Mini-Review Article

NLRP3抑制剂的发现及其治疗潜力的研究进展

卷 28, 期 3, 2021

发表于: 23 January, 2020

页: [569 - 582] 页: 14

弟呕挨: 10.2174/0929867327666200123093544

价格: $65

conference banner
摘要

背景:炎症是人体免疫系统对病原体、外部伤害、化学或辐射影响引起的刺激物的快速协调反应。NLRP3炎性小体是先天免疫系统的重要组成部分。NLRP3炎症小体的功能障碍与多种复杂疾病的发病机制有关,如无法控制的感染、自身免疫性疾病、神经退行性疾病和代谢紊乱。本文就NLRP3炎症小体抑制剂的发现及其治疗潜力的研究进展作一综述。 方法:根据NLRP3的激活机制,从NLRP3抑制剂的来源、结构、生物活性和作用机制等方面对几种NLRP3抑制剂进行了描述和总结。结构-活性关系(SAR)也列出了不同的支架,以及有效的药效基因。 结果:这篇综述包括了一百多篇论文。从2001年最早的格列本脲到2019年的最新进展,NLRP3抑制剂的发展已被描述。目前已对几种抑制剂进行了分类,如基于格列本脲的JC系列和基于2APB的BC系列。许多其他小分子,如NLRP3抑制剂也被列出。介绍了SAR在相关治疗模型中的应用,以及五种不同的作用机制。 结论:

关键词: NLRP3炎症小体,抑制剂,炎症性疾病,白细胞介素-1β,先天免疫,治疗潜力

[1]
Guo, H.; Callaway, J.B.; Ting, J.P.Y. Inflammasomes: mechanism of action, role in disease and therapeutics. Nat. Med., 2015, 21(7), 677-687.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[2]
Zhang, Y.; Gu, R.; Jia, J.; Hou, T.; Zheng, L.T.; Zhen, X. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity suppresses microglia-mediated inflammatory responses. Clin. Exp. Pharmacol. Physiol., 2016, 43(11), 1134-1144.
[http://dx.doi.org/10.1111/1440-1681.12647] [PMID: 27543936]
[3]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[4]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[5]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[http://dx.doi.org/10.1016/j.cell.2010.01.040] [PMID: 20303873]
[6]
Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell, 2002, 10(2), 417-426.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[7]
Li, Y.; Ju, D. The application, neurotoxicity and related mechanism of cationic polymers; Neurotox. Nanomat. Nanomed, 2017, pp. pp. 285-329.
[http://dx.doi.org/10.1016/B978-0-12-804598-5.00012-X]
[8]
Chen, J.; Chen, Z.J. PtdIns4P on dispersed trans-golgi network mediates NLRP3 inflammasome activation. Nature, 2018, 564(7734), 71-76.
[http://dx.doi.org/10.1038/s41586-018-0761-3] [PMID: 30487600]
[9]
Strowig, T.; Henao-Mejia, J.; Elinav, E.; Flavell, R. Inflammasomes in health and disease. Nature, 2012, 481(7381), 278-286.
[http://dx.doi.org/10.1038/nature10759] [PMID: 22258606]
[10]
Lamkanfi, M.; Dixit, V.M. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev., 2009, 227(1), 95-105.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00730.x] [PMID: 19120479]
[11]
Zhong, Y.; Kinio, A.; Saleh, M. Functions of NOD-like receptors in human diseases. Front. Immunol., 2013, 4, 333.
[http://dx.doi.org/10.3389/fimmu.2013.00333] [PMID: 24137163]
[12]
Inoue, M.; Shinohara, M.L. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis., 2013, 2013859145
[http://dx.doi.org/10.1155/2013/859145] [PMID: 23365725]
[13]
Próchnicki, T.; Mangan, M.S.; Latz, E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000 Res., 2016, 5, F1000.
[http://dx.doi.org/10.12688/f1000research.8614.1] [PMID: 27508077]
[14]
Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis., 2019, 10(2), 128.
[http://dx.doi.org/10.1038/s41419-019-1413-8] [PMID: 30755589]
[15]
Pelegrin, P.; Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J., 2006, 25(21), 5071-5082.
