Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Molecular Modeling of Novel Substituted Pyridazinones and their Vasorelaxant Activities

Author(s): Magda M.F. Ismail, Dalia H.S. Soliman*, Mona H. Abd Elmoniem and Gehad A.R. Abdel Jaleel

Volume 17, Issue 2, 2021

Published on: 27 March, 2020

Page: [171 - 186] Pages: 16

DOI: 10.2174/1573406416666200327191100

Price: $65

Abstract

Background: Hypertension, one of the most common cardiovascular diseases that can cause coronary disease, stroke, myocardial infarction, and sudden death, it is the major contributor to cardiac failure as well as renal insufficiency.

Objectives: As there are many cardio-active pyridazinone-base derivatives in clinical use, therefore, we aimed to synthesize a new series of pyridazin-3-ones and evaluate their vasorelaxant activity.

Methods: A new series of synthesized compounds were carried out first by the synthesis of 6- flouroarylpyridazinones by cyclization of 3-(4-flourobenzoyl) propionic acid with hydrazine hydrate or arylhydrazines to provide the corresponding pyridazinone derivatives 2a-d. Mannich reaction was performed using morpholine or piperidine formaldehyde to obtain compounds 3a,b. On the other hand, reaction of 2a with various chloroacetamide intermediates, in dimethylformamide and potassium carbonate as a catalyst, afforded the target compounds 5a-c. The aromatic acid hydrazide intermediates 6a-g were prepared in 50-90% yield, by reacting to the prepared esters with hydrazine hydrate under reflux in ethanol. The two compounds 8a,b were prepared via condensation of 7a,b with ethyl chloroacetate in dry acetone. Finally, the target 2,4,6-trisubstituted pyridazinones 9a-c derivatives were obtained by the reaction of 7a with the appropriate aromatic aldehyde or substituted acetophenones. The new compounds were then evaluated for their vasorelaxant properties using isolated thoracic rat aortic rings. In addition, a homology model was built and molecular modeling simulation of these compounds into the active sites of the newly created α1a-adrenoceptor model was performed in order to predict and rationalize their affinities toward this receptor.

Results: Among these compounds; 5a was the most potent, it exhibited approximately two-times the activity of prazosin (IC50 = 0.250, 0.487 mmol, respectively) also, fourteen compounds were more potent than prazosin.

Keywords: Pyridazin-3-ones, Vasodilator, Molecular modeling study, α1a-adrenoceptor, pyridazinone nucleus, calcium channel blockers.

« Previous
Graphical Abstract

[1]
Oartes, J.A. Antihypertensive Agents and the Drug Therapy of HypertensionGoodman & Gilman’s The Pharmacological Basis of Therapeutics 9th ed.; Pergamon Press, 2001, Vol. 780, Section V.33..
[2]
Kung, H.C. Xu, J. Hypertension-related Mortality in the United States, 2000–2013. NCHS, 2015, 193, 1-8.
[3]
Sica, D.A.; Carter, B.; Cushman, W.; Hamm, L. Thiazide and loop diuretics. J. Clin. Hypertens. (Greenwich), 2011, 13(9), 639-643.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00512.x ] [PMID: 21896142]
[4]
Sever, P.S.; Messerli, F.H. Hypertension management 2011: optimal combination therapy. Eur. Heart J., 2011, 32(20), 2499-2506.
[http://dx.doi.org/10.1093/eurheartj/ehr177 ] [PMID: 21697169]
[5]
Dézsi, C.A. A review of clinical studies on angiotensin II receptor blockers and risk of cancer. Int. J. Cardiol., 2014, 177(3), 748-753.
[http://dx.doi.org/10.1016/j.ijcard.2014.11.031 ] [PMID: 25465823]
[6]
Sica, D.A. Pharmacotherapy review: calcium channel blockers. J. Clin. Hypertens. (Greenwich), 2006, 8(1), 53-56.
[http://dx.doi.org/10.1111/j.1524-6175.2005.04140.x ] [PMID: 16407690]
[7]
Jagadeesh, G. Balakumar; Maung-U, P.K. Pathophysiology and Pharmacotherapy of Cardiovascular Disease; Springer: Cham, Heidelberg, 2015, pp. 853-868.
[http://dx.doi.org/10.1007/978-3-319-15961-4]
[8]
Pedersen, M.E.; Cockcroft, J.R. The vasodilatory beta-blockers. Curr. Hypertens. Rep., 2007, 9(4), 269-277.
[http://dx.doi.org/10.1007/s11906-007-0050-2 ] [PMID: 17686376]
[9]
Nash, D.T. Alpha-adrenergic blockers: mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin. Cardiol., 1990, 13(11), 764-772.
[http://dx.doi.org/10.1002/clc.4960131104 ] [PMID: 1980236]
[10]
Piascik, M.T.; Perez, D.M. α1-adrenergic receptors: new insights and directions. J. Pharmacol. Exp. Ther., 2001, 298(2), 403-410.
[PMID: 11454900]
[11]
Khalil, N.A.; Ahmed, E.M.; Elshihawy, H.A.; Zaitone, S.A. Novel 4-substituted-2(1H)-phthalazinone derivatives: synthesis, molecular modeling study and their effects on α-receptors. Arch. Pharm. Res., 2013, 36(6), 671-683.
[http://dx.doi.org/10.1007/s12272-013-0095-5 ] [PMID: 23543653]
[12]
Melville, A.; Donovon, J.; Sheldon, T.; Peters, T. Benign prostatic hyperplasia. Qual. Health Care, 1996, 5(2), 111-119.
[http://dx.doi.org/10.1136/qshc.5.2.111 ] [PMID: 10158589]
[13]
Kenny, B.A.; Miller, A.M.; Williamson, I.J.R.; O’Connell, J.; Chalmers, D.H.; Naylor, A.M. Evaluation of the pharmacological selectivity profile of α 1 adrenoceptor antagonists at prostatic α 1 adrenoceptors: binding, functional and in vivo studies. Br. J. Pharmacol., 1996, 118(4), 871-878.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15480.x ] [PMID: 8799556]
[14]
Lepor, H.; Knapp-Maloney, G.; Sunshine, H. A dose titration study evaluating terazosin, a selective, once-a-day alpha 1-blocker for the treatment of symptomatic benign prostatic hyperplasia. J. Urol., 1990, 144(6), 1393-1397.
[http://dx.doi.org/10.1016/S0022-5347(17)39751-3 ] [PMID: 1700152]
[15]
Akhmola, V.; Jawla, S.; Mishra, R. Synthesis, characterization and antihypertensive activity of 4,5 dihydropyridazin-3(2h)-one derivatives. Acta Scientific Pharmaceutical Sc., 2018, 2(5), 2-7.
[16]
Abouzid, K.; Abdel Hakeem, M.; Khalil, O.; Maklad, Y. Pyridazinone derivatives: design, synthesis, and in vitro vasorelaxant activity. Bioorg. Med. Chem., 2008, 16(1), 382-389.
[http://dx.doi.org/10.1016/j.bmc.2007.09.031 ] [PMID: 17905589]
[17]
Bansal, R.; Kumar, D.; Sharma, D.; Calle, C.; Carron, R. Synthesis and pharmacological evaluation of 6‐arylpyridazinones as potent vasorelaxants. Drug Dev. Res., 2013, 74(5), 296-305.
[http://dx.doi.org/10.1002/ddr.21079]
[18]
Sotelo, E.; Fraiz, N.; Yáñez, M.; Terrades, V.; Laguna, R.; Cano, E.; Raviña, E. Pyridazines. Part XXIX: synthesis and platelet aggregation inhibition activity of 5-substituted-6-phenyl-3(2H)-pyridazinones. Novel aspects of their biological actions. Bioorg. Med. Chem., 2002, 10(9), 2873-2882.
[http://dx.doi.org/10.1016/S0968-0896(02)00146-3 ] [PMID: 12110307]
[19]
Amin, E.N.; Abdel-Alim, A.A.M.; Abdel-Moty, S.G.; El-Shorbagi, A.N.; Abdel-Rahman, M.Sh. Synthesis of new 4,5-3(2H)pyridazinone derivatives and their cardiotonic, hypotensive, and platelet aggregation inhibition activities. Arch. Pharm. Res., 2010, 33(1), 25-46.
[http://dx.doi.org/10.1007/s12272-010-2222-x ] [PMID: 20191341]
[20]
Bansal, R.; Kumar, D.; Carron, R.; de la Calle, C. Synthesis and vasodilatory activity of some amide derivatives of 6-(4-carboxymethyloxyphenyl)-4,5-dihydro-3(2H)-pyridazinone. Eur. J. Med. Chem., 2009, 44(11), 4441-4447.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.006 ] [PMID: 19589624]
[21]
Siddiqui, A.A.; Mishra, R.; Shaharyar, M. Synthesis, characterization and antihypertensive activity of pyridazinone derivatives. Eur. J. Med. Chem., 2010, 45(6), 2283-2290.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.003 ] [PMID: 20189270]
[22]
Barrett, J.A. Meacham, R. H.; Kelley, M. F.; Graney, W. F.; Perrone, M. H. Prinoxodan (RG W-2938). Cardiovasc. Drug Rev., 1990, 8, 323-338.
[http://dx.doi.org/10.1111/j.1527-3466.1990.tb00399.x]
[23]
Galvan, M.; Schudt, C. Actions of the phosphodiesterase inhibitor zardaverine on guinea-pig ventricular muscle. Naunyn Schmiedebergs Arch. Pharmacol., 1990, 342(2), 221-227.
[http://dx.doi.org/10.1007/BF00166968 ] [PMID: 1700309]
[24]
Montes, F.R.; Echeverri, D.; Buitrago, L.; Ramírez, I.; Giraldo, J.C.; Maldonado, J.D.; Umaña, J.P. The vasodilatory effects of levosimendan on the human internal mammary artery. Anesth. Analg., 2006, 103(5), 1094-1098.
[http://dx.doi.org/10.1213/01.ane.0000244326.38206.a0 ] [PMID: 17056938]
[25]
Nieminen, M.S.; Fruhwald, S.; Heunks, L.M.A.; Suominen, P.K.; Gordon, A.C.; Kivikko, M.; Pollesello, P. Levosimendan: current data, clinical use and future development. Heart Lung Vessel., 2013, 5(4), 227-245.
[PMID: 24364017]
[26]
De Luca, L.; Colucci, W.S.; Nieminen, M.S.; Massie, B.M.; Gheorghiade, M. Evidence-based use of levosimendan in different clinical settings. Eur. Heart J., 2006, 27(16), 1908-1920.
[http://dx.doi.org/10.1093/eurheartj/ehi875 ] [PMID: 16682381]
[27]
Roark, W.H.; Padia, J.; Bolton, G.L.; Blankley, C.J.; Essenburg, A.D.; Stanfield, R.L.; Bousley, R.F.; Krause, B.R.; Roth, B.D. Bioisosterism in drug design: identification of and structure-activity relationships in a series of glycine anilide ACAT inhibitors. Bioorg. Med. Chem., 1995, 3(1), 29-39.
[http://dx.doi.org/10.1016/0968-0896(94)00144-R ] [PMID: 8612044]
[28]
Adeoye, I.O.; Adelowo, O.O.; Oladipo, M.A.; Odunola, O.A. Comparison of bactericidal and fungicidal activities of Cu (Ii) and Ni (Ii) complexes of para-methoxy and para-hydroxy benzoic acid hydrazide. Research. J. Appl. Sci. (Faisalabad), 2007, 2, 590-594.
[29]
Giovannoni, M.P.; Schepetkin, I.A.; Cilibrizzi, A.; Crocetti, L.; Khlebnikov, A.I.; Dahlgren, C.; Graziano, A.; Dal Piaz, V.; Kirpotina, L.N.; Zerbinati, S.; Vergelli, C.; Quinn, M.T. Further studies on 2-arylacetamide pyridazin-3(2H)-ones: design, synthesis and evaluation of 4,6-disubstituted analogs as formyl peptide receptors (FPRs) agonists. Eur. J. Med. Chem., 2013, 64, 512-528.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.066 ] [PMID: 23685570]
[30]
Awadallah, F.M.; el-Eraky, W.I.; Saleh, D.O. Synthesis, vasorelaxant activity, and molecular modeling study of some new phthalazine derivatives. Eur. J. Med. Chem., 2012, 52, 14-21.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.051 ] [PMID: 22440857]
[31]
Maïga, A.; Dupont, M.; Blanchet, G.; Marcon, E.; Gilquin, B.; Servent, D.; Gilles, N. Molecular exploration of the α(1A)-adrenoceptor orthosteric site: binding site definition for epinephrine, HEAT and prazosin. FEBS Lett., 2014, 588(24), 4613-4619.
[http://dx.doi.org/10.1016/j.febslet.2014.10.033 ] [PMID: 25447534]
[32]
Maıga, A.; Merlin, J.; Marcon, E.; Rouget, C.; Larregola, M.; Gilquin, B.; Fruchart-Gaillard, C.; Lajeunesse, E.; Marchetti, C.; Lorphelin, A.; Bellanger, L.; Summers, R.J.; Hutchinson, D.S.; Evans, B.A.; Servent, D.; Gilles, N. Orthosteric Binding of ρ-Da1a, a Natural Peptide of Snake Venom Interacting Selectively with the α1A-Adrenoceptor. PLoS One, 2013, 8, 1-11.
[http://dx.doi.org/10.1371/journal.pone.0068841]
[33]
Siddiqui, A.A.; Mishra, R.; Shaharyar, M.; Husain, A.; Rashid, M.; Pal, P. Triazole incorporated pyridazinones as a new class of antihypertensive agents: design, synthesis and in vivo screening. Bioorg. Med. Chem. Lett., 2011, 21(3), 1023-1026.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.028 ] [PMID: 21211966]
[34]
Ismail, M.M.F.; Rateb, H.S.; Hussein, M.M.M. Synthesis and docking studies of novel benzopyran-2-ones with anticancer activity. Eur. J. Med. Chem., 2010, 45(9), 3950-3959.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.050 ] [PMID: 20580139]
[35]
Bayindir, S. Ayna Adnan, Temel Y., CiFTCi, M. The synthesis of new oxindoles as analogs of natural product 3,3′-bis(indolyl)oxindole and in vitro evaluation for enzyme activity of G6PD and 6PGD. Turk. J. Chem., 2018, 42, 332-345.
[http://dx.doi.org/10.3906/kim-1706-51]
[36]
Bayindir, S.; Temel, Y.A. Adnan; CiFTCi, M. The synthesis of N-benzoylindoles as inhibitors of G6PD and 6PGD. J. Biochem. Mol. Toxicol., 2018, 32(9), 22193.
[http://dx.doi.org/10.1002/jbt.22193 ] [PMID: 29992784]
[37]
Bayindir, S.; Caglayan, C.; Karaman, M.; Gülcin, İ. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorg. Chem., 2019, 90, 103096..
[http://dx.doi.org/10.1016/j.bioorg.2019.103096] [PMID: 31284100]
[38]
Munín, J.; Quezada, E.; Cuiñas, A.; Campos-Toimil, M.; Uriarte, E.; Santana, L.; Viña, D. Synthesis, biological evaluation and structure-activity relationships of new phthalazinedione derivatives with vasorelaxant activity. Eur. J. Med. Chem., 2014, 82, 407-417.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.052 ] [PMID: 24929291]
[39]
Costas, T.; Besada, P.; Piras, A.; Acevedo, L.; Yañez, M.; Orallo, F.; Laguna, R.; Terán, C. New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities. Bioorg. Med. Chem. Lett., 2010, 20(22), 6624-6627.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.031 ] [PMID: 20880705]
[40]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[41]
Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins, 1992, 12(4), 345-364.
[http://dx.doi.org/10.1002/prot.340120407 ] [PMID: 1579569]
[42]
Piechota, P. Development of in silico models for the prediction of toxicity incorporating ADME information., 2015.http://researchonline.ljmu.ac.uk/4554/3/158243_2015_Przemyslaw_Piechota_PhD.pdf
[43]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717 ] [PMID: 28256516]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy