016/j.jep.2014.05.061]. [PMID: 24960183].
[86]
Cao, Y.L.; Chen, C.F.; Wang, A.W.; Feng, Y.B.; Cheng, H.X.; Zhang, W.W.; Xin, W. Changes of peripheral-type benzodiazepine receptors in the penumbra area after cerebral ischemia-reperfusion injury and effects of astragaloside IV on rats. Genet. Mol. Res., 2015, 14(1), 277-285. [http://dx.doi.org/10.4238/2015.January.23.1]. [PMID: 25729960].