Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Organocatalyzed Heterocyclic Transformations In Green Media: A Review

Author(s): Neslihan Demirbas* and Ahmet Demirbas

Volume 8, Issue 1, 2021

Published on: 05 August, 2020

Page: [27 - 71] Pages: 45

DOI: 10.2174/2213337207999200805115813

Price: $65

Abstract

Background: Since the discovery of metal-free catalysts or organocatalysts about twenty years ago, a number of small molecules with different structures have been used to accelerate organic transformations. With the development of environmental awareness, to obtain highly efficient scaffolds, scientists have directed their studies towards synthetic methodologies that minimize or preferably eliminate the formation of waste, avoid toxic solvents and reagents and use renewable starting materials as far as possible.

Methods: In this connection, the organocatalytic reactions providing efficiency and selectivity for most of the transformations have become an endless topic in organic chemistry since several advantages from both practical and environmental standpoints. Organocatalysts contributing to the transformation of reactants into products with the least possible waste production, have been serving the concept of green chemistry.

Results and Conclusion: Organocatalysts have been classified based on their binding capacity to the substrate with covalent or noncovalent interactions involving hydrogen bonding and electrostatic interaction. Diverse types of small organic compounds including proline and its derivatives, phase-transfer catalysts, (thio)urease, phosphoric acids, sulfones, N-oxides, guanidines, cinchona derivatives, aminoindanol, and amino acids have been utilized as hydrogen bonding organocatalysts in different chemical transformations.

Keywords: Organocatalyst, multicomponent, microwave, ultrasound, bifunctional catalyst, nanocatalyst, ionic liquids, heterogeneous catalyst, dual-activation.

Graphical Abstract

[1]
Aghajani, M.; Monadi, N. A one-pot green synthesis of 2-amino-4H-benzo[h]chromenes catalyzed by a dioxomolybdenum Schiff base complex supported on magnetic nanoparticles as an efficient and recyclable nanocatalyst. J. Chin. Chem. Soc. (Taipei), 2019, 1-10.
[2]
Afradi, M.; Pour, S.A.; Dolat, M.; Abadi, A.Y.E. Nanomagnetically modified vitamin B3 (Fe3O4@Niacin): An efficient and reusable green biocatalyst for microwave-assisted rapid synthesis of 2-amino-3-cyanopyridines in aqueous medium. Appl. Organomet. Chem., 2017, 32, 4103-4116.
[3]
Hernández, J.G.; Juaristi, E. Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chem. Commun. (Camb.), 2012, 48(44), 5396-5409.
[http://dx.doi.org/10.1039/c2cc30951c] [PMID: 22517403]
[4]
Dipak, K.R.; Kashyap, J.T.; Manobjyoti, B. Exploiting silver trifluoromethanesulfonate as efficient and reusable catalyst for the synthesis of dihydropyrimidine derivatives under different reaction environments. J. Heterocyclic Chem, 2019, 1-11.
[5]
Alza, E.; Rodríguez-Escrich, C.; Sayalero, S.; Bastero, A.; Pericàs, M.A. A solid-supported organocatalyst for highly stereoselective, batch, and continuous-flow Mannich reactions. Chemistry, 2009, 15(39), 10167-10172.
[http://dx.doi.org/10.1002/chem.200901310] [PMID: 19688793]
[6]
Font, D.; Jimeno, C.; Pericàs, M.A. Polystyrene-supported hydroxyproline: an insoluble, recyclable organocatalyst for the asymmetric aldol reaction in water. Org. Lett., 2006, 8(20), 4653-4655.
[http://dx.doi.org/10.1021/ol061964j] [PMID: 16986973]
[7]
Font, D.; Bastero, A.; Sayalero, S.; Jimeno, C.; Pericàs, M.A. Highly enantioselective alpha-aminoxylation of aldehydes and ketones with a polymer-supported organocatalyst. Org. Lett., 2007, 9(10), 1943-1946.
[http://dx.doi.org/10.1021/ol070526p] [PMID: 17439136]
[8]
Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Asymmetric aminocatalysis--gold rush in organic chemistry. Angew. Chem. Int. Ed. Engl., 2008, 47(33), 6138-6171.
[http://dx.doi.org/10.1002/anie.200705523] [PMID: 18666089]
[9]
Amirnejad, M.; Naimi-Jamal, M.R.; Tourani, H.; Ghafuri, H. A facile solvent-free one-pot three-component method for the synthesis of 2-amino-4H-pyrans and tetrahydro-4H-chromenes at ambient temperature. Monatsh. Chem., 2013, 144, 1219-1225.
[http://dx.doi.org/10.1007/s00706-013-0938-2]
[10]
Brahmachari, G.; Nayek, N.; Nurjamal, K.; Karmakar, I.; Begam, S. Triethylamine a versatile organocatalyst in organic transformations: a decade update. Synt. Stuttgart, 2018, 50, 4145-4164.
[http://dx.doi.org/10.1055/s-0037-1609909]
[11]
Cue, B.W.; Zhang, J. Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev., 2009, 2, 193-211.
[http://dx.doi.org/10.1080/17518250903258150]
[12]
Naimi-Jamal, M.R.; Mashkouri, S.; Sharifi, A. An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold. Mol. Divers., 2010, 14(3), 473-477.
[http://dx.doi.org/10.1007/s11030-010-9246-5] [PMID: 20373141]
[13]
Arora, D.; Dwivedi, J.; Kumar, S.; Kishore, D. Greener approach toward the generation of dimedone derivatives. Synth. Commun., 2018, 48, 115-134.
[http://dx.doi.org/10.1080/00397911.2017.1387924]
[14]
Dekamin, M.G.; Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans under mechanochemical ball milling. Green Chem., 2014, 16, 4914-4921.
[http://dx.doi.org/10.1039/C4GC00411F]
[15]
Freeman, F.; Adesina, I.T.; La, J.L.; Lee, J.Y.; Poplawski, A.A.J. Conformers of cysteine and cysteine sulfenic acid and mechanisms of the reaction of cysteine sulfenic acid with 5,5-dimethyl-1,3-cyclohexanedione (dimedone). J. Phys. Chem. B, 2013, 117(50), 16000-16012.
[http://dx.doi.org/10.1021/jp409022m] [PMID: 24274619]
[16]
Cai, H.; Xia, L.; Lee, Y.R.; Shim, J.J.; Kim, S.H. Construction of diverse and functionalized 2H-chromenes by organocatalytic multicomponent reactions. Eur. J. Org. Chem., 2015, 23, 5212-5220.
[http://dx.doi.org/10.1002/ejoc.201500616]
[17]
Volla, C.M.R.; Atodiresei, I.; Rueping, M. Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114(4), 2390-2431.
[http://dx.doi.org/10.1021/cr400215u] [PMID: 24304297]
[18]
Dondoni, A.; Massi, A. Asymmetric organocatalysis: from infancy to adolescence. Angew. Chem. Int. Ed. Engl., 2008, 47(25), 4638-4660.
[http://dx.doi.org/10.1002/anie.200704684] [PMID: 18421733]
[19]
Scheffler, U.; Mahrwald, R. Recent advances in organocatalytic methods for asymmetric C-C bond formation. Chemistry, 2013, 19(43), 14346-14396.
[http://dx.doi.org/10.1002/chem.201301996] [PMID: 24115407]
[20]
Meninno, S.; Lattanzi, A. Asymmetric organocatalysis mediated by α,α-L-diaryl prolinols: recent advances. Chem. Commun. (Camb.), 2013, 49(37), 3821-3832.
[http://dx.doi.org/10.1039/c3cc36928e] [PMID: 23549209]
[21]
Xie, J.W.; Xu, M.L.; Zhang, R.Z.; Pan, J.Y.; Zhu, W.D. Organocatalytic domino reaction of electron-deficient 2,4-dienes with 2-halo-1,3-dicarbonyl compounds: a highly regio- and stereoselective approach to functionalized five-membered carbocycles. Adv. Synth. Catal., 2014, 356, 395-400.
[http://dx.doi.org/10.1002/adsc.201300788]
[22]
Xia, L.; Cai, H.; Lee, Y.R. Catalyst-controlled regio- and stereoselective synthesis of diverse 12H-6,12-methanodibenzo[d,g][1,3]dioxocines. Org. Biomol. Chem., 2014, 12(25), 4386-4396.
[http://dx.doi.org/10.1039/C4OB00691G] [PMID: 24841280]
[23]
Savitha, G.; Sudhakar, R.; Perumal, P.T. An efficient one-pot synthesis of spiro dihydrofuran fluorene and spiro 2-hydroxytetrahydrofuran fluorene derivatives via [3+2] oxidative cycloaddition mediated by CAN. Tetrahedron Lett., 2008, 49, 7260-7263.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.011]
[24]
Hamidian, H.; Fozooni, S.; Hassankhani, A.; Mohammadi, S.Z. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk. Molecules, 2011, 16(11), 9041-9048.
[http://dx.doi.org/10.3390/molecules16119041] [PMID: 22031067]
[25]
Hasaninejad, A.; Zare, A.; Shekouhy, M. Highly efficient synthesis of triazolo[1,2-a]indazole-triones and novel spiro triazolo[1,2-a]indazole-tetraones under solvent-free conditions. Tetrahedron, 2011, 67, 390-400.
[http://dx.doi.org/10.1016/j.tet.2010.11.029]
[26]
Chari, M.A.; Karthikeyan, G.; Pandurangan, A.; Naidu, T.S.; Sathyaseelan, B.; Zaidi, S.M.J.; Vinu, A. Synthesis of triazolo indazolones using 3D mesoporous aluminosilicate catalyst with nanocage structure. Tetrahedron Lett., 2010, 51, 2629-2632.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.021]
[27]
Bazgir, A.; Seyyedhamzeh, M.; Yasaei, Z.; Mirzaei, P. A novel three-component method for the synthesis of triazolo[1,2-a]indazole-triones. Tetrahedron Lett., 2007, 48, 8790-8794.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.084]
[28]
Shekouhy, M.; Hasaninejad, A. Ultrasound-promoted catalyst-free one-pot four component synthesis of 2H-indazolo[2,1-b]phthalazine-triones in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. Ultrason. Sonochem., 2012, 19(2), 307-313.
[http://dx.doi.org/10.1016/j.ultsonch.2011.07.011] [PMID: 21868275]
[29]
Khurana, J.M.; Magoo, D. Efficient one-pot syntheses of 2H-indazolo[2,1-b] phthalazine-triones by catalytic H2SO4 in water-ethanol or ionic liquid. Tetrahedron Lett., 2009, 50, 7300-7303.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.032]
[30]
Rostamnia, S.; Xin, H.; Liu, X.; Lamei, K. Simultaneously application of SBA-15 sulfonic acid nanoreactor and ultrasonic irradiation as a very useful novel combined catalytic system: An ultra-fast, selective, reusable and waste-free green approach. J. Mol. Catal. Chem., 2013, 374–375, 85-93.
[http://dx.doi.org/10.1016/j.molcata.2013.03.017]
[31]
Wang, H.Y.; Shi, D.Q. Three-component one-pot synthesis of pyrazolo[3,4-b]quinolin-5(6H)-one derivatives in aqueous media. J. Heterocycl. Chem., 2012, 49, 212-216.
[http://dx.doi.org/10.1002/jhet.781]
[32]
Huang, H.; Zhu, K.; Wu, W.; Jin, Z.; Ye, J. Highly diastereoselective and enantioselective Michael addition of 5H-oxazol-4-ones to α,β-unsaturated ketones catalyzed by a new bifunctional organocatalyst with broad substrate scope and applicability. Chem. Commun. (Camb.), 2012, 48(3), 461-463.
[http://dx.doi.org/10.1039/C1CC15928C] [PMID: 22075727]
[33]
Bayannavar, P.K.; Kamble, R.R.; Shaikh, S.K.J.; Kumar, S.M.; Kumbar, M.N.; Nesaragi, A.R. L-proline catalyzed multicomponent domino reaction in polyethyleneglycol-400for regioselective synthesis of pyrazolyltetrahydroindazolones under microwave irradiation. Synth. Commun., 2019, 49, 2005-2016.
[http://dx.doi.org/10.1080/00397911.2019.1614628]
[34]
Baghbanian, S.M.; Khaksar, S.; Vahdat, S.M.; Farhang, M.; Tajbakhsh, M. One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives using new organocatalyst. Chin. Chem. Lett., 2010, 21, 563-567.
[http://dx.doi.org/10.1016/j.cclet.2009.12.011]
[35]
Wang, G.W.; Gao, J. Selective formation of spiro dihydrofurans and cyclopropanes through unexpected reaction of aldehydes with 1,3-dicarbonyl compounds. Org. Lett., 2009, 11(11), 2385-2388.
[http://dx.doi.org/10.1021/ol900451d] [PMID: 19388701]
[36]
Lafzi, F.; Kilic, H.; Tanriver, G.; Avcı, Ö.N.; Catak, S.; Saracoglu, N. Design and synthesis of novel indoline-(thio)urea hybrids. Synt. Comm, 2019, 49, 3510-3527.
[http://dx.doi.org/10.1080/00397911.2019.1675706]
[37]
Connon, S.J. Chiral phosphoric acids: powerful organocatalysts for asymmetric addition reactions to imines. Angew. Chem. Int. Ed. Engl., 2006, 45(24), 3909-3912.
[http://dx.doi.org/10.1002/anie.200600529] [PMID: 16721892]
[38]
List, B. Proline-catalyzed asymmetric reactions. Tetrahedron, 2002, 58, 5573-5590.
[http://dx.doi.org/10.1016/S0040-4020(02)00516-1]
[39]
Panday, S.K. Advances in the chemistry of proline and its derivatives: an excellent amino acid with versatile applications in asymmetric synthesis. Tet. Asym., 2011, 22, 1817-1847.
[http://dx.doi.org/10.1016/j.tetasy.2011.09.013]
[40]
Nguyen, T.H.; Toffano, M.; Bournaud, C.; Vo-Thanh, G. Synthesis of chiral thiourea-phosphine organocatalysts derived from L-proline. Tetrahedron Lett., 2014, 55, 6377-6380.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.004]
[41]
O’Donnell, M.J. The enantioselective synthesis of alpha-amino acids by phase-transfer catalysis with achiral Schiff base esters. Acc. Chem. Res., 2004, 37(8), 506-517.
[http://dx.doi.org/10.1021/ar0300625] [PMID: 15311949]
[42]
Alba, A.N.R.; Companyó, X.; Rios, R. Sulfones: new reagents in organocatalysis. Chem. Soc. Rev., 2010, 39(6), 2018-2033.
[http://dx.doi.org/10.1039/b911852g] [PMID: 20502800]
[43]
Koutoulogenis, G.; Kaplaneris, N.; Kokotos, C.G. (Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers. Beilstein J. Org. Chem., 2016, 12, 462-495.
[http://dx.doi.org/10.3762/bjoc.12.48] [PMID: 27340441]
[44]
Chai, Z.; Zhao, G. Efficient organocatalysts derived from simple chiral acyclic amino acids in asymmetric catalysis. Catal. Sci. Technol., 2012, 2, 29-41.
[http://dx.doi.org/10.1039/C1CY00347J]
[45]
Azizi, N.; Gholibeghlo, E.; Manocherib, Z. Green procedure for the synthesis of bis(indolyl)methanes in water. Sci. Iranica C, 2012, 19, 574-578.
[http://dx.doi.org/10.1016/j.scient.2011.11.043]
[46]
Li, C.J.; Chan, T.H. Organic reactions on aqueous media; John Wiley and Sons, New York, 1997.
[47]
Lindström, U.M. Stereoselective organic reactions in water. Chem. Rev., 2002, 102(8), 2751-2772.
[http://dx.doi.org/10.1021/cr010122p] [PMID: 12175267]
[48]
Li, C.J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev., 2005, 105(8), 3095-3165.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
[49]
Chen, X.H.; Luo, S.W.; Tang, Z.; Cun, L.F.; Mi, A.Q.; Jiang, Y.Z.; Gong, L.Z. Organocatalyzed highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone and fluoroacetone in aqueous media: the use of water to control regioselectivity. Chemistry, 2007, 13(2), 689-701.
[http://dx.doi.org/10.1002/chem.200600801] [PMID: 17013967]
[50]
Mermer, A.; Demirbas, N.; Cakmak, U.; Colak, A.; Demirbas, A.; Alagumuthu, M.; Arumugam, S. Discovery of novel sulfonamide-based 5-arylidenerhodanines as effective carbonic anhydrase (II) inhibitors: Microwave-assisted and ultrasound-assisted one-pot four-component synthesis, molecular docking, and anti-CA II screening studies. J. Heterocycl. Chem., 2019, 56, 2460-2468.
[http://dx.doi.org/10.1002/jhet.3635]
[51]
Demirci, S.; Demirbaş, N.; Menteşe, M.; Başoğlu-Özdemir, S.; Karaoğlu, Ş.A. Synthesis and antimicrobial activity evaluation of new norfloxacine-azole hybrids. Heterocycl. Commun., 2018, 24, 317-325.
[http://dx.doi.org/10.1515/hc-2018-0070]
[52]
Bharti, R.; Parvin, T. Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium. Mol. Divers., 2016, 20(4), 867-876.
[http://dx.doi.org/10.1007/s11030-016-9681-z] [PMID: 27317166]
[53]
Roy, S.R.; Jadhavar, P.S.; Seth, K.; Sharma, K.K.; Chakraborti, A.K. Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and -thiones Synt.-Stuttgart, 2011, 14, 2661-2267.
[54]
Guo, X.; Hu, W. Novel multicomponent reactions via trapping of protic onium ylides with electrophiles. Acc. Chem. Res., 2013, 46(11), 2427-2440.
[http://dx.doi.org/10.1021/ar300340k] [PMID: 24246000]
[55]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[56]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[57]
Chate, A.V.; Rudrawar, P.P.; Bondle, G.M.; Sangeshetti, J.N. 2-Aminoethanesulfonic acid: An efficient organocatalyst for green synthesis of spirooxindole dihydroquinazolinones and novel 1,2-(dihydroquinazolin-3(4H)isonicotinamides in water. Synth. Commun., 2020, 50, 226-242.
[http://dx.doi.org/10.1080/00397911.2019.1692868]
[58]
Schrittwieser, J.H.; Sattler, J.; Resch, V.; Mutti, F.G.; Kroutil, W. Recent biocatalytic oxidation-reduction cascades. Curr. Opin. Chem. Biol., 2011, 15(2), 249-256.
[http://dx.doi.org/10.1016/j.cbpa.2010.11.010] [PMID: 21130024]
[59]
Ricca, E.; Brucher, B.; Schrittwieser, J.H. Multi-Enzymatic Cascade Reactions: Overview and Perspectives. Adv. Synth. Catal., 2011, 353, 2239-2262.
[http://dx.doi.org/10.1002/adsc.201100256]
[60]
Bhanja, P.; Chatterjee, S.; Bhaumik, A. Triazine-based porous organic polymer with good CO2 as adsorption properties and an efficient organocatalyst for the one-pot multicomponent condensation reaction. ChemCatChem, 2016, 8, 3089-3098.