[http://dx.doi.org/10.1038/sj.emboj.7601378] [PMID: 17036048]
[16]
Compan, V.; Baroja-Mazo, A.; López-Castejón, G.; Gomez, A.I.; Martínez, C.M.; Angosto, D.; Montero, M.T.; Herranz, A.S.; Bazán, E.; Reimers, D.; Mulero, V.; Pelegrín, P. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity, 2012, 37(3), 487-500.
[http://dx.doi.org/10.1016/j.immuni.2012.06.013] [PMID: 22981536]
[17]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[18]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[19]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[20]
Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol., 2016, 13(2), 148-159.
[http://dx.doi.org/10.1038/cmi.2015.95] [PMID: 26549800]
[21]
Ozaki, E.; Campbell, M.; Doyle, S.L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm. Res., 2015, 8, 15-27.
[http://dx.doi.org/10.2147/jir.s51250] [PMID: 25653548]
[22]
Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol., 2015, 6(262), 262.
[http://dx.doi.org/10.3389/fphar.2015.00262] [PMID: 26594174]
[23]
Lamkanfi, M.; Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, 28, 137-161.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155745] [PMID: 22974247]
[24]
Lee, H.M.; Kim, J.J.; Kim, H.J.; Shong, M.; Ku, B.J.; Jo, E.K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes, 2013, 62(1), 194-204.
[http://dx.doi.org/10.2337/db12-0420] [PMID: 23086037]
[25]
Jin, Y.; Fu, J. Novel insights into the NLRP 3 inflammasome in atherosclerosis. J. Am. Heart Assoc., 2019, 8(12)e012219
[http://dx.doi.org/10.1161/JAHA.119.012219] [PMID: 31184236]
[26]
Sandanger, Ø.; Ranheim, T.; Vinge, L.E.; Bliksøen, M.; Alfsnes, K.; Finsen, A.V.; Dahl, C.P.; Askevold, E.T.; Florholmen, G.; Christensen, G.; Fitzgerald, K.A.; Lien, E.; Valen, G.; Espevik, T.; Aukrust, P.; Yndestad, A. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc. Res., 2013, 99(1), 164-174.
[http://dx.doi.org/10.1093/cvr/cvt091] [PMID: 23580606]
[27]
Ito, M.; Shichita, T.; Okada, M.; Komine, R.; Noguchi, Y.; Yoshimura, A.; Morita, R. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat. Commun., 2015, 6, 7360.
[http://dx.doi.org/10.1038/ncomms8360] [PMID: 26059659]
[28]
Hong, P.; Gu, R.N.; Li, F.X.; Xiong, X.X.; Liang, W.B.; You, Z.J.; Zhang, H.F. NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J. Neuroinflammation, 2019, 16(1), 121.
[http://dx.doi.org/10.1186/s12974-019-1498-0] [PMID: 31174550]
[29]
Zhang, Y.; Liu, L.; Liu, Y.Z.; Shen, X.L.; Wu, T.Y.; Zhang, T.; Wang, W.; Wang, Y.X.; Jiang, C.L. NLRP3 Inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int. J. Neuropsychopharmacol., 2015, 18(8)pyv006
[http://dx.doi.org/10.1093/ijnp/pyv006] [PMID: 25603858]
[30]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[31]
Kim, Y.K.; Na, K.S.; Myint, A.M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 277-284.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.008] [PMID: 26111720]
[32]
Szabo, G.; Csak, T. Inflammasomes in liver diseases. J. Hepatol., 2012, 57(3), 642-654.
[http://dx.doi.org/10.1016/j.jhep.2012.03.035] [PMID: 22634126]
[33]
Anders, H.J.; Muruve, D.A. The inflammasomes in kidney disease. J. Am. Soc. Nephrol., 2011, 22(6), 1007-1018.
[http://dx.doi.org/10.1681/ASN.2010080798] [PMID: 21566058]
[34]
De Nardo, D.; De Nardo, C.M.; Latz, E. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am. J. Pathol., 2014, 184(1), 42-54.
[http://dx.doi.org/10.1016/j.ajpath.2013.09.007] [PMID: 24183846]
[35]
Huang, X.L.; Wei, X.C.; Guo, L.Q.; Zhao, L.; Chen, X.H.; Cui, Y.D.; Yuan, J.; Chen, D.F.; Zhang, J. The therapeutic effects of jaceosidin on lipopolysaccharide-induced acute lung injury in mice. J. Pharmacol. Sci., 2019, 140(3), 228-235.
[http://dx.doi.org/10.1016/j.jphs.2019.07.004] [PMID: 31358372]
[36]
Youm, Y.H.; Grant, R.W.; McCabe, L.R.; Albarado, D.C.; Nguyen, K.Y.; Ravussin, A.; Pistell, P.; Newman, S.; Carter, R.; Laque, A.; Münzberg, H.; Rosen, C.J.; Ingram, D.K.; Salbaum, J.M.; Dixit, V.D. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab., 2013, 18(4), 519-532.
[http://dx.doi.org/10.1016/j.cmet.2013.09.010] [PMID: 24093676]
[37]
Mezzaroma, E.; Toldo, S.; Farkas, D.; Seropian, I.M.; Van Tassell, B.W.; Salloum, F.N.; Kannan, H.R.; Menna, A.C.; Voelkel, N.F.; Abbate, A. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19725-19730.
[http://dx.doi.org/10.1073/pnas.1108586108] [PMID: 22106299]
[38]
Davis, B.K.; Wen, H.; Ting, J.P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol., 2011, 29, 707-735.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101405] [PMID: 21219188]
[39]
Martinon, F.; Mayor, A.; Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol., 2009, 27, 229-265.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132715] [PMID: 19302040]
[40]
Perregaux, D.G.; McNiff, P.; Laliberte, R.; Hawryluk, N.; Peurano, H.; Stam, E.; Eggler, J.; Griffiths, R.; Dombroski, M.A.; Gabel, C.A. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther., 2001, 299(1), 187-197.
[PMID: 11561079]
[41]
Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.G.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A.J. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[42]
Salla, M.; Butler, M.S.; Pelingon, R.; Kaeslin, G.; Croker, D.E.; Reid, J.C.; Baek, J.M.; Bernhardt, P.V.; Gillam, E.M.; Cooper, M.A.; Robertson, A.A. Identification, synthesis, and biological evaluation of the major human metabolite of NLRP3 inflammasome inhibitor MCC950. ACS Med. Chem. Lett., 2016, 7(12), 1034-1038.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00198] [PMID: 27994733]
[43]
Hill, J.R.; Coll, R.C.; Sue, N.; Reid, J.C.; Dou, J.; Holley, C.L.; Pelingon, R.; Dickinson, J.B.; Biden, T.J.; Schroder, K.; Cooper, M.A.; Robertson, A.A.B. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem, 2017, 12(17), 1449-1457.
[http://dx.doi.org/10.1002/cmdc.201700270] [PMID: 28703484]
[44]
Marchetti, C.; Chojnacki, J.; Toldo, S.; Mezzaroma, E.; Tranchida, N.; Rose, S.W.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol., 2014, 63(4), 316-322.
[http://dx.doi.org/10.1097/FJC.0000000000000053] [PMID: 24336017]
[45]
Marchetti, C.; Toldo, S.; Chojnacki, J.; Mezzaroma, E.; Liu, K.; Salloum, F.N.; Nordio, A.; Carbone, S.; Mauro, A.G.; Das, A.; Zalavadia, A.A.; Halquist, M.S.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J. Cardiovasc. Pharmacol., 2015, 66(1), 1-8.
[http://dx.doi.org/10.1097/FJC.0000000000000247] [PMID: 25915511]
[46]
Yin, J.; Zhao, F.; Chojnacki, J.E.; Fulp, J.; Klein, W.L.; Zhang, S.; Zhu, X. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2018, 55(3), 1977-1987.
[http://dx.doi.org/10.1007/s12035-017-0467-9] [PMID: 28255908]
[47]
Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00733] [PMID: 29877709]
[48]
Guo, C.; Fulp, J.W.; Jiang, Y.; Li, X.; Chojnacki, J.E.; Wu, J.; Wang, X.Y.; Zhang, S. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a Novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci., 2017, 8(10), 2194-2201.
[http://dx.doi.org/10.1021/acschemneuro.7b00124] [PMID: 28653829]
[49]
Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00733] [PMID: 29877709]
[50]
Bootman, M.D.; Berridge, M.J.; Roderick, H.L. Calcium signalling: more messengers, more channels, more complexity. Curr. Biol., 2002, 12(16), R563-R565.
[http://dx.doi.org/10.1016/S0960-9822(02)01055-2] [PMID: 12194839]
[51]
Peppiatt, C.M.; Collins, T.J.; Mackenzie, L.; Conway, S.J.; Holmes, A.B.; Bootman, M.D.; Berridge, M.J.; Seo, J.T.; Roderick, H.L. 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium, 2003, 34(1), 97-108.
[http://dx.doi.org/10.1016/S0143-4160(03)00026-5] [PMID: 12767897]
[52]
Lee, G.S.; Subramanian, N.; Kim, A.I.; Aksentijevich, I.; Goldbach-Mansky, R.; Sacks, D.B.; Germain, R.N.; Kastner, D.L.; Chae, J.J. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012, 492(7427), 123-127.
[http://dx.doi.org/10.1038/nature11588] [PMID: 23143333]
[53]
Lopez-Castejon, G.; Luheshi, N.M.; Compan, V.; High, S.; Whitehead, R.C.; Flitsch, S.; Kirov, A.; Prudovsky, I.; Swanton, E.; Brough, D. Deubiquitinases regulate the activity of caspase-1 and interleukin-1β secretion via assembly of the inflammasome. J. Biol. Chem., 2013, 288(4), 2721-2733.
[http://dx.doi.org/10.1074/jbc.M112.422238] [PMID: 23209292]
[54]
Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.011] [PMID: 28943355]
[55]
Baldwin, A.G.; Tapia, V.S.; Swanton, T.; White, C.S.; Beswick, J.A.; Brough, D.; Freeman, S. Design, synthesis and evaluation of oxazaborine inhibitors of the NLRP3 inflammasome. ChemMedChem, 2018, 13(4), 312-320.
[http://dx.doi.org/10.1002/cmdc.201700731] [PMID: 29331080]
[56]
Cotter, D.G.; Schugar, R.C.; Crawford, P.A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(8), H1060-H1076.
[http://dx.doi.org/10.1152/ajpheart.00646.2012] [PMID: 23396451]
[57]
Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab., 2014, 25(1), 42-52.
[http://dx.doi.org/10.1016/j.tem.2013.09.002] [PMID: 24140022]
[58]
Tieu, K.; Perier, C.; Caspersen, C.; Teismann, P.; Wu, D.C.; Yan, S.D.; Naini, A.; Vila, M.; Jackson-Lewis, V.; Ramasamy, R.; Przedborski, S. D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest., 2003, 112(6), 892-901.
[http://dx.doi.org/10.1172/JCI200318797] [PMID: 12975474]
[59]
Lim, S.; Chesser, A.S.; Grima, J.C.; Rappold, P.M.; Blum, D.; Przedborski, S.; Tieu, K. D-β-hydroxybutyrate is protective in mouse models of Huntington’s disease. PLoS One, 2011, 6(9), e24620-e24620.
[http://dx.doi.org/10.1371/journal.pone.0024620] [PMID: 21931779]
[60]
Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; Kang, S.; Horvath, T.L.; Fahmy, T.M.; Crawford, P.A.; Biragyn, A.; Alnemri, E.; Dixit, V.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med., 2015, 21(3), 263-269.
[http://dx.doi.org/10.1038/nm.3804] [PMID: 25686106]
[61]
Yamanashi, T.; Iwata, M.; Kamiya, N.; Tsunetomi, K.; Kajitani, N.; Wada, N.; Iitsuka, T.; Yamauchi, T.; Miura, A.; Pu, S.; Shirayama, Y.; Watanabe, K.; Duman, R.S.; Kaneko, K. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci. Rep., 2017, 7(1), 7677.
[http://dx.doi.org/10.1038/s41598-017-08055-1] [PMID: 28794421]
[62]
He, Y.; Varadarajan, S.; Muñoz-Planillo, R.; Burberry, A.; Nakamura, Y.; Núñez, G. 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem., 2014, 289(2), 1142-1150.
[http://dx.doi.org/10.1074/jbc.M113.515080] [PMID: 24265316]
[63]
Wang, W.Y.; Wu, Y.C.; Wu, C.C. Prevention of platelet glycoprotein IIb/IIIa activation by 3,4-methylenedioxy-beta-nitrostyrene, a novel tyrosine kinase inhibitor. Mol. Pharmacol., 2006, 70(4), 1380-1389.
[http://dx.doi.org/10.1124/mol.106.023986] [PMID: 16837624]
[64]
Kim, J.H.; Kim, J.H.; Lee, G.E.; Lee, J.E.; Chung, I.K. Potent inhibition of human telomerase by nitrostyrene derivatives. Mol. Pharmacol., 2003, 63(5), 1117-1124.
[http://dx.doi.org/10.1124/mol.63.5.1117] [PMID: 12695540]
[65]
da Silva Corrêa, C.M.M.; Waters, W.A. Reactions of the free toluene-p-sulphonyl radical. Part I. Diagnostic reactions of free radicals. J. Chem. Soc. C. Organic., 1968, 1(0), 1874-1879.
[http://dx.doi.org/10.1039/J39680001874]]
[66]
Lee, J.; Rhee, M.H.; Kim, E.; Cho, J.Y. BAY 11-7082 is a broad-spectrum inhibitor with anti-inflammatory activity against multiple targets. Mediators Inflamm., 2012, 2012, 416036-416036.
[http://dx.doi.org/10.1155/2012/416036] [PMID: 22745523]
[67]
Strickson, S.; Campbell, D.G.; Emmerich, C.H.; Knebel, A.; Plater, L.; Ritorto, M.S.; Shpiro, N.; Cohen, P. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem. J., 2013, 451(3), 427-437.
[http://dx.doi.org/10.1042/BJ20121651] [PMID: 23441730]
[68]
Juliana, C.; Fernandes-Alnemri, T.; Wu, J.; Datta, P.; Solorzano, L.; Yu, J.W.; Meng, R.; Quong, A.A.; Latz, E.; Scott, C.P.; Alnemri, E.S. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem., 2010, 285(13), 9792-9802.
[http://dx.doi.org/10.1074/jbc.M109.082305] [PMID: 20093358]
[69]
Toldo, S.; Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol., 2018, 15(4), 203-214.
[http://dx.doi.org/10.1038/nrcardio.2017.161] [PMID: 29143812]
[70]
Marchetti, C.; Swartzwelter, B.; Koenders, M.I.; Azam, T.; Tengesdal, I.W.; Powers, N.; de Graaf, D.M.; Dinarello, C.A.; Joosten, L.A.B. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res. Ther., 2018, 20(1), 169-169.
[http://dx.doi.org/10.1186/s13075-018-1664-2] [PMID: 30075804]
[71]
Marchetti, C.; Swartzwelter, B.; Koenders, M.; Dinarello, C.; Joosten, L. OP0090 The human safe NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of experimental arthritis. Ann. Rheum. Dis., 2017, 76(Suppl. 2), 89-89.
[http://dx.doi.org/10.1136/annrheumdis-2017-eular.2775]]
[72]
Marchetti, C.; Swartzwelter, B.; Gamboni, F.; Neff, C.P.; Richter, K.; Azam, T.; Carta, S.; Tengesdal, I.; Nemkov, T.; D’Alessandro, A.; Henry, C.; Jones, G.S.; Goodrich, S.A.; St Laurent, J.P.; Jones, T.M.; Scribner, C.L.; Barrow, R.B.; Altman, R.D.; Skouras, D.B.; Gattorno, M.; Grau, V.; Janciauskiene, S.; Rubartelli, A.; Joosten, L.A.B.; Dinarello, C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl. Acad. Sci. USA, 2018, 115(7), E1530-E1539.
[http://dx.doi.org/10.1073/pnas.1716095115] [PMID: 29378952]
[73]
Duncan, J.A.; Bergstralh, D.T.; Wang, Y.; Willingham, S.B.; Ye, Z.; Zimmermann, A.G.; Ting, J.P. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 8041-8046.
[http://dx.doi.org/10.1073/pnas.0611496104] [PMID: 17483456]
[74]
Jiang, H.; He, H.; Chen, Y.; Huang, W.; Cheng, J.; Ye, J.; Wang, A.; Tao, J.; Wang, C.; Liu, Q.; Jin, T.; Jiang, W.; Deng, X.; Zhou, R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, 214(11), 3219-3238.
[http://dx.doi.org/10.1084/jem.20171419] [PMID: 29021150]
[75]
Cocco, M.; Garella, D.; Di Stilo, A.; Borretto, E.; Stevanato, L.; Giorgis, M.; Marini, E.; Fantozzi, R.; Miglio, G.; Bertinaria, M. Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. J. Med. Chem., 2014, 57(24), 10366-10382.
[http://dx.doi.org/10.1021/jm501072b] [PMID: 25418070]
[76]
Mastrocola, R.; Penna, C.; Tullio, F.; Femminò, S.; Nigro, D.; Chiazza, F.; Serpe, L.; Collotta, D.; Alloatti, G.; Cocco, M.; Bertinaria, M.; Pagliaro, P.; Aragno, M.; Collino, M. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell. Longev., 2016, 20165271251
[http://dx.doi.org/10.1155/2016/5271251] [PMID: 28053692]
[77]
Cocco, M.; Pellegrini, C.; Martínez-Banaclocha, H.; Giorgis, M.; Marini, E.; Costale, A.; Miglio, G.; Fornai, M.; Antonioli, L.; López-Castejón, G.; Tapia-Abellán, A.; Angosto, D.; Hafner-Bratkovič, I.; Regazzoni, L.; Blandizzi, C.; Pelegrín, P.; Bertinaria, M. Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J. Med. Chem., 2017, 60(9), 3656-3671.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01624] [PMID: 28410442]
[78]
Cocco, M.; Miglio, G.; Giorgis, M.; Garella, D.; Marini, E.; Costale, A.; Regazzoni, L.; Vistoli, G.; Orioli, M.; Massulaha-Ahmed, R.; Détraz-Durieux, I.; Groslambert, M.; Py, B.F.; Bertinaria, M. Design, synthesis, and evaluation of acrylamide derivatives as direct nlrp3 inflammasome inhibitors. ChemMedChem, 2016, 11(16), 1790-1803.
[http://dx.doi.org/10.1002/cmdc.201600055] [PMID: 26990578]
[79]
Abdullaha, M.; Mohammed, S.; Ali, M.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Discovery of quinazolin-4(3 H)-ones as NLRP3 inflammasome inhibitors: computational design, metal-free synthesis, and in vitro biological evaluation. J. Org. Chem., 2019, 84(9), 5129-5140.
[http://dx.doi.org/10.1021/acs.joc.9b00138] [PMID: 30896160]
[80]
Hu, Z.; Yan, C.; Liu, P.; Huang, Z.; Ma, R.; Zhang, C.; Wang, R.; Zhang, Y.; Martinon, F.; Miao, D.; Deng, H.; Wang, J.; Chang, J.; Chai, J. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science, 2013, 341(6142), 172-175.
[http://dx.doi.org/10.1126/science.1236381] [PMID: 23765277]
[81]
Hari, A.; Zhang, Y.; Tu, Z.; Detampel, P.; Stenner, M.; Ganguly, A.; Shi, Y. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci. Rep., 2014, 4, 7281.
[http://dx.doi.org/10.1038/srep07281] [PMID: 25445147]
[82]
Schmid-Burgk, J.L.; Gaidt, M.M.; Schmidt, T.; Ebert, T.S.; Bartok, E.; Hornung, V. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol., 2015, 45(10), 2911-2917.
[http://dx.doi.org/10.1002/eji.201545523] [PMID: 26174085]
[83]
van Bruggen, R.; Köker, M.Y.; Jansen, M.; van Houdt, M.; Roos, D.; Kuijpers, T.W.; van den Berg, T.K. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood, 2010, 115(26), 5398-5400.
[http://dx.doi.org/10.1182/blood-2009-10-250803] [PMID: 20407038]
[84]
Rajanbabu, V.; Galam, L.; Fukumoto, J.; Enciso, J.; Tadikonda, P.; Lane, T.N.; Bandyopadhyay, S.; Parthasarathy, P.T.; Cho, Y.; Cho, S.H.; Lee, Y.C.; Lockey, R.F.; Kolliputi, N. Genipin suppresses NLRP3 inflammasome activation through uncoupling protein-2. Cell. Immunol., 2015, 297(1), 40-45.
[http://dx.doi.org/10.1016/j.cellimm.2015.06.002] [PMID: 26123077]
[85]
Liu, W.; Yin, Y.; Zhou, Z.; He, M.; Dai, Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res., 2014, 63(1), 33-43.
[http://dx.doi.org/10.1007/s00011-013-0667-3] [PMID: 24121974]
[86]
Martín-Sánchez, F.; Diamond, C.; Zeitler, M.; Gomez, A.I.; Baroja-Mazo, A.; Bagnall, J.; Spiller, D.; White, M.; Daniels, M.J.; Mortellaro, A.; Peñalver, M.; Paszek, P.; Steringer, J.P.; Nickel, W.; Brough, D.; Pelegrín, P. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ., 2016, 23(7), 1219-1231.
[http://dx.doi.org/10.1038/cdd.2015.176] [PMID: 26868913]
[87]
Mortimer, L.; Moreau, F.; MacDonald, J.A.; Chadee, K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat. Immunol., 2016, 17(10), 1176-1186.
[http://dx.doi.org/10.1038/ni.3538] [PMID: 27548431]
[88]
MacDonald, J.A.; Wijekoon, C.P.; Liao, K.C.; Muruve, D.A. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life, 2013, 65(10), 851-862.
[http://dx.doi.org/10.1002/iub.1210] [PMID: 24078393]
[89]
Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol., 2009, 27, 519-550.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[90]
Lee, H.E.; Yang, G.; Kim, N.D.; Jeong, S.; Jung, Y.; Choi, J.Y.; Park, H.H.; Lee, J.Y. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout. Sci. Rep., 2016, 6, 38622.
[http://dx.doi.org/10.1038/srep38622] [PMID: 27934918]
[91]
Nicholson, D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 1999, 6(11), 1028-1042.
[http://dx.doi.org/10.1038/sj.cdd.4400598] [PMID: 10578171]
[92]
Martinon, F.; Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ., 2007, 14(1), 10-22.
[http://dx.doi.org/10.1038/sj.cdd.4402038] [PMID: 16977329]
[93]
Thornberry, N.A.; Bull, H.G.; Calaycay, J.R.; Chapman, K.T.; Howard, A.D.; Kostura, M.J.; Miller, D.K.; Molineaux, S.M.; Weidner, J.R.; Aunins, J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 1992, 356(6372), 768-774.
[http://dx.doi.org/10.1038/356768a0] [PMID: 1574116]
[94]
Cerretti, D.P.; Kozlosky, C.J.; Mosley, B.; Nelson, N.; Van Ness, K.; Greenstreet, T.A.; March, C.J.; Kronheim, S.R.; Druck, T.; Cannizzaro, L.A. Molecular cloning of the interleukin-1 beta converting enzyme. Science, 1992, 256(5053), 97-100.
[http://dx.doi.org/10.1126/science.1373520] [PMID: 1373520]
[95]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247.
[http://dx.doi.org/10.1038/ni.1703] [PMID: 19221555]
[96]
Yamasaki, K.; Muto, J.; Taylor, K.R.; Cogen, A.L.; Audish, D.; Bertin, J.; Grant, E.P.; Coyle, A.J.; Misaghi, A.; Hoffman, H.M.; Gallo, R.L. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem., 2009, 284(19), 12762-12771.
[http://dx.doi.org/10.1074/jbc.M806084200] [PMID: 19258328]
[97]
Rada, B.; Park, J.J.; Sil, P.; Geiszt, M.; Leto, T.L. NLRP3 inflammasome activation and interleukin-1beta release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm. Res., 2014, 63(10), 821-830.
[http://dx.doi.org/10.1007/s00011-014-0756-y] [PMID: 25048991]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy