Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Prospects for Discovering the Secondary Metabolites of Cordyceps Sensu Lato by the Integrated Strategy

Author(s): Shabana Bibi, Yuan-Bing Wang, De-Xiang Tang, Mohammad Amjad Kamal and Hong Yu*

Volume 17, Issue 2, 2021

Published on: 27 December, 2019

Page: [97 - 120] Pages: 24

DOI: 10.2174/1573406416666191227120425

open access plus

Abstract

Background: Some species of Cordyceps sensu lato are famous Chinese herbs with significant biological activities, often used as edible food and traditional medicine in China. Cordyceps represents the largest entomopathogenic group of fungi, including 40 genera and 1339 species in three families and incertae sedis of Hypocreales.

Objective: Most of the Cordyceps-derivatives have been approved clinically for the treatment of various diseases such as diabetes, cancers, inflammation, cardiovascular, renal and neurological disorders and are used worldwide as supplements and herbal drugs, but there is still need for highly efficient Cordyceps-derived drugs for fatal diseases with approval of the U.S. Food and Drug Administration.

Methods: Computer-aided drug design concepts could improve the discovery of putative Cordyceps- derived medicine within less time and low budget. The integration of computer-aided drug design methods with experimental validation has contributed to the successful discovery of novel drugs.

Results: This review focused on modern taxonomy, active metabolites, and modern drug design techniques that could accelerate conventional drug design and discovery of Cordyceps s. l. Successful application of computer-aided drug design methods in Cordyceps research has been discussed.

Conclusion: It has been concluded that computer-aided drug design techniques could influence the multiple target-focused drug design, because each metabolite of Cordyceps has shown significant activities for the various diseases with very few or no side effects.

Keywords: Cordyceps, Cordyceps militaris, Cordycepin, Computer-aided drug design, metabolites, Ophiocordyceps sinensis, Integration.