[http://dx.doi.org/10.1002/cctc.201600840]
[61]
Mermer, A.; Demirbas, N.; Demirbas, A.; Colak, N.; Ayaz, F.A.; Alagumuthu, M.; Arumugam, S. Synthesis, biological activity and structure activity relationship studies of novel conazole analogues via conventional, microwave and ultrasound mediated techniques. Bioorg. Chem., 2018, 81, 55-70.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.036] [PMID: 30118986]
[62]
Mermer, A.; Demirbaş, N.; Şirin, Y.; Uslu, H.; Özdemir, Z.; Demirbaş, A. Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorg. Chem., 2018, 78, 236-248.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.017] [PMID: 29614435]
[63]
Demirci, S.; Mermer, A.; Ak, G.; Aksakal, F.; Colak, N.; Demirbas, A.; Ayaz, F.A.; Demirbas, N. Conventional and microwave-assisted total synthesis, antioxidant capacity, biological activity, and molecular docking studies of new hybrid compounds. J. Heterocycl. Chem., 2017, 54, 1785-1805.
[http://dx.doi.org/10.1002/jhet.2760]
[64]
Mermer, A.; Demirci, S.; Basoglu-Ozdemir, S.; Demirbas, A.; Ulker, S.; Ayaz, F.A.; Aksakal, F.; Demirbas, N. Conventional and microwave irradiated synthesis, biological activity evaluation and molecular docking studies of highly substituted piperazine-azole hybrids. Chin. Chem. Lett., 2017, 28, 995-1005.
[http://dx.doi.org/10.1016/j.cclet.2016.12.012]
[65]
Garella, D.; Borretto, E.; Di Stilo, A.; Martina, K.; Cravotto, G.; Cintas, P. Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. MedChemComm, 2013, 4, 1323-1343.
[http://dx.doi.org/10.1039/c3md00152k]
[66]
Abadi, A.Y.E.; Mohebat, R.; Kangani, M. Microwave-assisted and L-proline catalysed domino cyclisation in an aqueous: a rapid, highly efficient and green synthesis of benzo[a]phenazine annulated heterocycles. J. Chem. Res., 2016, 40, 722-726.
[http://dx.doi.org/10.3184/174751916X14787124908891]
[67]
Mermer, A.; Demirbas, N.; Uslu, H.; Demirbas, A.; Ceylan, S.; Sirin, Y. Synthesis of novel Schiff bases using green chemistry techniques; antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. J. Mol. Struct., 2019, 1181, 412-422.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.114]
[68]
Mermer, A.; Demirbas, N.; Colak, A.; Demir, E.A.; Kulabas, N.; Demirbas, A. One-pot, four-component green synthesis, carbonic anhydrase II inhibition and docking studies of 5-arylidenerhodanines. ChemistrySelect, 2018, 3, 12234-12242.
[http://dx.doi.org/10.1002/slct.201802677]
[69]
Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci., 2012, 14(1), 38-43.
[http://dx.doi.org/10.1021/co200128k] [PMID: 22141731]
[70]
Nikpassand, M.; Fekri, L.Z.; Farokhian, P. An efficient and green synthesis of novel benzoxazole under ultrasound irradiation. Ultrason. Sonochem., 2016, 28, 341-345.
[http://dx.doi.org/10.1016/j.ultsonch.2015.08.014] [PMID: 26384917]
[71]
Javdannezhad, M.; Gorjizadeh, M.; Sayahi, M.H.; Sayyahi, S. Caffeine-loaded Fe3O4 nanoparticles: A new magnetically recoverable organocatalyst for Knoevenagel condensation reaction. J. Nanoanalysis, 2018, 5, 287-293.
[72]
Shabalala, N.G.; Pagadala, R.; Jonnalagadda, S.B. Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles. Ultrason. Sonochem., 2015, 27, 423-429.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.005] [PMID: 26186863]
[73]
Kumar, P.S.; Prakash, P.; Srinivasan, A.; Chelladurai, K.; Muthukrishnan, P.; Muthupandi, K. Ultrasound-assisted fabrication of a new nanocomposite electrode of samaria and borazon for high performance supercapacitors Ult. Sonochem, 2020, 62, 104871.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104871]
[74]
Pagadala, R.; Maddila, S.; Jonnalagadda, S.B. Ultrasonic-mediated catalyst-free rapid protocol for the multicomponent synthesis of dihydroquinoline derivatives in aqueous media. Green Chem. Lett. Rev., 2014, 7, 131-136.
[http://dx.doi.org/10.1080/17518253.2014.902505]
[75]
Karhale, S.; Survase, D.; Bhat, R.; Ubale, P.; Helavi, V. A practical and green protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones using oxalic acid as organocatalyst. Res. Chem. Int., 2017, 43, 3915-3924.
[http://dx.doi.org/10.1007/s11164-016-2855-6]
[76]
Ayad, T.; Gernet, A.; Pirat, J.L.; Virieux, D. Enantioselective reactions catalyzed by phosphine oxides. Tetrahedron, 2019, 75, 4385-4418.
[http://dx.doi.org/10.1016/j.tet.2019.06.042]
[77]
Fan, Y.C.; Kwon, O. “Phosphine catalysis” in asymmetric organocatalysis, science of synthesis.B. List, K; 1st ed Maruoka, T., Ed.; Stuttgart, 2012, pp. 723.
[78]
Yan, W.; Shi, X.; Zhong, C. Secondary amines as Lewis bases in nitroalkene activation. Asian J. Org. Chem., 2013, 2, 904-914.
[http://dx.doi.org/10.1002/ajoc.201300048]
[79]
Denmark, S.E.; Fu, J.; Coe, D.M.; Su, X.; Pratt, N.E.; Griedel, B.D. Chiral phosphoramide-catalyzed enantioselective addition of allylic trichlorosilanes to aldehydes. Preparative and mechanistic studies with monodentate phosphorus-based amides. J. Org. Chem., 2006, 71(4), 1513-1522.
[http://dx.doi.org/10.1021/jo052202p] [PMID: 16468800]
[80]
Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. A chiral formamide: Design and application to catalytic asymmetric synthesis. Tetrahedron Lett., 1998, 39, 2767-2770.
[http://dx.doi.org/10.1016/S0040-4039(98)00334-7]
[81]
Malkov, A.V.; Kocovskỳ, P. Chiral N-oxides in asymmetric catalysis. Eur. J. Org. Chem., 2007, 29-36.
[http://dx.doi.org/10.1002/ejoc.200600474]
[82]
Fulton, J.R.; Kamara, L.M.; Morton, S.C.; Rowlands, G.J. The sulfinyl moiety in Lewis base-promoted allylations. Tetrahedron, 2009, 65, 9134-9141.
[http://dx.doi.org/10.1016/j.tet.2009.09.042]
[83]
Deng, J.; Mo, L.P.; Zhao, F.Y.; Hou, L.L.; Yang, L.; Zhang, Z.H. Sulfonic acid supported on hydroxyapatite-encapsulated-gamma-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds. Green Chem., 2011, 13, 2576-2584.
[http://dx.doi.org/10.1039/c1gc15470b]
[84]
Koukabi, N.; Kolvari, E.; Zolfigol, M.A.; Khazaei, A.; Shaghasemi, B.S.; Fasahati, B. A magnetic particle-supported sulfonic acid catalyst: Tuning catalytic activity between homogeneous and heterogeneous catalysis. Adv. Synth. Catal., 2012, 354, 2001-2008.
[http://dx.doi.org/10.1002/adsc.201100352]
[85]
Kaiba, A.; Ouerghi, O.; Geesi, M.H.; Elsanousi, A.; Belkacem, A.; Dehbi, O.; Alharthi, A.I.; Alotaibi, M.A.; Riadi, Y. Characterization and catalytic performance of Ni-Doped TiO2 as a potential heterogeneous nanocatalyst for the preparation of substituted pyridopyrimidines. J. Mol. Struct., 2020, 1203, 127376.
[http://dx.doi.org/10.1016/j.molstruc.2019.127376]
[86]
Liu, Y.H.; Deng, J.; Gao, J.W.; Zhang, Z.H. Triflic Acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gem-dihydroperoxides. Adv. Synth. Catal., 2012, 354, 441-447.
[http://dx.doi.org/10.1002/adsc.201100561]
[87]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[88]
Azizi, K.; Heydari, A. Vitamin B-1 supported on silica-encapsulated gamma-Fe2O3 nanoparticles: design, characterization and application as a greener biocatalyst for highly efficient acylation. RSC Advances, 2014, 4, 8812-8816.
[http://dx.doi.org/10.1039/c3ra46437g]
[89]
Honarmand, M.; Naeimi, A.; Zahedifar, M. Nanoammonium salt: a novel and recyclable organocatalyst for one-pot three-component synthesis of 2-amino-3-cyano-4H-pyran derivatives. J. Iran Chem Soc., 2017, 14, 1875-1888.
[http://dx.doi.org/10.1007/s13738-017-1127-8]
[90]
Kuttiyiel, K.A.; Sasaki, K.; Park, G.G.; Vukmirovic, M.B.; Wu, L.; Zhu, Y.; Chen, J.G.; Adzic, R.R. Janus structured Pt-FeNC nanoparticles as a catalyst for the oxygen reduction reaction. Chem. Commun. (Camb.), 2017, 53(10), 1660-1663.
[http://dx.doi.org/10.1039/C6CC08709D] [PMID: 28098274]
[91]
Zolfigol, M.A.; Baghery, S.; Moosavi-Zare, A.R.; Vahdat, S.M.; Alinezhad, H.; Norouzi, M. Design of 1-methylimidazolium tricyanomethanide as the first nanostructured molten salt and its catalytic application in the condensation reaction of various aromatic aldehydes, amides and beta-naphthol compared with tin dioxide nanoparticles. RSC Advances, 2015, 5, 45027-45037.
[http://dx.doi.org/10.1039/C5RA02718G]
[92]
Bellina, F.; Chiappe, C.; Lessi, M. Synthesis and properties of trialkyl(2,3-dihydroxypropyl)phosphonium salts, a new class of hydrophilic and hydrophobic glyceryl-functionalized ILs. Green Chem., 2012, 14, 148-155.
[http://dx.doi.org/10.1039/C1GC16035D]
[93]
Makawana, J.A.; Patel, M.P.; Patel, R.G. Synthesis and antimicrobial evaluation of new pyrano[4,3-b]pyran and Pyrano[3,2-c]chromene derivatives bearing a 2-thiophenoxyquinoline nucleus. Arch. Pharm. (Weinheim), 2012, 345(4), 314-322.
[http://dx.doi.org/10.1002/ardp.201100203] [PMID: 22105795]
[94]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H- chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[95]
Khan, M.N.; Pal, S.; Karamthulla, S.; Choudhury, L.H. Imidazole as organocatalyst for multicomponent reactions: diversity oriented synthesis of functionalized hetero- and carbocycles using in situ-generated benzylidenemalononitrile derivatives. RSC Advances, 2014, 4, 3732-3741.
[http://dx.doi.org/10.1039/C3RA45252B]
[96]
Desai, U.V.; Kulkarni, M.A.; Pandit, K.S.; Kulkarni, A.M.; Wadgaonkar, P.P. A simple, economical, and environmentally benign protocol for the synthesis of 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines at ambient temperature. Green Chem. Lett. Rev., 2014, 7, 228-235.
[http://dx.doi.org/10.1080/17518253.2014.925144]
[97]
Kulkarni, M.A.; Desai, U.V.; Pandurangi, V.R.; Wadgaonkar, P.P. A practical and highly efficient protocol for multicomponent synthesis of beta-phosphonomalononitriles and 2-amino-4H-chromen-4-yl phosphonates using diethylamine as a novel organocatalyst. C. R. Chim., 2012, 15, 745-752.
[http://dx.doi.org/10.1016/j.crci.2012.07.001]
[98]
Kulkarni, M.A.; Pandit, K.S.; Lad, U.P.; Desai, U.V.; Wadgaonkar, P.P. Diethylamine: A smart organocatalyst in eco-safe and diastereoselective synthesis of medicinally privileged 2-amino-4H-chromenes at ambient temperature. C. R. Chim., 2013, 16, 658-695.
[http://dx.doi.org/10.1016/j.crci.2013.02.016]
[99]
Resch, V.; Seidler, C.; Chen, B.S.; Degeling, I.; Hanefeld, U. On the Michael addition of water to a, alpha beta-unsaturated ketones using amino acids. Eur. J. Org. Chem., 2013, 7697-7704.
[http://dx.doi.org/10.1002/ejoc.201301230]
[100]
Prasanna, P.; Perumal, S.; Menendez, J.C. Chemodivergent, multicomponent domino reactions in aqueous media: L-proline-catalyzed assembly of densely functionalized 4H-pyrano[2,3-c]pyrazoles and bispyrazolyl propanoates from simple, acyclic starting materials. Green Chem., 2013, 15, 1292-1299.
[http://dx.doi.org/10.1039/c3gc37128j]
[101]
Cheng, D.J.; Tian, S.K. A Highly enantioselective catalytic Mannich reaction of indolenines with ketones. Adv. Synth. Catal., 2013, 355, 1715-1718.
[http://dx.doi.org/10.1002/adsc.201300161]
[102]
Tietze, L.F.; Kinzel, T.; Brazel, C.C. The domino multicomponent allylation reaction for the stereoselective synthesis of homoallylic alcohols. Acc. Chem. Res., 2009, 42(2), 367-378.
[http://dx.doi.org/10.1021/ar800170y] [PMID: 19154154]
[103]
Wang, J.J.; Feng, X.; Xun, Z.; Shi, D.Q.; Huang, Z.B. Multicomponent strategy to pyrazolo[3,4-e]indolizine derivatives under microwave irradiation. J. Org. Chem., 2015, 80(16), 8435-8442.
[http://dx.doi.org/10.1021/acs.joc.5b01314] [PMID: 26193420]
[104]
Nezhad, A.K.; Sarikhani, S.; Shahidzadeh, E.S.; Panahi, F. L-proline-promoted three-component reaction of anilines, aldehydes and barbituric acids/malononitrile: Regioselective synthesis of 5-arylpyrimido[4,5-b]quinoline-diones and 2-amino-4-arylquinoline-3-carbonitriles in water. Green Chem., 2012, 14, 2876-2884.
[http://dx.doi.org/10.1039/c2gc35765h]
[105]
Heydari, R.; Shahrekipour, F. One-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones by using of neutral and efficient organocatalysts under solvent-free conditions. Res. Chem. Int., 2015, 41, 4581-4586.
[http://dx.doi.org/10.1007/s11164-014-1553-5]
[106]
Hack, D.; Chauhan, P.; Mahajan, S.; Enders, D. Bifunctional amine-squaramides: Powerful hydrogen-bonding organocatalysts for asymmetric domino/cascade reactions. Adv. Synth. Catal., 2015, 357, 253-281.
[http://dx.doi.org/10.1002/adsc.201401003]
[107]
Benaglia, M.; Rossi, S. Chiral phosphine oxides in present-day organocatalysis. Org. Biomol. Chem., 2010, 8(17), 3824-3830.
[http://dx.doi.org/10.1039/c004681g] [PMID: 20567785]
[108]
Zhang, X.; Du, H.; Wang, Z.; Wu, Y.D.; Ding, K. Experimental and theoretical studies on the hydrogen-bond-promoted enantioselective hetero-Diels-Alder reaction of Danishefsky’s diene with benzaldehyde. J. Org. Chem., 2006, 71(7), 2862-2869.
[http://dx.doi.org/10.1021/jo060129c] [PMID: 16555843]
[109]
Farahmand, S.; Nasrabadi, R.A.; Mokhlesi, M.; Zolfigol, M.A. Pentaerythritol as efficient H bonding organocatalyst for synthesis of indazolo[2,1 b]phthalazine trione derivatives. Res. Chem. Int., 2019, 45, 3795-3807.
[http://dx.doi.org/10.1007/s11164-019-03821-4]
[110]
Kargar, M.; Hekmatshoar, R.; Mostashari, A.; Hashemi, Z. Efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones using imidazol-1-yl-acetic acid as a novel, reusable and water-soluble organocatalyst. Cat. Comm., 2011, 15, 123-126.
[http://dx.doi.org/10.1016/j.catcom.2011.08.022]
[111]
Kappe, C.O.; Shishkin, O.V.; Uraya, G.; Verdinoa, P. Synthesis and reactions of Biginelli compounds, part 19 - X-ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 2000, 56, 1859-1862.
[http://dx.doi.org/10.1016/S0040-4020(00)00116-2]
[112]
Sadek, K.U.; Al-Qalaf, F.; Abdelkhalik, M.M.; Elnagdi, M.H. Cerium (IV) ammonium nitrate as an efficient lewis acid for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2-(1H) thiones. J. Heterocycl. Chem., 2010, 47, 284-286.
[113]
Khaligh, N.G. Synthesis and characterization of some novel 4-arylglyoxalchromene derivatives in the presence of a polymeric catalyst and biological evaluation against Escherichia coli. Monatsh. Chem., 2017, 149, 33-38.
[http://dx.doi.org/10.1007/s00706-017-2059-9]
[114]
Bharti, R. Parvin, Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Advances, 2015, 5, 66833-66839.
[http://dx.doi.org/10.1039/C5RA13093J]
[115]
Hafez, H.N.; Hegab, M.I.; Ahmed-Farag, I.S.; El-Gazzar, A.B.A. A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2008, 18, 4538-4543.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.042] [PMID: 18667305]
[116]
Mavrodi, D.V.; Blankenfeldt, W.; Thomashow, L.S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol., 2006, 44, 417-445.
[http://dx.doi.org/10.1146/annurev.phyto.44.013106.145710] [PMID: 16719720]
[117]
Dar, A.M.; Uzzaman, S. Pathways for the synthesis of pyrimidine and pyran based hetrocyclic derivatives: a concise review. Eur. Chem. Bull., 2015, 4, 249-259.
[118]
Feron, O.; Riant, O.; Kiss, R.; Leclercq, J.; Chataigne, G.; Vandelaer, N.; Lamy, C. Novel phenazine derivatives and their use US Patent 20130289030 A1, 2013.
[119]
Ahankar, H.; Ramazani, A.; Ślepokura, K.; Lisb, T.; Joo, S.W. Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chem., 2016, 18, 3582-3593.
[http://dx.doi.org/10.1039/C6GC00157B]
[120]
Dekamin, M.G.; Karimi, Z.; Latifidoost, Z.; Ilkhanizadeh, S.; Daemi, H.; Naimi-Jamal, M.R.; Barikani, M. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol., 2018, 108, 1273-1280.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.050] [PMID: 29137997]
[121]
Wan, J.P.; Liu, Y. Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Advances, 2012, 2, 9763-9777.
[http://dx.doi.org/10.1039/c2ra21406g]
[122]
Dekamin, M.G.; Peyman, S.Z.; Karimi, Z.; Javanshir, S.; Naimi-Jamal, M.R.; Barikani, M. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol., 2016, 87, 172-179.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.080] [PMID: 26845480]
[123]
Khatab, T.K.; El-Bayouki, K.A.M.; Basyouni, W.M.; El-Basyoni, F.A.; Abbas, S.Y.; Mostafa, E. Silicon nanoparticles and their uses in synthetic organic reactions. Res. Pharm. Bio. Chem. Sci., 2015, 6, 281-285.
