Abstract
Background: Flavonoids are naturally occurring compounds with versatile healthpromoting effects against various diseases.
Objective: This aim of this paper is to synthesize and evaluate the biological activity of novel flavone derivatives against cancer. Methods: A new series of 2-hydroxy-α,β-unsaturated ketones 2a-h, was synthesized via the reaction of N-substituted-indole-3-carboxaldehyde 1a-h with 2-hydroxy acetophenone in the presence of piperidine. The oxidative cyclization of 2a-h using hydrogen peroxide/KOH and/or dimethyl sulfoxide/I2 produced the corresponding 2-(N-substituted-1H-indol-3-yl)-3-hydroxy-4H-chromen- 4-ones 3a-h and 2-(N-substituted-1H-indol-3-yl)-4H-chromen-4-ones 4a-h, respectively. Antiproliferative activities for synthesized series were investigated against HCT-116 colon and MCF- 7 breast cancer cell lines. Molecular downstream effects were evaluated using RT-PCR. Moreover, molecular docking was carried out to pinpoint the binding mode of the most active compounds into the active site of Akt enzyme (PDB ID: 3QKK). Results: All compounds exhibited an anti-proliferative activity range of 52-97% and 67.2-99% against HCT-116 and MCF-7, respectively. Compounds 3b, 3h, 3g and 4h had a minimal inhibitory effect on normal BJ1 cells indicating their safety profile. Compounds 3b and 4h, in particular, exhibited the most potent antiproliferative activity against HCT116 and MCF7, meanwhile compounds 3g, 3h and 4g showed potent to moderate activity. Compound 3b had IC50 of 78.3 μM and 53.9 μM against HCT-116 and MCF-7 respectively with comparable IC50 for doxorubicin of 65.1 μM and 45.02 μM. Compound 3b exhibited significant down-regulation for Akt and significant up-regulation of CAS9 and CDKN1genes in all tested cell lines. Conclusion: The synthesized flavone derivatives and particularly compound 3b exhibited promising anticancer activity through Akt inhibition.Keywords: Apoptosis, cancer, indole, chromen-4-ones, protein kinase B, anti-proliferative.
Graphical Abstract
[1]
Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
[http://dx.doi.org/10.1186/1756-9966-30-87 ] [PMID: 21943236]
[http://dx.doi.org/10.1186/1756-9966-30-87 ] [PMID: 21943236]
[2]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014, 150845-150845.
[http://dx.doi.org/10.1155/2014/150845 ] [PMID: 25013758]
[http://dx.doi.org/10.1155/2014/150845 ] [PMID: 25013758]
[3]
Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol., 2013, 23(12), 620-633.
[http://dx.doi.org/10.1016/j.tcb.2013.07.006]
[http://dx.doi.org/10.1016/j.tcb.2013.07.006]
[4]
Indran, I.R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta, 2011, 1807(6), 735-745.
[http://dx.doi.org/10.1016/j.bbabio.2011.03.010 ] [PMID: 21453675]
[http://dx.doi.org/10.1016/j.bbabio.2011.03.010 ] [PMID: 21453675]
[5]
Nitulescu, G.M.; Margina, D.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Saloustros, E.; Fenga, C.; Spandidos, D.A.; Libra, M.; Tsatsakis, A.M. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use. Review Int. J. Oncol., 2016, 48(3), 869-885.
[http://dx.doi.org/10.3892/ijo.2015.3306 ] [PMID: 26698230]
[http://dx.doi.org/10.3892/ijo.2015.3306 ] [PMID: 26698230]
[6]
Lippa, B.; Pan, G.; Corbett, M.; Li, C.; Kauffman, G.S.; Pandit, J.; Robinson, S.; Wei, L.; Kozina, E.; Marr, E.S.; Borzillo, G.; Knauth, E.; Barbacci-Tobin, E.G.; Vincent, P.; Troutman, M.; Baker, D.; Rajamohan, F.; Kakar, S.; Clark, T.; Morris, J. Synthesis and structure based optimization of novel Akt inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(11), 3359-3363.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.034 ] [PMID: 18456494]
[http://dx.doi.org/10.1016/j.bmcl.2008.04.034 ] [PMID: 18456494]
[7]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5(e47)e47
[http://dx.doi.org/10.1017/jns.2016.41 ] [PMID: 28620474]
[http://dx.doi.org/10.1017/jns.2016.41 ] [PMID: 28620474]
[8]
Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093 ] [PMID: 22096313]
[http://dx.doi.org/10.4103/0973-7847.79093 ] [PMID: 22096313]
[9]
Forbes, A.M.; Lin, H.; Meadows, G.G.; Meier, G.P. Synthesis and anticancer activity of new flavonoid analogs and inconsistencies in assays related to proliferation and viability measurements. Int. J. Oncol., 2014, 45(2), 831-842.
[http://dx.doi.org/10.3892/ijo.2014.2452 ] [PMID: 24859601]
[http://dx.doi.org/10.3892/ijo.2014.2452 ] [PMID: 24859601]
[10]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750 ] [PMID: 24470791]
[http://dx.doi.org/10.1155/2013/162750 ] [PMID: 24470791]
[11]
Jucá, M.M.; Cysne Filho, F.M.S.; de Almeida, J.C.; Mesquita, D.D.S.; Barriga, J.R.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; Vasconcelos, S.M.M. Flavonoids: biological activities and therapeutic potential. Nat. Prod. Res., 2020, 34(5), 692-705.
[http://dx.doi.org/10.1080/14786419.2018.1493588 ] [PMID: 30445839]
[http://dx.doi.org/10.1080/14786419.2018.1493588 ] [PMID: 30445839]
[12]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003 ] [PMID: 28412530]
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003 ] [PMID: 28412530]
[13]
El-Sawy, E.R.; Abo-Salema, H.M.; Mahmoud, K.; Zarie, E.S.; ElMetwally, A.M.; Mandour, A.H. Synthesis, anticancer activity and molecular docking study of novel 1, 3-diheterocycles indole derivatives. Int. J. Pharm. Pharm. Sci., 2015, 7, 377-385.
[14]
Abo-Salem, H.; Ahmed, K.M.; El-Hallouty, S.; El-Sawy, E.; Mandour, A. Synthesis, molecular docking and anti-proliferative activity of new series of 1-methyl sulphonyl-3-indolyl heterocycles. Int. J. Pharm. Pharm. Sci., 2016, 8(12), 113-123.
[http://dx.doi.org/10.22159/ijpps.2016v8i12.14841]
[http://dx.doi.org/10.22159/ijpps.2016v8i12.14841]
[15]
El-Sawy, E.R.; Abo-Salem, H.M.; Yahya, S.M.; Ebaid, M.S.; Mandour, A.H. Synthesis, cytotoxic, pro-apoptotic evaluation and molecular docking study of some new N-substituted sulphonyl-3-indolyl heterocycles. Egy. Pharm. Journal., 2015, 14, 15-29.
[http://dx.doi.org/10.4103/1687-4315.154695]
[http://dx.doi.org/10.4103/1687-4315.154695]
[16]
El-Sawy, E.R.; Ebaid, M.; Rady, H.; Shalby, A.; Ahmed, K.; Abo-Salem, H. Synthesis and molecular docking of novel non-cytotoxic anti-angiogenic sulfonyl coumarin derivatives against hepatocellular carcinoma cells in vitro. J. Appl. Pharm. Sci., 2017, 7(2), 49-66.
[17]
Mndzhoyan, A.L.; Papayan, G.L.; Zhuruli, L.D.; Karagezyan, G.; Galstyan, L.S.; Sarafyan, V.G. Synthesis and biological study of hydrazinohydrazones of indole aldehydes and ketons series. Arm. Khim. Zh., 1970, 7211189f
[18]
Bruce, J.M.; Sutcliffe, F.K. 966. Heterocyclic compounds of nitrogen. Part I. The alkylation and acylation of 3-phenyloxindole, and the preparation of some derivatives of 2-hydroxy-3-phenylindole. J. Chem. Soc., 1957, 4789.
[http://dx.doi.org/10.1039/jr9570004789]
[http://dx.doi.org/10.1039/jr9570004789]
[19]
Kornev, M.Y.; Moshkin, V.S. Sosnovskikh. Anovel synthesis of (E)-1-(2-hydroxy phenyl)-3-(1-H-indol-3-yl)prop-2-en-1-ones from chromone-3-carboxylic acid and indole. Chem. Heterocycl. Chem., 2015, 51(9), 858-860.
[http://dx.doi.org/10.1007/s10593-015-1786-2]
[http://dx.doi.org/10.1007/s10593-015-1786-2]
[20]
Thanh, N.P.; Thao, N.M. Configurations of some α, β-unsaturated ketones containing indole ring and ortho-hydroxy group. Tap. Chi. Hoa. Hoc., 1999, 37(4), 20-25.
[21]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4 ] [PMID: 6606682]
[http://dx.doi.org/10.1016/0022-1759(83)90303-4 ] [PMID: 6606682]
[22]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28, 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[23]
Kallan, N.C.; Spencer, K.L.; Blake, J.F.; Xu, R.; Heizer, J.; Bencsik, J.R.; Mitchell, I.S.; Gloor, S.L.; Martinson, M.; Risom, T.; Gross, S.D.; Morales, T.H.; Wu, W.I.; Vigers, G.P.; Brandhuber, B.J.; Skelton, N.J. Discovery and SAR of spirochromane Akt inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(8), 2410-2414.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.073 ] [PMID: 21392984]
[http://dx.doi.org/10.1016/j.bmcl.2011.02.073 ] [PMID: 21392984]
[24]
Kaminski, G.; Jorgensen, W.L. Performance of the AMBER94, MMFF94 and OPLS-AA force fields for modeling organic liquids. J. Phys. Chem., 1996, 100, 18010-18013.
[http://dx.doi.org/10.1021/jp9624257]
[http://dx.doi.org/10.1021/jp9624257]
[25]
(a)Devitt, P.F.; Timoney, A.; Vickars, M.A. Synthesis of Heterocyclic- Substituted Chromones and Chalcones. J. Org. Chem.. 1961, 26, 4941.
[http://dx.doi.org/10.1021/jo01070a039]
(b)Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; De Clercq, E.; Shah, A.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett., 2007, 48, 8472.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.175]
[http://dx.doi.org/10.1021/jo01070a039]
(b)Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; De Clercq, E.; Shah, A.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett., 2007, 48, 8472.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.175]
[26]
Venkatesan1, P.; Sumathi, S. Piperidine Mediated Synthesis of N-Heterocyclic Chalcones and Their Antibacterial Activity. J. Heterocycl. Chem., 2010, 47, 81.
[27]
Penthala, N.R.; Yerramreddy, T.R.; Crooks, P.A. Synthesis and in vitro screening of novel N-benzyl aplysinopsin analogs as potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(5), 1411-1413.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.020 ] [PMID: 21295476]
[http://dx.doi.org/10.1016/j.bmcl.2011.01.020 ] [PMID: 21295476]
[28]
Penthala, N.R.; Yerramreddy, T.R.; Madadi, N.R.; Sonar, V.; Crooks, P.A. Synthesis and In Vitro Screening of Novel Heterocyclic Compounds as Potential Breast Cancer Agents: Breast Cancer - Current and Alternative Therapeutic Modalities 2011.
[http://dx.doi.org/10.5772/21838]
[http://dx.doi.org/10.5772/21838]
[29]
Chang, F.; Lee, J.T.; Navolanic, P.M.; Steelman, L.S.; Shelton, J.G.; Blalock, W.L.; Franklin, R.A.; McCubrey, J.A. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003.17, 590e603.
[30]
Brunet, A.; Datta, S.R.; Greenberg, M.E. Transcription-dependent and -independent controlof neuronal survival by the PI3K/Akt signaling pathway. Curr. Opin. Neurol., 2011, 11, 297-305.
[http://dx.doi.org/10.1016/S0959-4388(00)00211-7]
[http://dx.doi.org/10.1016/S0959-4388(00)00211-7]
[31]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799 ] [PMID: 16783341]
[http://dx.doi.org/10.1038/nchembio799 ] [PMID: 16783341]
[32]
Cowan-Jacob, S.W.; Jahnke, W.; Knapp, S. Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med. Chem., 2014, 6(5), 541-561.
[http://dx.doi.org/10.4155/fmc.13.216 ] [PMID: 24649957]
[http://dx.doi.org/10.4155/fmc.13.216 ] [PMID: 24649957]
[33]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559 ] [PMID: 19104514]
[http://dx.doi.org/10.1038/nrc2559 ] [PMID: 19104514]
[34]
Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009 ] [PMID: 31323288]
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009 ] [PMID: 31323288]
[35]
Dumble, M.; Crouthamel, M.C.; Zhang, S.Y. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS One, 2014, 9(6)e100880
[36]
Hideshima, T.; Catley, L.; Yasui, H.; Ishitsuka, K.; Raje, N.; Mitsiades, C.; Podar, K.; Munshi, N.C.; Chauhan, D.; Richardson, P.G.; Anderson, K.C. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood, 2006, 107(10), 4053-4062.
[http://dx.doi.org/10.1182/blood-2005-08-3434 ] [PMID: 16418332]
[http://dx.doi.org/10.1182/blood-2005-08-3434 ] [PMID: 16418332]
[37]
Toral-Barza, L.; Zhang, W.G.; Huang, X.; McDonald, L.A.; Salaski, E.J.; Barbieri, L.R.; Ding, W.D.; Krishnamurthy, G.; Hu, Y.B.; Lucas, J.; Bernan, V.S.; Cai, P.; Levin, J.I.; Mansour, T.S.; Gibbons, J.J.; Abraham, R.T.; Yu, K. Discovery of lactoquinomycin and related pyranonaphthoquinones as potent and allosteric inhibitors of AKT/PKB: mechanistic involvement of AKT catalytic activation loop cysteines. Mol. Cancer Ther., 2007, 6(11), 3028-3038.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0211 ] [PMID: 17989320]
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0211 ] [PMID: 17989320]
[38]
Rehan, M.; Beg, M. Computational Insights into the Inhibitory Mechanism of Human AKT1 by an Orally Active Inhibitor, MK-2206. PLoS One, 2014, 9e109705
[39]
Weisner, J.; Gontla, R.; van der Westhuizen, L.; Oeck, S.; Ketzer, J.; Janning, P.; Richters, A.; Mühlenberg, T.; Fang, Z.; Taher, A.; Jendrossek, V.; Pelly, S.C.; Bauer, S.; van Otterlo, W.A.L.; Rauh, D. Covalent-allosteric kinase inhibitors. Angew. Chem. Int. Ed. Engl., 2015, 54(35), 10313-10316.
[http://dx.doi.org/10.1002/anie.201502142 ] [PMID: 26110718]
[http://dx.doi.org/10.1002/anie.201502142 ] [PMID: 26110718]