Graphical Abstract

[1]
Bensky, D.; Gamble, A.; Clavey, S.; Stoger, E.; Lai Bensky, L. Chinese Herbal Medicine: Materia Medica, 3rd ed; Eastland Press: Seattle, 2004.
[2]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303 ] [PMID: 24957513]
[3]
Winkler, D. Present and historic relevance of Yartsa Gunbu (Cordyceps sinensis). An ancient myco-medicinal in Tibet. Fungi, 2008, 1, 6-7.
[4]
Hawksworth, D. L.; Lucking, R. Fungal diversity revisited 2.2 to 3.8 million species Microbiol. Spectr, 2017, 5(4) FUNK-0052-2016.
[5]
Zha, L.S.; Huang, S.K.; Xiao, Y.P.; Boonmee, S.; Eungwanichayapant, P.D.; McKenzie, E.H.C.; Kryukov, V.; Wu, X.L.; Hyde, K.D.; Wen, T.C. An Evaluation of Common Cordyceps (Ascomycetes) Species Found in Chinese Markets. Int. J. Med. Mushrooms, 2018, 20(12), 1149-1162.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2018027330 ] [PMID: 30806296]
[6]
List of Global Cordyceps Companies https://www.companiess.com/cordyceps_product.html
[7]
Olatunji, O.J.; Tang, J.; Tola, A.; Auberon, F.; Oluwaniyi, O.; Ouyang, Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia, 2018, 129, 293-316.
[http://dx.doi.org/10.1016/j.fitote.2018.05.010 ] [PMID: 29775778]
[8]
Tuli, H.S.; Sandhu, S.S.; Sharma, A.K. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech., 2014, 4(1), 1-12..
[9]
Cao, L.; Ye, Y.; Han, R. Fruiting body production of the medicinal Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes), in artificial medium. Int. J. Med. Mushrooms, 2015, 17(11), 1107-1112.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i11.110 ] [PMID: 26853966]
[10]
Chan, J.S.; Barseghyan, G.S.; Asatiani, M.D.; Wasser, S.P. Chemical composition and medicinal value of fruiting bodies and submerged cultured mycelia of caterpillar medicinal fungus Cordyceps militaris CBS-132098 (Ascomycetes). Int. J. Med. Mushrooms, 2015, 17(7), 649-659.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i7.50 ] [PMID: 26559699]
[11]
Ministry of Health of the People’s Republic of China. The Ministry of Health on approval of C. militaris as new resources food announcement No. 3; Ministry of Health of the People’s Republic of China, 2009.
[12]
Wen, T.C.; Zha, L.S.; Kang, J.C.; Hyde, K.D. Problems and prospects of research and development of Cordyceps militaris. Junwu Xuebao, 2017, 36, 14-27.
[13]
Yan, X.F.; Zhang, Z.M.; Yao, H.Y.; Guan, Y.; Zhu, J.P.; Zhang, L.H.; Jia, Y.L.; Wang, R.W. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phytother. Res., 2013, 27(11), 1597-1604.
[http://dx.doi.org/10.1002/ptr.4899 ] [PMID: 23192916]
[14]
Jung, S.J.; Jung, E.S.; Choi, E.K.; Sin, H.S.; Ha, K.C.; Chae, S.W. Immunomodulatory effects of a mycelium extract of Cordyceps (Paecilomyces hepiali; CBG-CS-2): a randomized and double-blind clinical trial. BMC Complement. Altern. Med., 2019, 19(1), 77.
[http://dx.doi.org/10.1186/s12906-019-2483-y ] [PMID: 30925876]
[15]
Sun, T.; Dong, W.; Jiang, G.; Yang, J.; Liu, J.; Zhao, L.; Ma, P. Cordyceps militaris Improves Chronic Kidney Disease by Affecting TLR4/NF-κB Redox Signaling Pathway. Oxid. Med. Cell. Longev., 2019, 2019(278), 1-16.
[http://dx.doi.org/10.1155/2019/7850863]
[16]
Li, L.; Zhang, T.; Li, C.; Xie, L.; Li, N.; Hou, T.; Wang, Y.; Wang, B. Potential therapeutic effects of Cordyceps cicadae and Paecilomyces cicadae on adenine-induced chronic renal failure in rats and their phytochemical analysis. Drug Des. Devel. Ther., 2018, 13, 103-117.
[http://dx.doi.org/10.2147/DDDT.S180543 ] [PMID: 30587931]
[17]
Yang, L.; Jiao, X.; Wu, J.; Zhao, J.; Liu, T.; Xu, J.; Ma, X.; Cao, L.; Liu, L.; Liu, Y.; Chi, J.; Zou, M.; Li, S.; Xu, J.; Dong, L. Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease. Exp. Ther. Med., 2018, 15(3), 2731-2738.
[PMID: 29456676]
[18]
Wang, D.; Wang, J.; Wang, D.; Yu, X.; Olatunji, O.J.; Ouyang, Z.; Wei, Y. Neuroprotective Effects of Butanol Fraction of Cordyceps cicadae on Glutamate-Induced Damage in PC12 Cells Involving Oxidative Toxicity. Chem. Biodivers., 2018, 15(1)e1700385
[http://dx.doi.org/10.1002/cbdv.201700385 ] [PMID: 29113024]
[19]
Yuan, G.; An, L.; Sun, Y.; Xu, G.; Du, P. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism. Evid. Based Complement. Alternat. Med., 2018, 2018(1)9419264
[http://dx.doi.org/10.1155/2018/9419264 ] [PMID: 29736181]
[20]
Sohn, S.H.; Lee, S.C.; Hwang, S.Y.; Kim, S.W.; Kim, I.W.; Ye, M.B.; Kim, S.K. Effect of long-term administration of cordycepin from Cordyceps militaris on testicular function in middle-aged rats. Planta Med., 2012, 78(15), 1620-1625.
[http://dx.doi.org/10.1055/s-0032-1315212 ] [PMID: 22872590]
[21]
Chen, C.; Wang, L.M.; Jin, C.; Chen, H.J.; Li, S.H.; Li, S.Y.; Dou, X.F.; Jia, J.Q.; Gui, Z.Z. Cordyceps militaris polysaccharide triggers apoptosis and G0/G1 cells arrest in cancer cells. J. Asia Pac. Entomol., 2015, 18, 433-438.
[http://dx.doi.org/10.1016/j.aspen.2015.04.015]
[22]
Su, N.W.; Wu, S.H.; Chi, C.W.; Tsai, T.H.; Chen, Y.J. Cordycepin, isolated from medicinal fungus Cordyceps sinensis, enhances radiosensitivity of oral cancer associated with modulation of DNA damage repair. Food Chem. Toxicol., 2019, 124, 400-410.
[http://dx.doi.org/10.1016/j.fct.2018.12.025 ] [PMID: 30576710]
[23]
Quy, T.N.; Xuan, T.D. Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. Medicines (Basel), 2019, 6(1), 20.
[http://dx.doi.org/10.3390/medicines6010020 ] [PMID: 30699961]
[24]
Nakav, S.; Chaimovitz, C.; Sufaro, Y.; Lewis, E.C.; Shaked, G.; Czeiger, D.; Zlotnik, M.; Douvdevani, A. Anti-inflammatory preconditioning by agonists of adenosine A1 receptor. PLoS One, 2008, 3(5)e2107
[http://dx.doi.org/10.1371/journal.pone.0002107 ] [PMID: 18461129]
[25]
Wang, M.; Kornsakulkarn, J.; Srichomthong, K.; Feng, T.; Liu, J.K.; Isaka, M.; Thongpanchang, C. Antimicrobial anthraquinones from cultures of the ant pathogenic fungus Cordyceps morakotii BCC 56811. J. Antibiot. (Tokyo), 2019, 72(3), 141-147.
[http://dx.doi.org/10.1038/s41429-018-0135-y ] [PMID: 30622295]
[26]
Cheng, W.Y.; Wei, X.Q.; Siu, K.C.; Song, A.X.; Wu, J.Y. Cosmetic and Skincare Benefits of Cultivated Mycelia from the Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes). Int. J. Med. Mushrooms, 2018, 20(7), 623-636.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2018026883 ] [PMID: 30055554]
[27]
Osadebe, P.O.; Odoh, E.U.; Uzor, P.F. Natural products as potential sources of antidiabetic drugs. Br. J. Pharm. Res., 2014, 4(17), 2075-2095.
[http://dx.doi.org/10.9734/BJPR/2014/8382]
[28]
Parasuraman, S. Protein data bank. J. Pharmacol. Pharmacother., 2012, 3(4), 351-352.
[http://dx.doi.org/10.4103/0976-500X.103704 ] [PMID: 23326114]
[29]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S.L. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res., 2004, 32(Database issue), D115-D119.
[http://dx.doi.org/10.1093/nar/gkh131 ] [PMID: 14681372]
[30]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27 ] [PMID: 10592173]
[31]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem Substance and Compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951 ] [PMID: 26400175]
[32]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+ ] [PMID: 15667143]
[33]
Xu, S.; Li, W.; Zhu, J.; Wang, R.; Li, Z.; Xu, G.L.; Ding, J. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase. Cell Res., 2013, 23(11), 1296-1309.
[http://dx.doi.org/10.1038/cr.2013.107 ] [PMID: 23917530]
[34]
Joshi, Y.C.; Joshi, M.C.; Chopra, V.; Joshi, R.K.; Sharma, R.K.; Kumar, V. Sportsmen’s energy package Cordyceps sinensis: Medicinal importance and responsible phytochemical constituents. Am. J. Essent. Oil. Nat. Prod., 2017, 5(2), 37-51.
[35]
Xiao, Z.H.; Zhou, J.H.; Wu, H.S. 2011, 13(8), 677-679. [Effect of myriocin on the expression of cyclinD1 in high glucose-induced hypertrophy mesangial cells Zhongguo Dang Dai Er Ke Za Zhi
[PMID: 21849123]
[36]
Yang, M.L.; Kuo, P.C.; Hwang, T.L.; Wu, T.S. Anti-inflammatory principles from Cordyceps sinensis. J. Nat. Prod., 2011, 74(9), 1996-2000.
[http://dx.doi.org/10.1021/np100902f ] [PMID: 21848266]
[37]
Jia, J.M.; Ma, X.C.; Wu, C.F.; Wu, L.J.; Hu, G.S. Cordycedipeptide A, a new cyclodipeptide from the culture liquid of Cordyceps sinensis (Berk.). Sacc. Chem. Pharm. Bull. (Tokyo), 2005, 53(5), 582-583.
[http://dx.doi.org/10.1248/cpb.53.582 ] [PMID: 15863936]
[38]
Jia, J.M.; Tao, H.H.; Feng, B.M. Cordyceamides-A and B from the culture liquid of C. sinensis (Berk.). Chem. Pharm. Bull. (Tokyo), 2009, 57(1), 99-101.
[http://dx.doi.org/10.1248/cpb.57.99 ] [PMID: 19122327]
[39]
Cimmino, A.; Puopolo, G.; Perazzolli, M.; Andolfi, A.; Melck, D.; Pertot, I.; Evidente, A. Cyclo (L-PRO-L-TYR), The Fungicide Isolated From Lysobacter Capsici AZ78: A Structure–Activity Relationship Study. Chem. Heterocycl. Compd., 2014, 50(2), 290-295.
[http://dx.doi.org/10.1007/s10593-014-1475-6]
[40]
Wattana-Amorn, P.; Charoenwongsa, W.; Williams, C.; Crump, M.P.; Apichaisataienchote, B. Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Nat. Prod. Res., 2016, 30(17), 1980-1983.
[http://dx.doi.org/10.1080/14786419.2015.1095747 ] [PMID: 26469746]
[41]
Chiou, W.F.; Chang, P.C.; Chou, C.J.; Chen, C.F. Protein constituent contributes to the hypotensive and vasorelaxant of C. sinensis. Life Sci., 2000, 66(14), 1369-1376.
[http://dx.doi.org/10.1016/S0024-3205(00)00445-8 ] [PMID: 10755473]
[43]
Wang, Q.; Xu, L. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules, 2012, 17(3), 2367-2377.
[http://dx.doi.org/10.3390/molecules17032367 ] [PMID: 22367030]
[44]
Wu, X.F.; Xu, R.; Ouyang, Z.J.; Qian, C.; Shen, Y.; Wu, X.D.; Gu, Y.H.; Xu, Q.; Sun, Y. Beauvericin ameliorates experimental colitis by inhibiting activated T cells via downregulation of the PI3K/Akt signaling pathway. PLoS One, 2013, 8(12)e83013
[http://dx.doi.org/10.1371/journal.pone.0083013 ] [PMID: 24340073]
[45]
Lee, S.E.; Park, S.H.; Oh, S.W.; Yoo, J.A.; Kwon, K.; Park, S.J.; Kim, J.; Lee, H.S.; Cho, J.Y.; Lee, J. Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways. Sci. Rep., 2018, 8(1), 14958.
[http://dx.doi.org/10.1038/s41598-018-33352-8 ] [PMID: 30297846]
[46]
Holliday, J.C.; Cleaver, P.; Powers, M.L.; Patel, D. Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis (Berk.) Sacc. (Ascomycetes). Int. J. Med. Mushrooms, 2004, 6, 151-164.
[http://dx.doi.org/10.1615/IntJMedMushr.v6.i2.60]
[47]
Li, S.P.; Yang, F.Q.; Tsim, K.W.K. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J. Pharm. Biomed. Anal., 2006, 41(5), 1571-1584.
[http://dx.doi.org/10.1016/j.jpba.2006.01.046 ] [PMID: 16504449]
[48]
Zhang, J.; Wen, C.; Duan, Y.; Zhang, H.; Ma, H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol., 2019, 132, 906-914.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.020 ] [PMID: 30954592]
[49]
Wang, S.; Yang, F.Q.; Feng, K.; Li, D.Q.; Zhao, J.; Li, S.P. Simultaneous determination of nucleosides, myriocin, and carbohydrates in Cordyceps by HPLC coupled with diode array detection and evaporative light scattering detection. J. Sep. Sci., 2009, 32(23-24), 4069-4076.
[http://dx.doi.org/10.1002/jssc.200900570 ] [PMID: 20066678]
[50]
Kiho, T.; Hui, J.; Yamane, A.; Ukai, S. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of C. sinensis. Biol. Pharm. Bull., 1993, 16(12), 1291-1293.
[http://dx.doi.org/10.1248/bpb.16.1291 ] [PMID: 8130781]
[51]
Bok, J.W.; Lermer, L.; Chilton, J.; Klingeman, H.G.; Towers, G.H. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 1999, 51(7), 891-898.
[http://dx.doi.org/10.1016/S0031-9422(99)00128-4 ] [PMID: 10423860]
[52]
Nakamura, K.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Activation of in vivo Kupffer cell function by oral administration of Cordyceps sinensis in rats. Jpn. J. Pharmacol., 1999, 79(4), 505-508.
[http://dx.doi.org/10.1254/jjp.79.505 ] [PMID: 10361894]
[53]
Dong, C.H.; Yao, Y.J. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. Lebensm. Wiss. Technol., 2007, 41, 669-677.
[http://dx.doi.org/10.1016/j.lwt.2007.05.002]
[54]
Lee, J.S.; Hong, E.K. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol., 2011, 11(9), 1226-1233.
[http://dx.doi.org/10.1016/j.intimp.2011.04.001 ] [PMID: 21497206]
[55]
Liu, F.; Ooi, V.E.C.; Chang, S.T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci., 1997, 60(10), 763-771.
[http://dx.doi.org/10.1016/S0024-3205(97)00004-0 ] [PMID: 9064481]
[56]
Kiho, T. Yamane. A.; Hui, J.; Usui, S.; Ukai. S. Polysaccharides in fungi, XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of C. sinensis and its effect on glucose metabolism in mouse liver. Biol. Pharm. Bull., 1996, 19, 294-296.
[http://dx.doi.org/10.1248/bpb.19.294 ] [PMID: 8850325]
[57]
Li, S.P.; Zhang, G.H.; Zeng, Q.; Huang, Z.G.; Wang, Y.T.; Dong, T.T.X.; Tsim, K.W.K. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine, 2006, 13(6), 428-433.
[http://dx.doi.org/10.1016/j.phymed.2005.02.002 ] [PMID: 16716913]
[58]
Kiho, T.; Ookubo, K.; Usui, S.; Ukai, S.; Hirano, K. Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol. Pharm. Bull., 1999, 22(9), 966-970.
[http://dx.doi.org/10.1248/bpb.22.966 ] [PMID: 10513622]
[59]
Cheung, J.K.; Li, J.; Cheung, A.W.; Zhu, Y.; Zheng, K.Y.; Bi, C.W.; Duan, R.; Choi, R.C.Y.; Lau, D.T.W.; Dong, T.T.X.; Lau, B.W.C.; Tsim, K.W.K. Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. J. Ethnopharmacol., 2009, 124(1), 61-68.
[http://dx.doi.org/10.1016/j.jep.2009.04.010 ] [PMID: 19446414]
[60]
Kim, S.D. Isolation, structure and cholesterol esterase inhibitory activity of a polysaccharide, PSA, from C. Sinensis. J. Appl. Biol. Chem., 2010, 53, 784-789.
[61]
Isaka, M.; Tanticharoen, M.; Kongsaeree, P.; Thebtaranonth, Y. Structures of cordypyridones A-D, antimalarial N-hydroxy- and N-methoxy-2-pyridones from the insect pathogenic fungus Cordyceps nipponica. J. Org. Chem., 2001, 66(14), 4803-4808.
[http://dx.doi.org/10.1021/jo0100906 ] [PMID: 11442408]
[62]
Kitchawalit, S.; Kanokmedhakul, K.; Kanokmedhakul, S.; Soytong, K. A new benzyl ester and ergosterol derivatives from the fungus Gymnoascus reessii. Nat. Prod. Res., 2014, 28(14), 1045-1051.
[http://dx.doi.org/10.1080/14786419.2014.903478 ] [PMID: 24708569]
[63]
Seitz, L.M. Ergosterol as a measure of fungal growth. Phytopathology, 1979, 69(11), 1202-1206.
[http://dx.doi.org/10.1094/Phyto-69-1202]
[64]
Zheng, J.; Wang, Y.; Wang, J.; Liu, P.; Li, J.; Zhu, W. Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles, 2013, 17(6), 963-971.
[http://dx.doi.org/10.1007/s00792-013-0578-9 ] [PMID: 24030481]
[65]
Lin, C.Y.; Lin, C.C.; Chen, C.C.; Kuo, Y.C. The isolation of active fraction and active compound from C sinensis can be used to improve bronchial hyper-responsiveness, 2004.Patent TW 582999 B 20040411.
[66]
Zou, J.; Wu, L.; He, Z.M.; Zhang, P.; Chen, Z.H. Determination of the Main Nucleosides and Nucleobases in Natural and Cultured Ophiocordyceps xuefengensis. Molecules, 2017, 22(9), 1530.
[http://dx.doi.org/10.3390/molecules22091530 ] [PMID: 28891979]
[67]
Tsai, Y.J.; Lin, L.C.; Tsai, T.H. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J. Agric. Food Chem., 2010, 58(8), 4638-4643.
[http://dx.doi.org/10.1021/jf100269g ] [PMID: 20302371]
[68]
Yang, D.; Yaguchi, T.; Lim, C.R.; Ishizawa, Y.; Nakano, T.; Nishizaki, T. Tuning of apoptosis-mediator gene transcription in HepG2 human hepatoma cells through an adenosine signal. Cancer Lett., 2010, 291(2), 225-229.
[http://dx.doi.org/10.1016/j.canlet.2009.10.016 ] [PMID: 19900759]
[69]
Gessi, S.; Merighi, S.; Borea, P.A. Targeting adenosine receptors to prevent inflammatory skin diseases. Exp. Dermatol., 2014, 23(8), 553-554.
[http://dx.doi.org/10.1111/exd.12474 ] [PMID: 24961687]
[70]
Liao, Y.; Ling, J.; Zhang, G.; Liu, F.; Tao, S.; Han, Z.; Chen, S.; Chen, Z.; Le, H. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle, 2015, 14(5), 761-771.
[http://dx.doi.org/10.1080/15384101.2014.1000097 ] [PMID: 25590866]
[71]
Coelho, J.E.; Alves, P. 2.; Canas, P.M.; aladas, J.S.; Shmidt, T.; Batalha, V.L.; Ferreira, D.G.; Ribeiro, J.A.; Bader, M.; Cunha, R. A.; do- Couto, F.S.; Lopes, L.V. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front. Psychiatry, 2014, 5(67), 1-8.
[72]
Guo, P.; Kai, Q.; Gao, J.; Lian, Z.Q.; Wu, C.M.; Wu, C.A.; Zhu, H.B. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J. Pharmacol. Sci., 2010, 113(4), 395-403.
[http://dx.doi.org/10.1254/jphs.10041FP ] [PMID: 20724804]
[73]
Tuli, H.S.; Sharma, A.K.; Sandhu, S.S.; Kashyap, D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci., 2013, 93(23), 863-869.
[http://dx.doi.org/10.1016/j.lfs.2013.09.030 ] [PMID: 24121015]
[74]
Zhou, X.; Luo, L.; Dressel, W.; Shadier, G.; Krumbiegel, D.; Schmidtke, P.; Zepp, F.; Meyer, C.U. Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. Am. J. Chin. Med., 2008, 36(5), 967-980.
[http://dx.doi.org/10.1142/S0192415X08006387 ] [PMID: 19051361]
[75]
Zhao, X.; Zhang, G.; Li, C.; Ling, J. Cordycepin and pentostatin biosynthesis gene identified through transcriptome and proteomics analysis of Cordyceps kyushuensis Kob. Microbiol. Res., 2019, 218, 12-21.
[http://dx.doi.org/10.1016/j.micres.2018.09.005 ] [PMID: 30454654]
[76]
Xia, Y.; Luo, F.; Shang, Y.; Chen, P.; Lu, Y.; Wang, C. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem. Biol., 2017, 24(12), 1479-1489.e4.
[http://dx.doi.org/10.1016/j.chembiol.2017.09.001 ] [PMID: 29056419]
[77]
Yu, S.; Zhang, Z.; Fan, M. Analysis of volatile compounds of mycelia of H. sinenis, the anamorph of O. sinensis. Appl. Mech. Mater., 2012, 140, 253-257.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.140.253]
[78]
Phillips, K.M.; Ruggio, D.M.; Horst, R.L.; Minor, B.; Simon, R.R.; Feeney, M.J.; Byrdwell, W.C.; Haytowitz, D.B. Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J. Agric. Food Chem., 2011, 59(14), 7841-7853.
[http://dx.doi.org/10.1021/jf104246z ] [PMID: 21663327]
[79]
Mattila, P.; Könkö, K.; Eurola, M.; Pihlava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem., 2001, 49(5), 2343-2348.
[http://dx.doi.org/10.1021/jf001525d ] [PMID: 11368601]
[80]
Diaz, P.; Jeong, S.C.; Lee, S.; Khoo, C.; Koyyalamudi, S.R. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds. Chin. Med., 2012, 7(1), 26.
[http://dx.doi.org/10.1186/1749-8546-7-26 ] [PMID: 23176585]
[81]
Xu, Q.; Zhao, Z.; Sun, Y.; Mackay, R.P.; Li, Y.Q. Extraction optimization for phenols and flavonoids from cultured mycelia of cordyceps ophioglossoides and exploration of bioactivities of its aqueous and ethanol extracts., Biomed. J. Sci. Tech. Res., 2018, 11(4), MS.ID.002126..
[82]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078 ] [PMID: 20168317]
[83]
Mullard, A. New drugs cost us$2.6 billion to develop. Nat. Rev. Drug Discov., 2014, 13, 877.
[http://dx.doi.org/10.1038/nrd4507]
[84]
Hurle, M.R.; Yang, L.; Xie, Q.; Rajpal, D.K.; Sanseau, P.; Agarwal, P. Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 2013, 93(4), 335-341.
[http://dx.doi.org/10.1038/clpt.2013.1 ] [PMID: 23443757]
[85]
Bibi, S.; Sakata, K. An Integrated Computational Approach for Plant-Based Protein Tyrosine Phosphatase Non-Receptor Type 1 Inhibitors. Curr Comput Aided Drug Des, 2017, 13(4), 319-335.
[http://dx.doi.org/10.2174/1573409913666170406145607 ] [PMID: 28382867]
[86]
Bibi, S.; Sakata, K. Current status of computer-aided drug design for type 2 diabetes. Curr Comput Aided Drug Des, 2016, 12(2), 167-177.
[http://dx.doi.org/10.2174/1573409912666160426120709 ] [PMID: 27113465]
[87]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006 ] [PMID: 19422931]
[88]
Kairys, V.; Gilson, M.K.; Fernandes, M.X. Using protein homology models for structure-based studies: approaches to model refinement. ScientificWorldJournal, 2006, 6, 1542-1554.
[http://dx.doi.org/10.1100/tsw.2006.250 ] [PMID: 17160340]
[89]
Kopp, J.; Schwede, T. Automated protein structure homology modeling: a progress report. Pharmacogenomics, 2004, 5(4), 405-416.
[http://dx.doi.org/10.1517/14622416.5.4.405 ] [PMID: 15165176]
[90]
Meier, A.; Söding, J. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling. PLOS Comput. Biol., 2015, 11(10)e1004343
[http://dx.doi.org/10.1371/journal.pcbi.1004343 ] [PMID: 26496371]
[91]
Martí-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sánchez, R.; Melo, F.; Sali, A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, 29, 291-325.
[http://dx.doi.org/10.1146/annurev.biophys.29.1.291 ] [PMID: 10940251]
[92]
University of Virginia. FASTA sequence comparison., http://fasta.bioch.virginia.edu
[93]
The National Center for Biotechnology Information. Basic Local Alignment Search Tool., http://blast.ncbi.nlm.nih.gov
[94]
European Bioinformatics Institute. www.ebi.ac.uk/Tools/sss/
[95]
Fold and Function Assignment. http://ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl
[96]
Webb, B.; Sali, A. Comparative Protein Structure Modeling Using Modeller. Curr. Protoc. Bioinformatics, 2016, 54.
[97]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336 ] [PMID: 24381236]
[98]
Bienstock, R.J. Solvation methods for protein-ligand docking. Methods Mol. Biol., 2015, 1289, 3-12.
[http://dx.doi.org/10.1007/978-1-4939-2486-8_1 ] [PMID: 25709028]
[99]
Cobb, R.E.; Bae, B.; Li, Z.; DeSieno, M.A.; Nair, S.K.; Zhao, H. Structure-guided design and biosynthesis of a novel FR-900098 analogue as a potent Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitor. Chem. Commun. (Camb.), 2015, 51(13), 2526-2528.
[http://dx.doi.org/10.1039/C4CC09181G ] [PMID: 25567100]
[100]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549 ] [PMID: 15520816]
[101]
Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, J.; Corbeil, C.R. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol., 2008, 153(Suppl. 1), S7-S26.
[http://dx.doi.org/10.1038/sj.bjp.0707515 ] [PMID: 18037925]
[102]
Kroemer, R.T. Structure-based drug design: docking and scoring. Curr. Protein Pept. Sci., 2007, 8(4), 312-328.
[http://dx.doi.org/10.2174/138920307781369382 ] [PMID: 17696866]
[103]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[104]
Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.F.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA, 2009, 15(6), 1219-1230.
[http://dx.doi.org/10.1261/rna.1563609 ] [PMID: 19369428]
[105]
Kramer, B.; Rarey, M.; Lengauer, T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins, 1999, 37(2), 228-241.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228: AID-PROT8>3.0.CO;2-8 ] [PMID: 10584068]
[106]
McGann, M.R.; Almond, H.R.; Nicholls, A.; Grant, J.A.; Brown, F.K. Gaussian docking functions. Biopolymers, 2003, 68(1), 76-90.
[http://dx.doi.org/10.1002/bip.10207 ] [PMID: 12579581]
[107]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430 ] [PMID: 15027865]
[108]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465 ] [PMID: 12910460]
[109]
Jain, A.N. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des., 2007, 21(5), 281-306.
[http://dx.doi.org/10.1007/s10822-007-9114-2 ] [PMID: 17387436]
[110]
Wodak, S.J.; Janin, J. Computer analysis of protein-protein interaction. J. Mol. Biol., 1978, 124(2), 323-342.
[http://dx.doi.org/10.1016/0022-2836(78)90302-9 ] [PMID: 712840]
[111]
Zacharias, M. Protein-Protein Complexes:Analysis, Modeling and Drug Design; Imperial College Press: London, 2010.
[http://dx.doi.org/10.1142/p618]
[112]
Lyskov, S.; Gray, J.J. The RosettaDock server for local protein-protein docking., Nucleic Acids Res., 2008, 36(Web Server issue) W233-8.
[http://dx.doi.org/10.1093/nar/gkn216] [PMID: 18442991]
[113]
Jiménez-García, B.; Pons, C.; Fernández-Recio, J. pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics, 2013, 29(13), 1698-1699.
[http://dx.doi.org/10.1093/bioinformatics/btt262 ] [PMID: 23661696]
[114]
Bursulaya, B.D.; Totrov, M.; Abagyan, R.; Brooks, C.L., III Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des., 2003, 17(11), 755-763.
[http://dx.doi.org/10.1023/B:JCAM.0000017496.76572.6f ] [PMID: 15072435]
[115]
Onodera, K.; Satou, K.; Hirota, H. Evaluations of molecular docking programs for virtual screening. J. Chem. Inf. Model., 2007, 47(4), 1609-1618.
[http://dx.doi.org/10.1021/ci7000378 ] [PMID: 17602548]
[116]
Cross, J.B.; Thompson, D.C.; Rai, B.K.; Baber, J.C.; Fan, K.Y.; Hu, Y.; Humblet, C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Model., 2009, 49(6), 1455-1474.
[http://dx.doi.org/10.1021/ci900056c ] [PMID: 19476350]
[117]
Zhou, Z.; Felts, A.K.; Friesner, R.A.; Levy, R.M. Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. J. Chem. Inf. Model., 2007, 47(4), 1599-1608.
[http://dx.doi.org/10.1021/ci7000346 ] [PMID: 17585856]
[118]
Li, X.; Li, Y.; Cheng, T.; Liu, Z.; Wang, R. Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes. J. Comput. Chem., 2010, 31(11), 2109-2125.
[http://dx.doi.org/10.1002/jcc.21498 ] [PMID: 20127741]
[119]
Plewczynski, D.; Łaźniewski, M.; Augustyniak, R.; Ginalski, K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem., 2011, 32(4), 742-755.
[http://dx.doi.org/10.1002/jcc.21643 ] [PMID: 20812323]
[120]
Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R. Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model., 2009, 49(4), 1079-1093.
[http://dx.doi.org/10.1021/ci9000053 ] [PMID: 19358517]
[121]
Wang, R.; Lu, Y.; Fang, X.; Wang, S. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J. Chem. Inf. Comput. Sci., 2004, 44(6), 2114-2125.
[http://dx.doi.org/10.1021/ci049733j ] [PMID: 15554682]
[122]
Van Drie, J.H. Computer-aided drug design: the next 20 years. J. Comput. Aided Mol. Des., 2007, 21(10-11), 591-601.
[http://dx.doi.org/10.1007/s10822-007-9142-y ] [PMID: 17989929]
[123]
Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron, 2018, 99(6), 1129-1143.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011 ] [PMID: 30236283]
[124]
Zimmermann, M.T.; Urrutia, R.; Oliver, G.R.; Blackburn, P.R.; Cousin, M.A.; Bozeck, N.J.; Klee, E.W. Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing. PLoS One, 2017, 12(2)e0170822
[http://dx.doi.org/10.1371/journal.pone.0170822 ] [PMID: 28182693]
[125]
Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9, 71.
[http://dx.doi.org/10.1186/1741-7007-9-71 ] [PMID: 22035460]
[126]
Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges., 1894, 27(3), 2985-2993.
[http://dx.doi.org/10.1002/cber.18940270364]
[127]
Ma, B.; Shatsky, M.; Wolfson, H.J.; Nussinov, R. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci., 2002, 11(2), 184-197.
[http://dx.doi.org/10.1110/ps.21302 ] [PMID: 11790828]
[128]
Koshland, D.E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA, 1958, 44(2), 98-104.
[http://dx.doi.org/10.1073/pnas.44.2.98 ] [PMID: 16590179]
[129]
Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov., 2018, 13(1), 23-37.
[http://dx.doi.org/10.1080/17460441.2018.1403419 ] [PMID: 29139324]
[130]
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012.
[http://dx.doi.org/10.1002/jcc.10349 ] [PMID: 14531054]
[131]
Foloppe, N.; MacKerell, A.D.J. All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. J. Comput. Chem., 2000, 21, 86-104.
[http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86:AID-JCC2>3.0.CO;2-G]
[132]
Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J., 2011, 40(7), 843-856.
[http://dx.doi.org/10.1007/s00249-011-0700-9 ] [PMID: 21533652]
[133]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc., 1996, 118, 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[134]
Yan, X.; Liao, C.; Liu, Z.; Hagler, A.T.; Gu, Q.; Xu, J. Chemical structure similarity search for ligand-based virtual screening: methods and computational resources. Curr. Drug Targets, 2016, 17(14), 1580-1585.
[http://dx.doi.org/10.2174/1389450116666151102095555 ] [PMID: 26521773]
[135]
Maggiora, G.; Vogt, M.; Stumpfe, D.; Bajorath, J. Molecular similarity in medicinal chemistry. J. Med. Chem., 2014, 57(8), 3186-3204.
[http://dx.doi.org/10.1021/jm401411z ] [PMID: 24151987]
[136]
Faulon, J.L.; Bender, A. Handbook of chemoinformatics algorithms; Chapman & Hall/CRC: Boca Raton, FL, 2010.
[http://dx.doi.org/10.1201/9781420082999]
[137]
Lee, J.K. Statistical bioinformatics: a guide for life and biomedical science researchers; Wiley-Blackwell: Hoboken, NJ, 2010.
[http://dx.doi.org/10.1002/9780470567647]
[138]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018 ] [PMID: 20303320]
[139]
Mandal, S.; Moudgil, M.; Mandal, S.K. Rational drug design. Eur. J. Pharmacol., 2009, 625(1-3), 90-100.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.065 ] [PMID: 19835861]
[140]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0 ] [PMID: 11259830]
[141]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032 ] [PMID: 12612645]
[142]
van De Waterbeemd, H.; Smith, D.A.; Beaumont, K.; Walker, D.K. Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem., 2001, 44(9), 1313-1333.
[http://dx.doi.org/10.1021/jm000407e ] [PMID: 11311053]
[143]
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x ] [PMID: 21091654]
[144]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445 ] [PMID: 17971784]
[145]
Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 2004, 3(8), 711-715.
[http://dx.doi.org/10.1038/nrd1470 ] [PMID: 15286737]
[146]
Merlot, C. Computational toxicology--a tool for early safety evaluation. Drug Discov. Today, 2010, 15(1-2), 16-22.
[http://dx.doi.org/10.1016/j.drudis.2009.09.010 ] [PMID: 19835978]
[147]
Li, A.P. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today, 2001, 6(7), 357-366.
[http://dx.doi.org/10.1016/S1359-6446(01)01712-3 ] [PMID: 11267922]
[148]
Isa, M.A.; Majumdar, R.S.; Haider, S. In silico identification of potential inhibitors against shikimate dehydrogenase through virtual screening and toxicity studies for the treatment of tuberculosis. Int. Microbiol., 2019, 22(1), 7-17.
[http://dx.doi.org/10.1007/s10123-018-0021-2 ] [PMID: 30810932]
[149]
Liu, Y.Y.; Feng, X.Y.; Jia, W.Q.; Jing, Z.; Xu, W.R.; Cheng, X.C. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations. Comput. Biol. Chem., 2019, 78, 190-204.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.002 ] [PMID: 30557817]
[150]
Ghaleb, A.; Aouidate, A.; Bouachrine, M.; Lakhlifi, T.; Sbai, A. In Silico Exploration of Aryl Halides Analogues as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and ADMET Screening. Adv. Pharm. Bull., 2019, 9(1), 84-92.
[http://dx.doi.org/10.15171/apb.2019.011 ] [PMID: 31011562]
[151]
Sever, B.; Kucukoglu, K.; Nadaroglu, H.; Altıntop, M.D. In silico Molecular Docking and ADME Studies of 1,3,4-Thiadiazole Derivatives in Relation to in vitro PON1 Activity. Curr Comput Aided Drug Des, 2019, 15(2), 136-144.
[http://dx.doi.org/10.2174/1573409914666180518085908 ] [PMID: 29773067]
[152]
Pradeepkiran, J.A.; Reddy, P.H. Structure Based Design and Molecular Docking Studies for Phosphorylated Tau Inhibitors in Alzheimer’s Disease. Cells, 2019, 8(3), 260.
[http://dx.doi.org/10.3390/cells8030260 ] [PMID: 30893872]
[153]
Han, Y.; Zhang, J.; Hu, C.Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Front. Pharmacol., 2019, 10, 434.
[http://dx.doi.org/10.3389/fphar.2019.00434 ] [PMID: 31068821]
[154]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 2018, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B ] [PMID: 30774861]
[155]
Polishchuk, P. Interpretation of Quantitative Structure-Activity Relationship Models: Past, Present, and Future. J. Chem. Inf. Model., 2017, 57(11), 2618-2639.
[http://dx.doi.org/10.1021/acs.jcim.7b00274 ] [PMID: 28949520]
[156]
Kausar, S.; Falcao, A.O. An automated framework for QSAR model building. J. Cheminform., 2018, 10(1), 1.
[http://dx.doi.org/10.1186/s13321-017-0256-5 ] [PMID: 29340790]
[157]
Mirza, A.Z.; Shamshad, H. QSAR and Docking Studies on Piperidyl-cyclohexylurea Derivatives for Prediction of Selective and Potent Inhibitor of Matriptase. Curr Comput Aided Drug Des, 2019, 15(2), 167-181.
[http://dx.doi.org/10.2174/1573409914666180516162349 ] [PMID: 29769007]
[158]
Rácz, A.; Bajusz, D.; Héberger, K. Modelling methods and cross-validation variants in QSAR: a multi-level analysis$. SAR QSAR Environ. Res., 2018, 29(9), 661-674.
[http://dx.doi.org/10.1080/1062936X.2018.1505778 ] [PMID: 30160175]
[159]
Duchowicz, P.R. Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors. Cells, 2018, 7(2), 13.
[http://dx.doi.org/10.3390/cells7020013 ] [PMID: 29443884]
[160]
Perola, E.; Charifson, P.S. Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J. Med. Chem., 2004, 47(10), 2499-2510.
[http://dx.doi.org/10.1021/jm030563w ] [PMID: 15115393]
[161]
Nicklaus, M.C.; Wang, S.; Driscoll, J.S.; Milne, G.W. Conformational changes of small molecules binding to proteins. Bioorg. Med. Chem., 1995, 3(4), 411-428.
[http://dx.doi.org/10.1016/0968-0896(95)00031-B ] [PMID: 8581425]
[162]
Güner, O.F.; Bowen, J.P. Setting the record straight: the origin of the pharmacophore concept. J. Chem. Inf. Model., 2014, 54(5), 1269-1283.
[http://dx.doi.org/10.1021/ci5000533 ] [PMID: 24745881]
[163]
Che, J.; Wang, Z.; Sheng, H.; Huang, F.; Dong, X.; Hu, Y.; Xie, X.; Hu, Y. Ligand-based pharmacophore model for the discovery of novel CXCR2 antagonists as anti-cancer metastatic agents. R. Soc. Open Sci., 2018, 5(7)180176
[http://dx.doi.org/10.1098/rsos.180176 ] [PMID: 30109074]
[164]
Melo-Filho, C.C.; Braga, R.C.; Andrade, C.H. 3D-QSAR approaches in drug design: perspectives to generate reliable CoMFA models. Curr Comput Aided Drug Des, 2014, 10(2), 148-159.
[http://dx.doi.org/10.2174/1573409910666140410111043 ] [PMID: 24724896]
[165]
Kim, K.H.; Kim, N.D.; Seong, B.L. Pharmacophore-based virtual screening: a review of recent applications. Expert Opin. Drug Discov., 2010, 5(3), 205-222.
[http://dx.doi.org/10.1517/17460441003592072 ] [PMID: 22823018]
[166]
Muchtaridi, M.; Syahidah, H.N.; Subarnas, A.; Yusuf, M.; Bryant, S.D.; Langer, T. Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha. Pharmaceuticals (Basel), 2017, 10(4), 81.
[http://dx.doi.org/10.3390/ph10040081 ] [PMID: 29035298]
[167]
Ran, T.; Li, W.; Peng, B.; Xie, B.; Lu, T.; Lu, S.; Liu, W. Virtual Screening with a Structure-Based Pharmacophore Model to Identify Small-Molecule Inhibitors of CARM1. J. Chem. Inf. Model., 2019, 59(1), 522-534.
[http://dx.doi.org/10.1021/acs.jcim.8b00610 ] [PMID: 30607947]
[168]
Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Discovery of Potential Topoisomerase I Inhibitors. Comput. Struct. Biotechnol. J., 2019, 17, 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006 ] [PMID: 30867893]
[169]
Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model., 2005, 45(1), 160-169.
[http://dx.doi.org/10.1021/ci049885e ] [PMID: 15667141]
[170]
Hecker, E.A.; Duraiswami, C.; Andrea, T.A.; Diller, D.J. Use of catalyst pharmacophore models for screening of large combinatorial libraries. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1204-1211.
[http://dx.doi.org/10.1021/ci020368a ] [PMID: 12377010]
[171]
Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des., 2006, 20(10-11), 647-671.
[http://dx.doi.org/10.1007/s10822-006-9087-6 ] [PMID: 17124629]
[172]
MOE Chemical Computing Group. www.chemcomp.com
[173]
Dwivedi, V.D.; Arora, S.; Pandey, A. Computational analysis of physico-chemical properties and homology modeling of carbonic anhydrase from Cordyceps militaris. Netw. Model. Anal. Health Inform. Bioinform., 2013, 2, 209-212.
[http://dx.doi.org/10.1007/s13721-013-0036-8]
[174]
Hammad, N.; Jingdong, J. Structure-based protein-protein interaction networks and drug design. Quant. Biol., 2013, 1(3), 183-191.
[http://dx.doi.org/10.1007/s40484-013-0018-y]
[175]
Yong, T.; Zhang, M.; Chen, D.; Shuai, O.; Chen, S.; Su, J.; Jiao, C.; Feng, D.; Xie, Y. Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine. J. Ethnopharmacol., 2016, 194, 403-411.
[http://dx.doi.org/10.1016/j.jep.2016.10.001 ] [PMID: 27717908]
[176]
Johnson, R.J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Shafiu, M.; Sundaram, S.; Le, M.; Ishimoto, T.; Sautin, Y.Y.; Lanaspa, M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 2013, 62(10), 3307-3315.
[http://dx.doi.org/10.2337/db12-1814 ] [PMID: 24065788]
[177]
So, A.; Thorens, B. Uric acid transport and disease. J. Clin. Invest., 2010, 120(6), 1791-1799.
[http://dx.doi.org/10.1172/JCI42344 ] [PMID: 20516647]
[178]
Ma, L.; Zhang, S.; Du, M. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr. Res., 2015, 35(5), 431-439.
[http://dx.doi.org/10.1016/j.nutres.2015.04.011 ] [PMID: 25940982]
[179]
Yong, T.; Chen, S.; Xie, Y.; Chen, D.; Su, J.; Shuai, O.; Jiao, C.; Zuo, D. Cordycepin, a Characteristic Bioactive Constituent in Cordyceps militaris, Ameliorates Hyperuricemia through URAT1 in Hyperuricemic Mice. Front. Microbiol., 2018, 9, 58.
[http://dx.doi.org/10.3389/fmicb.2018.00058 ] [PMID: 29422889]
[180]
Maruca, A.; Moraca, F.; Rocca, R.; Molisani, F.; Alcaro, F.; Gidaro, M.C.; Alcaro, S.; Costa, G.; Ortuso, F. Chemoinformatic Database Building and in Silico Hit-Identification of Potential Multi-Targeting Bioactive Compounds Extracted from Mushroom Species. Molecules, 2017, 22(9), 1571.
[http://dx.doi.org/10.3390/molecules22091571]
[181]
Wang, J.; Liu, Y.M.; Cao, W.; Yao, K.W.; Liu, Z.Q.; Guo, J.Y. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab. Brain Dis., 2012, 27(2), 159-165.
[http://dx.doi.org/10.1007/s11011-012-9282-1 ] [PMID: 22327557]
[182]
Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40169-017-0181-2 ] [PMID: 29340951]
[183]
Medina-Franco, J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008 ] [PMID: 23340113]
[184]
Zhu, S.J.; Pan, J.; Zhao, B.; Liang, J.; Ze-Yu, W.; Yang, J.J. Comparisons on enhancing the immunity of fresh and dry Cordyceps militaris in vivo and in vitro. J. Ethnopharmacol., 2013, 149(3), 713-719.
[http://dx.doi.org/10.1016/j.jep.2013.07.037 ] [PMID: 23916792]
[185]
Jeong, M.H.; Lee, C.M.; Lee, S.W.; Seo, S.Y.; Seo, M.J.; Kang, B.W.; Jeong, Y.K.; Choi, Y.J.; Yang, K.M.; Jo, W.S. Cordycepin-enriched Cordyceps militaris induces immunomodulation and tumor growth delay in mouse-derived breast cancer. Oncol. Rep., 2013, 30(4), 1996-2002.
[http://dx.doi.org/10.3892/or.2013.2660 ] [PMID: 23921598]
[186]
Song, D.; He, Z.; Wang, C.; Yuan, F.; Dong, P.; Zhang, W. Regulation of the exopolysaccharide from an anamorph of Cordyceps sinensis on dendritic cell sarcoma (DCS) cell line. Eur. J. Nutr., 2013, 52(2), 687-694.
[http://dx.doi.org/10.1007/s00394-012-0373-x ] [PMID: 22610670]
[187]
Zhu, Z.Y.; Chen, J.; Si, C.L.; Liu, N.; Lian, H.Y.; Ding, L.N.; Liu, Y.; Zhang, Y.M. Immunomodulatory effect of polysaccharides from submerged cultured Cordyceps gunnii. Pharm. Biol., 2012, 50(9), 1103-1110.
[http://dx.doi.org/10.3109/13880209.2012.658114 ] [PMID: 22830391]
[188]
Jeong, M.H.; Seo, M.J.; Park, J.U.; Kang, B.W.; Kim, K.S.; Lee, J.Y.; Kim, G.Y.; Kim, J.I.; Choi, Y.H.; Kim, K.H.; Jeong, Y.K. Effect of cordycepin purified from Cordyceps militaris on Th1 and Th2 cytokines in mouse splenocytes. J. Microbiol. Biotechnol., 2012, 22(8), 1161-1164.
[http://dx.doi.org/10.4014/jmb.1203.03039 ] [PMID: 22713995]
[189]
Chen, C.Y. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 2011, 6(1)e15939
[http://dx.doi.org/10.1371/journal.pone.0015939 ] [PMID: 21253603]
[190]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q ] [PMID: 26620784]
[191]
Hung, T.C.; Lee, W.Y.; Chen, K.B.; Chan, Y.C.; Chen, C.Y. Investigation of potent lead for acquired immunodeficiency syndrome from traditional Chinese medicine. BioMed Res. Int., 2014, 2014205890
[http://dx.doi.org/10.1155/2014/205890 ] [PMID: 25013765]
[192]
Qu, Z.Y.; Song, K.; Cai, W.L.; Tang, J. Evaluation of therapeutic effects of Jin Shui Bao capsule for treatment of respiratory disease. J. Admin. Trad. Chin. Med., 1995, 5, 29-30.
[193]
Huang, Y.; Lu, J.; Zhu, B.; Wen, Q.; Jia, F.; Zheng, S.; Chen, T.; Li, Y.; Cheng, G.; Yi, Z. Toxicity study of fermentation Cordyceps mycelia B414. Zhongchengyao, 1987, 10, 24-25.
[195]
Three Different Cannabinoid-Based Medicines Approved by the FDA. https://www.medicaljane.com/2017/05/01/the-3-cannabis-based-medicines-approved-by-the-fda/
[196]
Basith, S.; Cui, M.; Macalino, S.J.Y.; Choi, S. Expediting the Design, Discovery and Development of Anticancer Drugs using Computational Approaches. Curr. Med. Chem., 2017, 24(42), 4753-4778..
[PMID: 27593958]
[197]
Wang, R.; Xie, J.; Ji, P.; Li, S.; Zhan, H.; Xia, J.; Sun, H.; Lei, L.; Yu, J.; Wang, Y.; Holliday, J. Clinical trial report on chronic hepatitis treatment using immune-assist brand mushroom extract mixture in conjunction with the drug Lamivudine [Epivirtm],. 2002.
[198]
Zhou, J.S.; Halpern, G.; Jones, K. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. J. Altern. Complement. Med., 1998, 4, 429-457..
[http://dx.doi.org/10.1089/acm.1998.4.429] [PMID: 9884180]

© 2024 Bentham Science Publishers | Privacy Policy