[124]
Carney, D.W.; Nelson, C.D.S.; Ferris, B.D.; Stevens, J.P.; Lipovsky, A.; Kazakov, T.; DiMaio, D.; Atwood, W.J.; Sello, J.K. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. Bioorg. Med. Chem., 2014, 22(17), 4836-4847.
[http://dx.doi.org/10.1016/j.bmc.2014.06.053] [PMID: 25087050]
[125]
Mehta, H.B.; Dixit, B.C.; Dixit, R.B. L-Proline catalyzed one-pot multi-component synthesis of 2-(1,3-dipheny1-1H-pyrazol-4-yl)quinazolin-4(3H)-one derivatives and their biological studies. Chin. Chem. Lett., 2014, 25, 741-744.
[http://dx.doi.org/10.1016/j.cclet.2014.03.015]
[126]
Hour, M.J.; Huang, L.J.; Kuo, S.C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K.H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem., 2000, 43(23), 4479-4487.
[http://dx.doi.org/10.1021/jm000151c] [PMID: 11087572]
[127]
Lin, H.; Danishefsky, S.J. Gelsemine: a thought-provoking target for total synthesis. Angew. Chem. Int. Ed. Engl., 2003, 42(1), 36-51.
[http://dx.doi.org/10.1002/anie.200390048] [PMID: 19757588]
[128]
Corey, E.J.; Czako, B.; Kurti, L. Molecules and Medicine; Wiley: Hoboken, NJ, 2007.
[129]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[130]
Cordell, G.A. Introduction to alkaloids: A biogenetic approach; Wiley: New York, 1981.
[131]
Firouzabadi, H.; Iranpoor, N.; Jafari, A.A. Aluminiumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives. J. Mol. Catal. Chem., 2005, 244, 168-172.
[http://dx.doi.org/10.1016/j.molcata.2005.09.005]
[132]
Zhang, Z.H.; Yin, L.; Wang, Y.M. An efficient and practical process for the synthesis of bis(indolyl)methanes catalyzed by zirconium tetrachloride. Synthesis, 2005, 12, 1949-1954.
[133]
Bandgar, B.P.; Shaikh, K.A. Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions. Tetrahedron Lett., 2003, 44, 1959-1961.
[http://dx.doi.org/10.1016/S0040-4039(03)00032-7]
[134]
Azizi, N.; Torkian, L.; Saidi, M.R. Highly efficient synthesis of bis(indolyl)methanes in water. J. Mol. Catal. Chem., 2007, 275, 109-112.
[http://dx.doi.org/10.1016/j.molcata.2007.05.024]
[135]
Brahmachari, G. Sulfamic acid-catalyzed one-pot room temperature synthesis of biologically relevant bis-lawsone derivatives. ACS Sustain. Chem.& Eng., 2015, 3, 2058-2066.
[http://dx.doi.org/10.1021/acssuschemeng.5b00325]
[136]
Mahkam, M.; Nabati, M.; Kafshboran, H.R. Isolation, identification and characterization of lawsone from henna leaves powder with soxhlet technique. Iran. Chem. Commun., 2014, 2, 34-38.
[137]
Pratibha, G.; Korwar, G.R. Estimation of lawsone in henna (Lawsonia inermis). J. Med. Aroma. Plant Sci., 1999, 21, 658-660.
[138]
Khan, M.S.; Khan, Z.H. Ab initio and semiempirical study of structure and electronic spectra of hydroxy substituted naphthoquinones. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(4), 777-790.
[http://dx.doi.org/10.1016/j.saa.2004.04.027] [PMID: 15649814]
[139]
Satoh, T.; Tsuji, T.; Matsuda, H.; Sudoh, S. DFT calculations and IR studies on 2-hydroxy-1,4-naphthoquinone and its 3-substituted derivatives. Bull. Chem. Soc. Jpn., 2007, 80, 321-323.
[http://dx.doi.org/10.1246/bcsj.80.321]
[140]
Syamsudin, I.; Winarno, H. The effects of Inai (Lawsonia inermis) leave extract on blood sugar level: An experimental study. Res. J. Pharmacol., 2008, 2, 20-23.
[141]
Sauriasari, R.; Wang, D.H.; Takemura, Y.; Tsutsui, K.; Masuoka, N.; Sano, K.; Horita, M.; Wang, B.L.; Ogino, K. Cytotoxicity of lawsone and cytoprotective activity of antioxidants in catalase mutant Escherichia coli. Toxicology, 2007, 235(1-2), 103-111.
[http://dx.doi.org/10.1016/j.tox.2007.03.019] [PMID: 17442476]
[142]
Yogisha, S.; Samiulla, D.S.; Prashanth, D.; Padmaja, R.; Amit, A. Trypsin inhibitory activity of Lawsonia inermis. Fitoterapia, 2002, 73(7-8), 690-691.
[http://dx.doi.org/10.1016/S0367-326X(02)00214-9] [PMID: 12490230]
[143]
Rao, V.R.; Kumar, R.A.; Rao, T.V.P. Synthesis and anticoagulant activity of some new phenoxazines from lawsone. Indian J. Chem., 1993, 32B, 903-904.
[144]
Bharti, R.; Parvin, T. One-pot synthesis of highly functionalized tetrahydropyridines: a camphoresulfonic acid catalyzed multicomponent reaction. J. Heterocycl. Chem., 2015, 52, 1806-1811.
[http://dx.doi.org/10.1002/jhet.2268]
[145]
Kalita, S.J.; Das, B.; Deka, D.C.A. Quick, Simple and clean synthesis of spiro (indoline-3,4′-pyrazolo[4′,3′:5,6]pyrido[2, 3-d]pyrimidines) in water through a novel one-pot multicomponent reaction. ChemSelect, 2017, 2, 5701-5706.
[http://dx.doi.org/10.1002/slct.201701131]
[146]
Poomathi, N.; Mayakrishnan, S.; Muralidharan, D.; Srinivasan, R.; Perumal, P.T. Reaction of isatins with 6-amino uracils and isoxazoles: isatin ring-opening vs. annulations and regioselective synthesis of isoxazole fused quinoline scaffolds in water. Green Chem., 2015, 17, 3362-3372.
[http://dx.doi.org/10.1039/C5GC00006H]
[147]
Dai, L.; Shu, P.; Wang, Z.; Li, Q.; Yu, Q.; Shi, Y.; Rong, L. Bronsted acid catalyzed selective cyclization reaction: An efficient and facile synthesis of polysubstituted imidazole and pyrrole derivatives. Synthesis, 2017, 49, 637-646.
[148]
Fardpour, M.; Safari, A.; Javanshir, S. γ-Aminobutyric acid and collagen peptides as recyclable bifunctional biocatalysts for the solvent-free one-pot synthesis of 2-aminobenzothiazolomethyl-2-naphthols. Green Chem. Lett. Rev., 2018, 11, 429-438.
[http://dx.doi.org/10.1080/17518253.2018.1528389]
[149]
Magyar, A.; Hell, Z. One-pot three-component synthesis of 2,3-dihydroquinazolin-4(1h)-ones in the presence of a molecular sieve supported lanthanum catalyst. Catal. Lett., 2016, 146, 1153-1162.
[http://dx.doi.org/10.1007/s10562-016-1734-5]
[150]
Chen, B.H.; Li, J.T.; Chen, G.F. Efficient synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-ones catalyzed by dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation. Ultrason. Sonochem., 2015, 23, 59-65.
[http://dx.doi.org/10.1016/j.ultsonch.2014.08.024] [PMID: 25224856]
[151]
Davoodnia, A.; Khashi, M.; Tavakoli-Hoseini, N. Cerium (IV) sulfate: A highly efficient reusable heterogeneous catalyst for the one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions. Chin. J. Catal., 2014, 35, 1054-1058.
[http://dx.doi.org/10.1016/S1872-2067(14)60041-3]
[152]
Zhaleh, S.; Hazeri, N.; Maghsoodlou, M.T. Green protocol for synthesis of 2,3-dihydroquinazolin-4(1H)-ones: lactic acid as catalyst under solvent-free condition. Res. Chem. Intermed., 2016, 42, 6381-6390.
[http://dx.doi.org/10.1007/s11164-016-2469-z]
[153]
Chandrasekhar, S.; Gopalaiah, K. Ketones to amides via a formal Beckmann rearrangement in ‘one pot’: A solvent-free reaction promoted by anhydrous oxalic acid. Possible analogy with the Schmidt reaction. Tetrahedron Lett., 2003, 44, 7437-7439.
[http://dx.doi.org/10.1016/j.tetlet.2003.08.038]
[154]
Kokare, N.D.; Sangshetti, J.N.; Shinde, D.B. Oxalic acid as a catalyst for efficient synthesis of bis-(indolyl)methanes, and 14-aryl-14H-dibenzo[a,j]xanthenes in water. Chin. Chem. Lett., 2008, 19, 1186-1189.
[http://dx.doi.org/10.1016/j.cclet.2008.07.015]
[155]
Kokare, N.D.; Sangshetti, J.N.; Shinde, D.B. Oxalic acid catalyzed solvent-free one pot synthesis of coumarins. Chin. Chem. Lett., 2007, 18, 1309-1312.
[http://dx.doi.org/10.1016/j.cclet.2007.09.008]
[156]
Sangshetti, J.N.; Kokare, N.D.; Shinde, D.B. Oxalic acid catalyzed three component one pot synthesis of 3,4-dihydroquinazolin-4-ones. Chin. J. Chem., 2008, 26, 1506-1508.
[http://dx.doi.org/10.1002/cjoc.200890272]
[157]
Khan, M.M.; Khan, S.; Iqbal, S. Saigal; Yousuf, R. Synthesis of functionalized dihydro-2-oxypyrroles and tetrahydropyridines using 2,6-pyridinedicarboxylic acid as an efficient and mild organocatalys. New J. Chem., 2016, 40, 7504-7512.
[http://dx.doi.org/10.1039/C6NJ01170E]
[158]
Ay, B.; Karaca, S.; Yildiz, E.; Lopez, V.; Nanao, M.H.; Zubieta, J. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln= Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands. J. Solid State Chem., 2016, 233, 415-421.
[http://dx.doi.org/10.1016/j.jssc.2015.10.033]
[159]
Bellur, E.; Langer, P. Synthesis of functionalized pyrroles and 6,7-dihydro-1H-indol-4(5H)-ones by reaction of 1,3-dicarbonyl compounds with 2-azido-1,1-diethoxyethane. Tetrahedron Lett., 2006, 47, 2151-2154.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.121]
[160]
Ramachandran, S.; Fontanille, P.; Pandey, A.; Larroche, C. Gluconic acid: Properties, applications and microbial production. Food Technol. Biotechnol., 2006, 44, 185-195.
[161]
Khandebharad, A.; Sarda, S.; Soni, M.; Agrawal, B. Sodium gluconate: An efficient organocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Bull. Chem. Soc. Ethiop., 2019, 33, 331-340.
[http://dx.doi.org/10.4314/bcse.v33i2.13]
[162]
Das, D.; Pathak, G.; Rokhum, L. Polymer supported DMAP: An easily recyclable organocatalyst for highly atom-economical Henry reaction under solvent-free conditions. RSC Advances, 2016, 6, 104154-104163.
[http://dx.doi.org/10.1039/C6RA23696K]
[163]
Dam, B.; Saha, M.; Pal, A.K. Magnetically recyclable nano-FDP: A novel, efficient nano-organocatalyst for the one-pot multi-component synthesis of pyran derivatives in water under ultrasound irradiation. Catal. Lett., 2015, 145, 1808-1816.
[http://dx.doi.org/10.1007/s10562-015-1586-4]
[164]
Dangolani, S.K.; Panahi, F.; Nourisefat, M.; Khalafi-Nezhad, A. 4-Dialkylaminopyridine modified magnetic nanoparticles: as an efficient nano-organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives in water. RSC Advances, 2016, 6, 92316-92324.
[http://dx.doi.org/10.1039/C6RA18078G]
[165]
Wang, Y.X.; Wang, L.J.; Liu, C.P.; Wang, R.H. Benzimidazole-containing porous organic polymers as highly active heterogeneous solid-base catalysts. ChemCatChem, 2015, 7, 1559-1565.
[http://dx.doi.org/10.1002/cctc.201500244]
[166]
Azizi, K.; Karimi, M.; Shaterianb, H.R.; Heydari, A. Ultrasound irradiation for the green synthesis of chromenes using L-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst. RSC Advances, 2014, 4, 42220-42225.
[http://dx.doi.org/10.1039/C4RA06198E]
[167]
Pathania, S.; Rawal, R.K. Green synthetic strategies toward thiazoles: a sustainable approach. Chem. Heterocycl. Compd., 2020, 56(4), 445-454.
[http://dx.doi.org/10.1007/s10593-020-02679-4]
[168]
Meng, X.Y.; Wang, H.J.; Wang, C.P.; Zhang, Z.H. Disodium hydrogen phosphate as an efficient and cheap catalyst for the synthesis of 2-aminochromenes. Synth. Commun., 2011, 41, 3477-3484.
[http://dx.doi.org/10.1080/00397911.2010.518299]
[169]
Khurana, J.M.; Nand, B.; Saluja, P. DBU: A highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron, 2010, 66, 5637-5641.
[http://dx.doi.org/10.1016/j.tet.2010.05.082]
[170]
Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem., 2016, 18, 3184-3209.
[http://dx.doi.org/10.1039/C6GC00864J]
[171]
Aghajani, M.; Monadi, N. Cu(II) Schiff base complex supported on Fe3O4 nanoparticles as an efficient nanocatalyst for the selective aerobic oxidation of alcohols. Appl. Organomet. Chem., 2018, 32, e4433.
[http://dx.doi.org/10.1002/aoc.4433]
[172]
Honarmand, M.; Naeimi, A.; Zahedifar, M. Nanoammonium salt: a novel and recyclable organocatalyst for one pot three component synthesis of 2 amino 3 cyano 4H pyran derivatives. J. The Iranian Chem. Soc., 2017, 14, 1875-1888.
[http://dx.doi.org/10.1007/s13738-017-1127-8]
[173]
Honarmand, M.; Tzani, A.; Detsi, A. Synthesis of novel multi-OH functionalized ionic liquid and its application as dual catalyst-solvent for the one-pot synthesis 4H-pyrans. J. Mol. Liq., 2019, 290, 111358.
[174]
Bagheri, S.; Nejad, M.J.; Pazoki, F.; Miraki, M.K.; Heydari, A. Folic-acid-functionalized magnetic nanoparticles as green and magnetic recyclable catalyst for the synthesis of 4-aryl-NH-1,2,3-triazoles in a green media. ChemistrySelect, 2019, 4, 11930-11935.
[http://dx.doi.org/10.1002/slct.201902205]
[175]
Bhuyan, P.; Bhorali, P.; Islam, I.; Bhuyan, A.J.; Saikia, L. Magnetically recoverable copper ferrite catalyzed cascade synthesis of 4-aryl-1H-1,2,3-triazoles under microwave irradiation. Tetrahedron Lett., 2018, 59, 1587-1591.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.032]
[176]
Hu, Q.; Liu, Y.; Deng, X.; Li, Y.; Chen, Y. Aluminium(III) chloride-catalyzed three-component condensation of aromatic aldehydes, nitroalkanes and sodium azide for the synthesis of 4-aryl-nh-1,2,3-triazoles. Adv. Synth. Catal., 2016, 358, 1689-1693.
[http://dx.doi.org/10.1002/adsc.201600098]
[177]
Hui, R.; Zhao, M.; Chen, M.; Ren, Z.; Guan, Z. One-pot synthesis of 4-aryl-NH-1,2,3-triazoles through three-component reaction of aldehydes, nitroalkanes and NaN3. Chin. J. Chem. Phys., 2017, 35, 1808-1812.
[http://dx.doi.org/10.1002/cjoc.201700367]
[178]
Sega, E.I.; Low, P.S. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev., 2008, 27(4), 655-664.
[http://dx.doi.org/10.1007/s10555-008-9155-6] [PMID: 18523731]
[179]
Zeng, H.; Li, J.; Liu, J.P.; Wang, Z.L.; Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002, 420(6914), 395-398.
[http://dx.doi.org/10.1038/nature01208] [PMID: 12459779]
[180]
Firouzi-Haji, R.; Maleki, A. L-Proline-functionalized Fe3O4 nanoparticles as an efficient nanomagnetic organocatalyst for highly stereoselective one-pot two-step tandem synthesis of substituted cyclopropanes. ChemistrySelect, 2019, 4, 853-857.
[http://dx.doi.org/10.1002/slct.201802608]
[181]
Cheng, Q.; Wang, Q.; Xu, X.; Ruan, M.; Yao, H.; Yang, X. Solvent-free synthesis of monastrol derivatives catalyzed by NaHSO4. J. Heterocycl. Chem., 2010, 47, 624-628.
[http://dx.doi.org/10.1002/jhet.368]
[182]
Pasunooti, K.K.; Chai, H.; Jensen, C.N.; Gorityala, B.K.; Wang, S.; Liu, X.W. A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Lett., 2011, 52, 80-84.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.150]
[183]
Ranke, J.; Stolte, S.; Störmann, R.; Arning, J.; Jastorff, B. Design of sustainable chemical products--the example of ionic liquids. Chem. Rev., 2007, 107(6), 2183-2206.
[http://dx.doi.org/10.1021/cr050942s] [PMID: 17564479]
[184]
Smiglak, M.; Reichert, W.M.; Holbrey, J.D.; Wilkes, J.S.; Sun, L.; Thrasher, J.S.; Kirichenko, K.; Singh, S.; Katritzky, A.R.; Rogers, R.D. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem. Commun. (Camb.), 2006, (24), 2554-2556.
[http://dx.doi.org/10.1039/b602086k] [PMID: 16779475]
[185]
Costello, D.M.; Brown, L.M.; Lamberti, G.A. Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem., 2009, 11, 548-553.
[http://dx.doi.org/10.1039/b822347e]
[186]
Coleman, D.; Gathergood, N. Biodegradation studies of ionic liquids. Chem. Soc. Rev., 2010, 39(2), 600-637.
[http://dx.doi.org/10.1039/b817717c] [PMID: 20111784]
[187]
Domínguez de María, P. “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew. Chem. Int. Ed. Engl., 2008, 47(37), 6960-6968.
[http://dx.doi.org/10.1002/anie.200703305] [PMID: 18651677]
[188]
Saikia, S.; Gogoi, P.; Dutta, A.K.; Sarma, P.; Borah, R. Design of multifaceted acidic 1,3-disulfoimidazolium chlorometallate ionic systems as heterogeneous catalysts for the preparation of beta-amino carbonyl compounds. J. Mol. Catal. Chem., 2016, 416, 63-72.
[http://dx.doi.org/10.1016/j.molcata.2016.02.007]
[189]
Zolfigol, M.A.; Khakyzadeh, V.; Moosavi-Zare, A.R.; Zare, A.; Azimi, Z.B.; Asgari, Z.; Hasaninejad, A. Preparation of various xanthene derivatives over sulfonic acid functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. C. R. Chim., 2012, 15, 719-736.
[http://dx.doi.org/10.1016/j.crci.2012.05.003]
[190]
Babaee, S.; Zolfigol, M.A.; Zareia, M.; Abbasi, M.; Najafi, Z. Synthesis of pyridinium-based salts: Catalytic application at the synthesis of six membered O-heterocycles. Molecular Catalysis, 2019, 475, 110403.
[191]
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A.; Khakyzadeh, V. Rapid synthesis of 1-amidoalkyl-2-naphthols over sulfonic acid functionalized imidazolium salts. Appl. Catal. A Gen., 2011, 400, 70-81.
[http://dx.doi.org/10.1016/j.apcata.2011.04.013]
[192]
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A.; Kruger, H.G.; Asgari, Z.; Khakyzadeh, V.; Kazem-Rostami, M. Design of ionic liquid 3-methyl-1-sulfonic acid imidazolium nitrate as reagent for the nitration of aromatic compounds by in situ generation of NO(2) in acidic media. J. Org. Chem., 2012, 77(7), 3640-3645.
[http://dx.doi.org/10.1021/jo300137w] [PMID: 22409592]
[193]
Zolfigol, M.A.; Vahedi, H.; Azimi, S.; Moosavi-Zare, A.R. Benzylation of aromatic compounds catalyzed by 3-methyl-1-sulfonic acid imidazolium tetrachloroaluminate and silica sulfuric acid under mild conditions. Synlett, 2013, 24, 1113-1116.
[http://dx.doi.org/10.1055/s-0033-1338386]
[194]
Khazaei, A.; Zolfigol, M.A.; Moosavi-Zare, A.R.; Asgari, Z.; Shekouhy, M.; Zare, A.; Hasaninejad, A. Preparation of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s over 1,3-disulfonic acid imidazolium tetrachloroaluminate as a novel catalyst. RSC Advances, 2012, 2, 8010-8013.
[http://dx.doi.org/10.1039/c2ra20988h]
[195]
Zare, A.; Abi, F.; Moosavi-Zare, A.R.; Beyzavi, M.H.; Zolfigol, M.A. Synthesis, characterization and application of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the preparation of hexahydroquinolines. J. Mol. Liq., 2013, 178, 113-121.
[http://dx.doi.org/10.1016/j.molliq.2012.10.045]
[196]
Karami, M.; Zare, A. A highly effective and mild protocol for the production of 1-thioamidoalkyl-2-naphthols using 1,3-disulfonic acid imidazolium trifluoroacetate as a dual-functional catalyst. Z. Naturforsch. B, 2018, 73, 289-293.
[http://dx.doi.org/10.1515/znb-2018-0001]
[197]
Islam, A.; Murugan, P.; Hwang, K.C.; Cheng, C.H. Blue light-emitting devices based on 1,8-acridinedione derivatives. Synth. Met., 2003, 139, 347-353.
[http://dx.doi.org/10.1016/S0379-6779(03)00188-7]
[198]
Bhosle, M.R.; Nipte, D.; Gaikwad, J.; Shaikh, M.A.; Bondle, G.M.; Sangshetti, J.N. A rapid and green method for expedient multicomponent synthesis of N-substituted decahydroacridine-1,8-diones as potential antimicrobial agents. Res. Chem. Intermed., 2018, 44, 7047-7064.
[http://dx.doi.org/10.1007/s11164-018-3541-7]
[199]
Maheswari, C.S.; Ramesh, R.; Lalitha, A. One-pot synthesis of symmetrical and unsymmetrical acridine sulfonamide derivatives catalyzed by p-TSA. Res. Chem. Intermed., 2017, 43, 4165-4173.
[http://dx.doi.org/10.1007/s11164-017-2870-2]
[200]
Khosropour, A.R.; Khodaei, M.M.; Moghannian, H. A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14-H-dibenzo[a,j]xanthenes catalyzed by p-TSA in solution and solvent-free conditions. Synlett, 2005, 5, 955-958.
[http://dx.doi.org/10.1055/s-2005-864837]
[201]
Kidwai, M.; Bhatnagar, D. Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1,8-diones in PEG. Tetrahedron Lett., 2010, 51, 2700-2703.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.033]
[202]
Fan, X.; Hu, X.; Zhang, X.; Wang, J. InCl3 center dot 4H(2)O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem., 2005, 83, 16-20.
[http://dx.doi.org/10.1139/v04-155]
[203]
Das, S.K.; Chatterjee, S.; Mondal, S.; Bhaumik, A. A new triazine-thiophene based porous organic polymer as efficient catalyst for the synthesis of chromenes via multicomponent coupling and catalyst support for facile synthesis of HMF from carbohydrates. Molecular Catalysis, 2019, 475, 110483.
[http://dx.doi.org/10.1016/j.mcat.2019.110483]
[204]
Mondal, S.; Mondal, J.; Bhaumik, A. Sulfonated porous polymeric nanofibers as an efficient solid acid catalyst for the production of 5-hydroxymethylfurfural from biomass. ChemCatChem, 2015, 7, 3570-3578.
[http://dx.doi.org/10.1002/cctc.201500709]
[205]
Kundu, S.K.; Bhaumik, A. Pyrene-based porous organic polymers as efficient catalytic support for the synthesis of biodiesels at room temperature. ACS Sustain. Chem. & Eng., 2015, 3, 1715-1723.
[http://dx.doi.org/10.1021/acssuschemeng.5b00238]
[206]
Zhao, K.; Liu, S.F.; Li, K.X.; Hu, Z.Y.; Yuan, Y.K.; Yan, L.S.; Guo, H.Q.; Luo, X.B. Fabrication of -SO3H functionalized aromatic carbon microspheres directly from waste Camellia oleifera shells and their application on heterogeneous acid catalysis. Mol. Catal., 2017, 433, 193-201.
[http://dx.doi.org/10.1016/j.mcat.2017.02.032]
[207]
Otomo, R.; Yokoi, T.; Kondo, J.N.; Tatsumi, T. Dealuminated beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural. Appl. Catal. A Gen., 2014, 470, 318-326.
[http://dx.doi.org/10.1016/j.apcata.2013.11.012]
[208]
Dai, J.H.; Zhu, L.F.; Tang, D.Y.; Fu, X.; Tang, J.Q.; Guo, X.W.; Hu, C.W. Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural. Green Chem., 2017, 19, 1932-1939.
[http://dx.doi.org/10.1039/C6GC03604J]
[209]
Kaupp, G. Solid-state molecular syntheses: Complete reactions without auxiliaries based on the new solid-state mechanism. CrystEngComm, 2003, 5, 117-133.
[http://dx.doi.org/10.1039/b303432a]
[210]
Kaupp, G. Waste-free large-scale syntheses without auxiliaries for sustainable production omitting purifying workup. CrystEngComm, 2006, 8, 794-804.
[http://dx.doi.org/10.1039/b609053b]
[211]
Zakeri, M.; Nasef, M.M.; Abouzari-Lotf, E.; Moharami, A.; Heravi, M.M. Sustainable alternative protocols for the multicomponent synthesis of spiro-4H-pyrans catalyzed by 4-dimethylaminopyridine. J. Ind. Eng. Chem., 2015, 29, 273-281.
[http://dx.doi.org/10.1016/j.jiec.2015.03.035]
[212]
Mokhtari, J.; Naimi-Jamal, M.R.; Hamzeali, H.; Dekamin, M.G.; Kaupp, G. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions. ChemSusChem, 2009, 2, 248-254.
[http://dx.doi.org/10.1002/cssc.200800258] [PMID: 19266517]
[213]
Naimi-Jamal, M.R.; Mokhtari, J.; Dekamin, M.G.; Kaupp, G. Sodium tetraalkoxyborates: Intermediates for the quantitative reduction of aldehydes and ketones to alcohols through ball milling with NaBH4. Eur. J. Org. Chem., 2009, 21, 3567-3572.
[http://dx.doi.org/10.1002/ejoc.200900352]
[214]
Baron, A.; Martinez, J.; Lamaty, F. Solvent-free synthesis of unsaturated amino esters in a ball-mill. Tetrahedron Lett., 2010, 51, 6246-6249.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.069]
[215]
Mack, J.; Shumba, M. Rate enhancement of the Morita-Baylis-Hillman reaction through mechanochemistry. Green Chem., 2007, 9, 328-330.
[http://dx.doi.org/10.1039/B612983H]
[216]
Khan, A.T.; Lal, M.; Ali, S.; Khan, M.M. One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett., 2011, 52, 5327-5332.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.019]
[217]
Gao, S. Tsai; C.H.; Tseng, C.; Yao C-F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron, 2008, 64, 9143-9149.
[http://dx.doi.org/10.1016/j.tet.2008.06.061]
[218]
Lu, G-P.; Cai, C.; Facile, A. One-pot, green synthesis of polysubstituted 4H-pyrans via piperidine-catalyzed three-component condensation in aqueous medium. J. Het. Chem., 2011, 48, 124-128.
[http://dx.doi.org/10.1002/jhet.528]
[219]
Wang, L-M.; Shao, J-H.; Tian, H.; Wang, Y-H.; Liu, B. Rare earth perfluorooctanoate [RE(PFO)(3)] catalyzed one-pot synthesis of benzopyran derivatives. J. Fluor. Chem., 2006, 127, 97-100.
[http://dx.doi.org/10.1016/j.jfluchem.2005.10.004]
[220]
Hasaninejad, A.; Shekouhy, M.; Golzar, N.; Zare, A.; Doroodmand, M.M. Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Appl. Catal. A., 2011, 402, 11-22.
[http://dx.doi.org/10.1016/j.apcata.2011.04.012]
[221]
Bissell, E.R.; Mitchell, A.R.; Smith, R.E. Synthesis and Chemistry of “7-Amino-4-(Trifluoromethyl)Coumarin and its Amino-Acid and Peptide Derivatives. J. Org. Chem., 1980, 45, 2283-2287.
[http://dx.doi.org/10.1021/jo01300a003]
[222]
Ellis, G.P. The Chemistry of Heterocyclic of Compounds. Chromenes, Harmones and Chromones, ed. A. Weissberger, E. C. Taylor; John-Wiley, New York, 1977, pp. 11-139.
[223]
Hafez, E.A.A.; Elnagdi, M.H.; Elagamey, A.G.A. F.M.A.A. Nitriles in heterocyclic synthesis-novel synthesis of benzo[c]-coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycles, 1987, 26, 903-907.
[http://dx.doi.org/10.3987/R-1987-04-0903]
[224]
Knight, C. G.; Stephens, T. Xanthene-dye-labeled phosphatidylethanolamines as probes of interfacial Ph-studies in phospholipid-vesicles. Biochem. J., 1989, 25, 8683-8685.
[225]
Dekamin, M.G.; Sagheb-Asl, S.; Naimi-Jamal, M.R. An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Lett., 2009, 50, 4063-4066.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.090]
[226]
Dekamin, M.G.; Alikhani, M.; Javanshir, S. Organocatalytic clean synthesis of densely functionalized 4H-pyrans by bifunctional tetraethylammonium 2-(carbamoyl)benzoate using ball milling technique under mild conditions. Green Chem. Lett. Rev., 2016, 9, 96-105.
[http://dx.doi.org/10.1080/17518253.2016.1139191]
[227]
Dekamin, M.G.; Eslami, M.; Maleki, A. Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. Tetrahedron, 2013, 69, 1074-1085.
[http://dx.doi.org/10.1016/j.tet.2012.11.068]
[228]
Dekamin, M.G.; Ilkhanizadeh, S.; Latifidoost, Z.; Daemi, H.; Karimi, Z.; Barikani, M. Alginic acid: a highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Advances, 2014, 4, 56658-56664.
[http://dx.doi.org/10.1039/C4RA11801D]
[229]
Dekamin, M.G.; Azimoshan, M.; Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of alpha-amino nitriles and imines under mild conditions. Green Chem., 2013, 15, 811-820.
[http://dx.doi.org/10.1039/c3gc36901c]
[230]
Boominathan, M.; Nagaraj, M.; Muthusubramanian, S.; Krishnakumar, R.V. Efficient atom economical one-pot multicomponent synthesis of densely functionalized 4H-chromene derivatives. Tetrahedron, 2011, 67, 6057-6064.
[http://dx.doi.org/10.1016/j.tet.2011.06.021]
[231]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[232]
Devi, J.; Kalita, S.J.; Deka, D.C. An expeditious synthesis of 2,3-dihydroquinazolin-4(1H)-ones in aqueous medium using thiamine hydrochloride (VB1) as a mild, efficient and reusable organocatalyst. Synth. Commun., 2017, 47, 1601-1609.
[http://dx.doi.org/10.1080/00397911.2017.1337149]
[233]
Ding, Q.; Wu, J. Lewis acid- and organocatalyst-cocatalyzed multicomponent reactions of 2-alkynylbenzaldehydes, amines, and ketones. Org. Lett., 2007, 9(24), 4959-4962.
[http://dx.doi.org/10.1021/ol7020669] [PMID: 17960938]
[234]
Rodríguez-Ferrer, P.; Naharro, D.; Maestro, A.; Andrés, J.M.; Pedrosa, R. Chiral bifunctional thiosquaramides as organocatalysts in the synthesis of enantioenriched 3,3-disubstituted oxindoles. Eur. J. Org. Chem., 2019, 6539-6549.
[http://dx.doi.org/10.1002/ejoc.201901327]
[235]
Hassani, M.; Naimi-Jamal, M.R.; Panahi, L. One-pot multicomponent synthesis of substituted pyrroles by using chitosan as an organocatalyst. ChemistrySelect, 2018, 3, 666-672.
[http://dx.doi.org/10.1002/slct.201702692]
[236]
Khan, M.M. Saigal.; Khan, S.; Shareef, S.; Danish, M. Organocatalyzed synthesis and antifungal activity of fully substituted 1,4-dihydropyridines. ChemistrySelect, 2018, 3, 6830-6835.
[http://dx.doi.org/10.1002/slct.201800709]
[237]
Prasanthi, G.; Prasad, K.V.S.R.G.; Bharathi, K. Synthesis, anticonvulsant activity and molecular properties prediction of dialkyl 1-(di(ethoxycarbonyl)methyl)-2,6-dimethyl-4-substituted-1,4-dihydropyridine-3,5-dicarboxylates. Eur. J. Med. Chem., 2014, 73, 97-104.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.001] [PMID: 24384550]
[238]
Ghafuri, H.; Goodarzi, N.; Rashidizadeh, A.; Fard, M.A.D. ompg C3N4/SO3H: An efficient and recyclable organocatalyst for the facile synthesis of 2,3 dihydroquinazolin 4(1H) ones. Res. Chem. Intermed., 2019, 45, 5027-5043.
[http://dx.doi.org/10.1007/s11164-019-03873-6]
[239]
Xu, J.; Wang, G.; Fan, J.; Liu, B.; Cao, S.; Yu, J. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J. Power Sources, 2015, 274, 77-84.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.033]
[240]
Lakhi, K.S.; Park, D.H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J.H.; Vinu, A. Correction: Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem. Soc. Rev., 2017, 46(2), 560-560.
[http://dx.doi.org/10.1039/C6CS90118B] [PMID: 27900380]
[241]
Kathrotiya, H.G.; Patel, M.P. Microwave-assisted synthesis of 30-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity. Med. Chem. Res., 2012, 21, 3406-3416.
[http://dx.doi.org/10.1007/s00044-011-9861-4]
[242]
Khalafy, J.; Etivand, N.; Marjani, A.P.; Khalillou, N. Synthesis of 4-hydroxy-3-(2-arylimidazo[1,2-a]pyridin-3-yl)quinolin-2(1H)-ones in the presence of DABCO as an efficient organocatalyst. J. Heterocycl. Chem., 2019, 56, 1857-1865.
[http://dx.doi.org/10.1002/jhet.3571]
[243]
Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-a]pyridines: a decade update. Chem. Commun. (Camb.), 2015, 51(9), 1555-1575.
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981]
[244]
Burchak, O.N.; Mugherli, L.; Ostuni, M.; Lacapère, J.J.; Balakirev, M.Y. Combinatorial discovery of fluorescent pharmacophores by multicomponent reactions in droplet arrays. J. Am. Chem. Soc., 2011, 133(26), 10058-10061.
[http://dx.doi.org/10.1021/ja204016e] [PMID: 21644551]
[245]
Liao, Q.; Zhang, L.; Li, S.; Xi, C. Domino N-H/C-H bond activation: copper-catalyzed synthesis of nitrogen-bridgehead heterocycles using azoles and 1,4-dihalo-1,3-dienes. Org. Lett., 2011, 13(2), 228-231.
[http://dx.doi.org/10.1021/ol1026365] [PMID: 21141932]
[246]
Abadi, A.Y.E.; Pour, S.A.; Kangani, M.; Mohebat, R. L-Proline catalyzed domino cyclization for the green synthesis of novel 1,4-dihydrobenzo[a]pyrido[2,3-c]phenazines. Monatsh. Chem., 2017, 148, 2135-2142.
[http://dx.doi.org/10.1007/s00706-017-2008-7]
[247]
Waheed, M.; Ahmed, N.; Alsharif, M.A.; Alahmdi, M.I.; Mukhtar, S. An efficient synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles using dihydroquinolines as novel organocatalyst. ChemSelect, 2017, 2, 7946-7950.
[http://dx.doi.org/10.1002/slct.201701299]
[248]
Tiwari, J.; Singh, S.; Saquib, M.; Tufail, F.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. Organocatalytic mediated green approach: A versatile new L-valine promoted synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans. Synth. Commun., 2018, 48, 188-196.
[http://dx.doi.org/10.1080/00397911.2017.1393087]
[249]
Liu, Y.L.; Zhou, J. Organocatalytic asymmetric synthesis of 3-difluoroalkyl 3-hydroxyoxindoles. Chem. Commun. (Camb.), 2012, 48(13), 1919-1921.
[http://dx.doi.org/10.1039/c2cc17140f] [PMID: 22228324]
[250]
Laina-Martín, V.; Humbrías-Martín, J.; Fernández-Salas, J.A.; Alemán, J. Asymmetric vinylogous Mukaiyama aldol reaction of isatins under bifunctional organocatalysis: enantioselective synthesis of substituted 3-hydroxy-2-oxindoles. Chem. Commun. (Camb.), 2018, 54(22), 2781-2784.
[http://dx.doi.org/10.1039/C8CC00759D] [PMID: 29484316]
[251]
Laina-Martín, V.; Del Río-Rodríguez, R.; Díaz-Tendero, S.; Fernández-Salas, J.A.; Alemán, J. Asymmetric synthesis of Rauhut-Currier-type esters via Mukaiyama-Michael reaction to acylphosphonates under bifunctional catalysis. Chem. Commun. (Camb.), 2018, 54(99), 13941-13944.
[http://dx.doi.org/10.1039/C8CC07561A] [PMID: 30387790]
[252]
Wang, X.F.; Peng, L.; An, J.; Li, C.; Yang, Q.Q.; Lu, L.Q.; Gu, F.L.; Xiao, W.J. Enantioselective intramolecular crossed Rauhut-Currier reactions through cooperative nucleophilic activation and hydrogen-bonding catalysis: scope and mechanistic insight. Chemistry, 2011, 17(23), 6484-6491.
[http://dx.doi.org/10.1002/chem.201100479] [PMID: 21538618]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy