Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

General Review Article

The Endothelial Glycocalyx as a Key Mediator of Albumin Handling and the Development of Diabetic Nephropathy

Author(s): Emmanouil Korakas, Ignatios Ikonomidis, Konstantinos Markakis, Athanasios Raptis, George Dimitriadis and Vaia Lambadiari*

Volume 18, Issue 6, 2020

Page: [619 - 631] Pages: 13

DOI: 10.2174/1570161118666191224120242

Price: $65

Abstract

The endothelial glycocalyx is a complex mesh of proteoglycans, glycoproteins and other soluble components, which cover the vascular endothelium. It plays an important role in many physiological processes including vascular permeability, transduction of shear stress and interaction of blood cells and other molecules with the vascular wall. Its complex structure makes its precise assessment challenging, and many different visualization techniques have been used with varying results. Diabetes, one of the main disease models where disorders of the glycocalyx are present, causes degradation of the glycocalyx through a variety of molecular pathways and especially through oxidative stress due to the action of reactive oxygen species. As the glycocalyx has been primarily studied in the glomerular endothelium, more evidence points towards a vital role in albumin handling and, consequently, in diabetic nephropathy. Therefore, the maintenance or restoration of the integrity of the glycocalyx seems a promising therapeutic target.

In this review, we consider the structural and functional capacities of the endothelial glycocalyx, the available methods for its evaluation, the mechanisms through which diabetes leads to glycocalyx degradation and albuminuria, and possible treatment options targeting the glycocalyx.

Keywords: Glycocalyx, vascular permeability, imaging, albuminuria, nephropathy, oxidative stress, diabetes.

[1]
Copley AL. Haemorheological studies on the plasmatic zone in the microcirculation of the cheek pouch of Chinese and Syrian hamsters. Biorheology 1962; 1: 3-14.
[http://dx.doi.org/10.3233/BIR-1962-1102]
[2]
Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 1966; 25(6): 1773-83.
[PMID: 5927412]
[3]
Klitzman B, Duling BR. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 1979; 237(4): H481-90.
[PMID: 495734]
[4]
Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 1996; 79(3): 581-9.
[http://dx.doi.org/10.1161/01.RES.79.3.581] [PMID: 8781491]
[5]
Megens RT, Reitsma S, Schiffers PH, et al. Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 2007; 44(2): 87-98.
[http://dx.doi.org/10.1159/000098259] [PMID: 17192719]
[6]
Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 2010; 87(2): 300-10.
[http://dx.doi.org/10.1093/cvr/cvq137] [PMID: 20462866]
[7]
Burrows NR, Li Y, Geiss LS. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care 2010; 33(1): 73-7.
[http://dx.doi.org/10.2337/dc09-0343] [PMID: 20040673]
[8]
Warram JH, Gearin G, Laffel L, Krolewski AS. Effect of duration of type I diabetes on the prevalence of stages of diabetic nephropathy defined by urinary albumin/creatinine ratio. J Am Soc Nephrol 1996; 7(6): 930-7.
[PMID: 8793803]
[9]
Mogensen CE, Poulsen PL. Epidemiology of microalbuminuria in diabetes and in the background population. Curr Opin Nephrol Hypertens 1994; 3(3): 248-56.
[http://dx.doi.org/10.1097/00041552-199405000-00004] [PMID: 7922249]
[10]
Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989; 32(4): 219-26.
[http://dx.doi.org/10.1007/BF00285287] [PMID: 2668076]
[11]
van den Berg BM, Spaan JA, Vink H. Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 2009; 457(6): 1199-206.
[http://dx.doi.org/10.1007/s00424-008-0590-6] [PMID: 18839207]
[12]
Carey DJ. Syndecans: multifunctional cell-surface co-receptors. Biochem J 1997; 327(Pt 1): 1-16.
[http://dx.doi.org/10.1042/bj3270001] [PMID: 9355727]
[13]
Fransson LA, Belting M, Cheng F, Jönsson M, Mani K, Sandgren S. Novel aspects of glypican glycobiology. Cell Mol Life Sci 2004; 61(9): 1016-24.
[http://dx.doi.org/10.1007/s00018-004-3445-0] [PMID: 15112050]
[14]
Chen S, Birk DE. The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J 2013; 280: 2120-37.
[http://dx.doi.org/10.1111/febs.12136]
[15]
Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008; 72(6): 455-82.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x] [PMID: 19090915]
[16]
Götte M. Syndecans in inflammation. FASEB J 2003; 17(6): 575-91.
[http://dx.doi.org/10.1096/fj.02-0739rev] [PMID: 12665470]
[17]
Weigel PH, Hascall VC, Tammi M. Hyaluronan synthases. J Biol Chem 1997; 272: 13997-4000.
[http://dx.doi.org/10.1074/jbc.272.22.13997] [PMID: 9206724]
[18]
Rapraeger A, Jalkanen M, Endo E, Koda J, Bernfield M. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem 1985; 260(20): 11046-52.
[PMID: 3161889]
[19]
Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch 2000; 440(5): 653-66.
[http://dx.doi.org/10.1007/s004240000307] [PMID: 11007304]
[20]
Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 2005; 106(7): 2334-9.
[http://dx.doi.org/10.1182/blood-2005-04-1530] [PMID: 15956287]
[21]
Jung U, Ley K. Regulation of E-selectin, P-selectin, and intercellular adhesion molecule 1 expression in mouse cremaster muscle vasculature. Microcirculation 1997; 4(2): 311-9.
[http://dx.doi.org/10.3109/10739689709146794] [PMID: 9219223]
[22]
Xiong JP, Stehle T, Goodman SL, Arnaout MA. Integrins, cations and ligands: making the connection. J Thromb Haemost 2003; 1(7): 1642-54.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00277.x] [PMID: 12871301]
[23]
Müller AM, Hermanns MI, Cronen C, Kirkpatrick CJ. Comparative study of adhesion molecule expression in cultured human macro- and microvascular endothelial cells. Exp Mol Pathol 2002; 73(3): 171-80.
[http://dx.doi.org/10.1006/exmp.2002.2446] [PMID: 12565792]
[24]
López JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis 1994; 5(1): 97-119.
[http://dx.doi.org/10.1097/00001721-199402000-00013] [PMID: 8180344]
[25]
Huxley VH, Curry FE. Differential actions of albumin and plasma on capillary solute permeability. Am J Physiol 1991; 260(5 Pt 2): H1645-54.
[PMID: 2035684]
[26]
Van Teeffelen JW, Brands J, Stroes ES, Vink H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc Med 2007; 17(3): 101-5.
[http://dx.doi.org/10.1016/j.tcm.2007.02.002] [PMID: 17418372]
[27]
van Haaren PM, VanBavel E, Vink H, Spaan JA. Charge modification of the endothelial surface layer modulates the permeability barrier of isolated rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 2005; 289(6): H2503-7.
[http://dx.doi.org/10.1152/ajpheart.00587.2005] [PMID: 16100247]
[28]
Ueda A, Shimomura M, Ikeda M, Yamaguchi R, Tanishita K. Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287(5): H2287-94.
[http://dx.doi.org/10.1152/ajpheart.00808.2003] [PMID: 15256377]
[29]
Ryan GB, Karnovsky MJ. Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int 1976; 9(1): 36-45.
[http://dx.doi.org/10.1038/ki.1976.5] [PMID: 940256]
[30]
Jeansson M, Haraldsson B. Glomerular size and charge selectivity in the mouse after exposure to glucosaminoglycan-degrading enzymes. J Am Soc Nephrol 2003; 14(7): 1756-65.
[http://dx.doi.org/10.1097/01.ASN.0000072742.02714.6E] [PMID: 12819235]
[31]
Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol 2006; 290(1): F111-6.
[http://dx.doi.org/10.1152/ajprenal.00173.2005] [PMID: 16091582]
[32]
Weinbaum S. 1997 Whitaker distinguished lecture: models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann Biomed Eng 1998; 26(4): 627-43.
[http://dx.doi.org/10.1114/1.134] [PMID: 9662155]
[33]
Michel CC. Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol 1997; 82(1): 1-30.
[http://dx.doi.org/10.1113/expphysiol.1997.sp004000] [PMID: 9023503]
[34]
Rehm M, Zahler S, Lötsch M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 2004; 100(5): 1211-23.
[http://dx.doi.org/10.1097/00000542-200405000-00025] [PMID: 15114220]
[35]
Jacob M, Bruegger D, Rehm M, Welsch U, Conzen P, Becker BF. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 2006; 104(6): 1223-31.
[http://dx.doi.org/10.1097/00000542-200606000-00018] [PMID: 16732094]
[36]
Martens RJ, Vink H, van Oostenbrugge RJ, Staals J. Sublingual microvascular glycocalyx dimensions in lacunar stroke patients. Cerebrovasc Dis 2013; 35(5): 451-4.
[http://dx.doi.org/10.1159/000348854] [PMID: 23735841]
[37]
Ikonomidis I, Frogoudaki A, Vrettou AR, et al. Impaired arterial elastic properties and endothelial glycocalyx in patients with embolic stroke of undetermined source. Thromb Haemost 2019; 119(11): 1860-8.
[http://dx.doi.org/10.1055/s-0039-1694752] [PMID: 31421641]
[38]
Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 2000; 101(13): 1500-2.
[http://dx.doi.org/10.1161/01.CIR.101.13.1500] [PMID: 10747340]
[39]
Mulivor AW, Lipowsky HH. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 2004; 286(5): H1672-80.
[http://dx.doi.org/10.1152/ajpheart.00832.2003] [PMID: 14704229]
[40]
Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 2003; 23(9): 1541-7.
[http://dx.doi.org/10.1161/01.ATV.0000085630.24353.3D] [PMID: 12855481]
[41]
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75(3): 519-60.
[http://dx.doi.org/10.1152/physrev.1995.75.3.519] [PMID: 7624393]
[42]
Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250(6 Pt 2): H1145-9.
[PMID: 3487253]
[43]
Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003; 93(10): e136-42.
[http://dx.doi.org/10.1161/01.RES.0000101744.47866.D5] [PMID: 14563712]
[44]
Mochizuki S, Vink H, Hiramatsu O, et al. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol 2003; 285(2): H722-6.
[http://dx.doi.org/10.1152/ajpheart.00691.2002] [PMID: 12730059]
[45]
Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 2006; 290(1): H458-2.
[http://dx.doi.org/10.1152/ajpheart.00592.2005] [PMID: 16126814]
[46]
van den Berg BM, Spaan JA, Rolf TM, Vink H. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol 2006; 290(2): H915-20.
[http://dx.doi.org/10.1152/ajpheart.00051.2005] [PMID: 16155109]
[47]
Ikonomidis I, Voumvourakis A, Makavos G, et al. Association of impaired endothelial glycocalyx with arterial stiffness, coronary microcirculatory dysfunction, and abnormal myocardial deformation in untreated hypertensives. J Clin Hypertens (Greenwich) 2018; 20(4): 672-9.
[http://dx.doi.org/10.1111/jch.13236] [PMID: 29498204]
[48]
Allen BL, Filla MS, Rapraeger AC. Role of heparan sulfate as a tissue-specific regulator of FGF-4 and FGF receptor recognition. J Cell Biol 2001; 155(5): 845-58.
[http://dx.doi.org/10.1083/jcb.200106075] [PMID: 11724824]
[49]
Shimada K, Kobayashi M, Kimura S, Nishinaga M, Takeuchi K, Ozawa T. Anticoagulant heparin-like glycosaminoglycans on endothelial cell surface. Jpn Circ J 1991; 55(10): 1016-21.
[http://dx.doi.org/10.1253/jcj.55.1016] [PMID: 1744977]
[50]
Tovar AM, de Mattos DA, Stelling MP, Sarcinelli-Luz BS, Nazareth RA, Mourão PA. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: implications for a possible physiological function of heparin cofactor II. Biochim Biophys Acta 2005; 1740(1): 45-53.
[http://dx.doi.org/10.1016/j.bbadis.2005.02.008] [PMID: 15878740]
[51]
Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects. Arterioscler Thromb Vasc Biol 2002; 22(4): 539-48.
[http://dx.doi.org/10.1161/01.ATV.0000013904.40673.CC] [PMID: 11950688]
[52]
Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost 2003; 1(7): 1515-24.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00306.x] [PMID: 12871287]
[53]
Li Q, Bolli R, Qiu Y, Tang XL, Murphree SS, French BA. Gene therapy with extracellular superoxide dismutase attenuates myocardial stunning in conscious rabbits. Circulation 1998; 98(14): 1438-48.
[http://dx.doi.org/10.1161/01.CIR.98.14.1438] [PMID: 9760299]
[54]
Sahu A, Pangburn MK. Identification of multiple sites of interaction between heparin and the complement system. Mol Immunol 1993; 30(7): 679-84.
[http://dx.doi.org/10.1016/0161-5890(93)90079-Q] [PMID: 8487783]
[55]
Chappell D, Jacob M, Paul O, et al. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 2009; 104: 1313-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.187831]
[56]
Hjalmarsson C, Johansson BR, Haraldsson B. Electron microscopic evaluation of the endothelial surface layer of glomerular capillaries. Microvasc Res 2004; 67(1): 9-17.
[http://dx.doi.org/10.1016/j.mvr.2003.10.001] [PMID: 14709398]
[57]
Rostgaard J, Qvortrup K. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res 1997; 53(1): 1-13.
[http://dx.doi.org/10.1006/mvre.1996.1987] [PMID: 9056471]
[58]
van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res 2003; 92(6): 592-4.
[http://dx.doi.org/10.1161/01.RES.0000065917.53950.75] [PMID: 12637366]
[59]
Ebong EE, Macaluso FP, Spray DC, Tarbell JM. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 2011; 31(8): 1908-15.
[http://dx.doi.org/10.1161/ATVBAHA.111.225268] [PMID: 21474821]
[60]
Torres Filho I, Torres LN, Sondeen JL, Polykratis IA, Dubick MA. In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy. Microvasc Res 2013; 85: 128-33.
[http://dx.doi.org/10.1016/j.mvr.2012.11.005] [PMID: 23154280]
[61]
Smith ML, Long DS, Damiano ER, Ley K. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 2003; 85(1): 637-45.
[http://dx.doi.org/10.1016/S0006-3495(03)74507-X] [PMID: 12829517]
[62]
Han Y, Weinbaum S, Spaan JA, Vink H. Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx. J Fluid Mech 2006; 554: 217-35.
[http://dx.doi.org/10.1017/S0022112005007779]
[63]
Groner W, Winkelman JW, Harris AG, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 1999; 5(10): 1209-12.
[http://dx.doi.org/10.1038/13529] [PMID: 10502828]
[64]
Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ. oude Egbrink MGA. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454(3): 345-59.
[http://dx.doi.org/10.1007/s00424-007-0212-8] [PMID: 17256154]
[65]
Megens RTA. oude Egbrink MGA, Merkx M, Slaaf DW, van Zandvoort MAMJ. Two-photon microscopy on vital carotid arteries: imaging the relationship between collagen and inflammatory cells in atherosclerotic plaques. J Biomed Opt 2008; 13(4)044022
[http://dx.doi.org/10.1117/1.2965542] [PMID: 19021350]
[66]
Bai K, Wang W. Shear stress-induced redistribution of the glycocalyx on endothelial cells in vitro. Biomech Model Mechanobiol 2014; 13(2): 303-11.
[http://dx.doi.org/10.1007/s10237-013-0502-3] [PMID: 23715899]
[67]
Rosenberg RD, Shworak NW, Liu J, Schwartz JJ, Zhang L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J Clin Invest 1997; 100(11)(Suppl.): S67-75.
[http://dx.doi.org/10.1172/JCI119377] [PMID: 9413405]
[68]
Chappell D, Hofmann-Kiefer K, Jacob M, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 2009; 104(1): 78-89.
[http://dx.doi.org/10.1007/s00395-008-0749-5] [PMID: 18836678]
[69]
Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. ScientificWorldJournal 2010; 10: 917-23.
[http://dx.doi.org/10.1100/tsw.2010.88] [PMID: 20495770]
[70]
Nieuwdorp M, Mooij HL, Kroon J, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 2006; 55(4): 1127-32.
[http://dx.doi.org/10.2337/diabetes.55.04.06.db05-1619] [PMID: 16567538]
[71]
Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 2009; 296(5): F947-56.
[http://dx.doi.org/10.1152/ajprenal.90601.2008] [PMID: 19129259]
[72]
Obeidat M, Obeidat M, Ballermann BJ. Glomerular endothelium: a porous sieve and formidable barrier. Exp Cell Res 2012; 318(9): 964-72.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.032] [PMID: 22465480]
[73]
Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 2001; 281(4): F579-96.
[http://dx.doi.org/10.1152/ajprenal.2001.281.4.F579] [PMID: 11553505]
[74]
Pavenstädt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 2003; 83(1): 253-307.
[http://dx.doi.org/10.1152/physrev.00020.2002] [PMID: 12506131]
[75]
Drumond MC, Deen WM. Structural determinants of glomerular hydraulic permeability. Am J Physiol 1994; 266(1 Pt 2): F1-F12.
[PMID: 8304474]
[76]
Guimarães MA, Nikolovski J, Pratt LM, Greive K, Comper WD. Anomalous fractional clearance of negatively charged Ficoll relative to uncharged Ficoll. Am J Physiol Renal Physiol 2003; 285(6): F1118-24.
[http://dx.doi.org/10.1152/ajprenal.00370.2002] [PMID: 12876070]
[77]
Fridén V, Oveland E, Tenstad O, et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int 2011; 79(12): 1322-30.
[http://dx.doi.org/10.1038/ki.2011.58] [PMID: 21412215]
[78]
Ruggiero A, Villa CH, Bander E, et al. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA 2010; 107(27): 12369-74.
[http://dx.doi.org/10.1073/pnas.0913667107] [PMID: 20566862]
[79]
Lazzara MJ, Deen WM. Model of albumin reabsorption in the proximal tubule. Am J Physiol Renal Physiol 2007; 292(1): F430-9.
[http://dx.doi.org/10.1152/ajprenal.00010.2006] [PMID: 16954345]
[80]
Dalla Vestra M, Saller A, Bortoloso E, Mauer M, Fioretto P. Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab 2000; 26(Suppl. 4): 8-14.
[PMID: 10922968]
[81]
Karumanchi SA, Epstein FH, Stillman IE. Is loss of podocyte foot processes necessary for the induction of proteinuria? Am J Kidney Dis 2005; 45(2): 436.
[http://dx.doi.org/10.1053/j.ajkd.2004.11.022] [PMID: 15685527]
[82]
Lemley KV, Blouch K, Abdullah I, et al. Glomerular permselectivity at the onset of nephropathy in type 2 diabetes mellitus. J Am Soc Nephrol 2000; 11(11): 2095-105.
[PMID: 11053486]
[83]
Ceriello A, Giugliano D, Dello Russo P, Passariello N, Saccomanno F, Sgambato S. Glycosaminoglycans in human diabetes. Diabete Metab 1983; 9(1): 32-4.
[PMID: 6406279]
[84]
Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol 2005; 99(4): 1471-6.
[http://dx.doi.org/10.1152/japplphysiol.00436.2005] [PMID: 16024521]
[85]
Nieuwdorp M, van Haeften TW, Gouverneur MC, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55(2): 480-6.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-1103] [PMID: 16443784]
[86]
Broekhuizen LN, Lemkes BA, Mooij HL, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 2010; 53(12): 2646-55.
[http://dx.doi.org/10.1007/s00125-010-1910-x] [PMID: 20865240]
[87]
Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005; 6(9): 902-10.
[http://dx.doi.org/10.1038/ni1233] [PMID: 16056228]
[88]
Fiebiger E, Maehr R, Villadangos J, et al. Invariant chain controls the activity of extracellular cathepsin L. J Exp Med 2002; 196(9): 1263-9.
[http://dx.doi.org/10.1084/jem.20020762] [PMID: 12417635]
[89]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[90]
Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 2003; 14(8 Suppl. 3): S233-6.
[http://dx.doi.org/10.1097/01.ASN.0000077408.15865.06] [PMID: 12874437]
[91]
Quest AF, Ghosh S, Xie WQ, Bell RM. DAG second messengers: molecular switches and growth control. Adv Exp Med Biol 1997; 400A: 297-303.
[http://dx.doi.org/10.1007/978-1-4615-5325-0_42] [PMID: 9547571]
[92]
Parker PJ, Murray-Rust J. PKC at a glance. J Cell Sci 2004; 117(Pt 2): 131-2.
[http://dx.doi.org/10.1242/jcs.00982] [PMID: 14676268]
[93]
Thomas MC, Baynes JW, Thorpe SR, Cooper ME. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets 2005; 6(4): 453-74.
[http://dx.doi.org/10.2174/1389450054021873] [PMID: 16026265]
[94]
van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 2012; 52(8): 1382-402.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.01.013] [PMID: 22326617]
[95]
Lipowsky HH, Lescanic A. The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res 2013; 90: 80-5.
[http://dx.doi.org/10.1016/j.mvr.2013.07.004] [PMID: 23899417]
[96]
Yu WH, Woessner JF Jr. Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 2000; 275(6): 4183-91.
[http://dx.doi.org/10.1074/jbc.275.6.4183] [PMID: 10660581]
[97]
Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003; 112(10): 1486-94.
[http://dx.doi.org/10.1172/JCI200319270] [PMID: 14617750]
[98]
Thomas MC, Tikellis C, Burns WM, et al. Interactions between renin angiotensin system and advanced glycation in the kidney. J Am Soc Nephrol 2005; 16(10): 2976-84.
[http://dx.doi.org/10.1681/ASN.2005010013] [PMID: 16107577]
[99]
Friedl J, Puhlmann M, Bartlett DL, et al. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood 2002; 100(4): 1334-9.
[http://dx.doi.org/10.1182/blood.V100.4.1334.h81602001334_1334_1339] [PMID: 12149215]
[100]
Moriwaki Y, Yamamoto T, Shibutani Y, et al. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism 2003; 52(5): 605-8.
[http://dx.doi.org/10.1053/meta.2003.50096] [PMID: 12759891]
[101]
Saraheimo M, Teppo AM, Forsblom C, Fagerudd J, Groop PH. Diabetic nephropathy is associated with low-grade inflammation in Type 1 diabetic patients. Diabetologia 2003; 46(10): 1402-7.
[http://dx.doi.org/10.1007/s00125-003-1194-5] [PMID: 12928771]
[102]
Reine TM, Lanzalaco F, Kristiansen O, et al. Matrix metalloproteinase-9 mediated shedding of syndecan-4 in glomerular endothelial cells. Microcirculation 2019; 26: e12534.
[http://dx.doi.org/10.1111/micc.12534] [PMID: 30703289]
[103]
Yang X, Smith U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia 2007; 50(6): 1127-39.
[http://dx.doi.org/10.1007/s00125-007-0640-1] [PMID: 17393135]
[104]
Shin Shin Y, Baek SH, Chang KY, et al. Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy. Diabetes Res Clin Pract 2004; 65(3): 257-65.
[http://dx.doi.org/10.1016/j.diabres.2004.01.010] [PMID: 15331206]
[105]
Nakayama T, Sato W, Yoshimura A, et al. Endothelial von Willebrand factor release due to eNOS deficiency predisposes to thrombotic microangiopathy in mouse aging kidney. Am J Pathol 2010; 176(5): 2198-208.
[http://dx.doi.org/10.2353/ajpath.2010.090316] [PMID: 20363914]
[106]
Pejler G, Abrink M, Ringvall M, Wernersson S. Mast cell proteases. Adv Immunol 2007; 95: 167-255.
[http://dx.doi.org/10.1016/S0065-2776(07)95006-3] [PMID: 17869614]
[107]
Colburn P, Kobayashi E, Buonassisi V. Depleted level of heparan sulfate proteoglycan in the extracellular matrix of endothelial cell cultures exposed to endotoxin. J Cell Physiol 1994; 159(1): 121-30.
[http://dx.doi.org/10.1002/jcp.1041590116] [PMID: 8138580]
[108]
Shakya S, Wang Y, Mack JA, Maytin EV. Hyperglycemia-induced changes in hyaluronan contribute to impaired skin wound healing in diabetes: review and perspective. Int J Cell Biol 2015; 2015701738
[http://dx.doi.org/10.1155/2015/701738] [PMID: 26448756]
[109]
Ostendorf T, Kunter U, Eitner F, et al. VEGF(165) mediates glomerular endothelial repair. J Clin Invest 1999; 104(7): 913-23.
[http://dx.doi.org/10.1172/JCI6740] [PMID: 10510332]
[110]
de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001; 12(5): 993-1000.
[PMID: 11316858]
[111]
Veron D, Reidy KJ, Bertuccio C, et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int 2010; 77(11): 989-99.
[http://dx.doi.org/10.1038/ki.2010.64] [PMID: 20375978]
[112]
Foster RR, Armstrong L, Baker S, et al. Glycosaminoglycan regulation by VEGFA and VEGFC of the glomerular microvascular endothelial cell glycocalyx in vitro. Am J Pathol 2013; 183(2): 604-16.
[http://dx.doi.org/10.1016/j.ajpath.2013.04.019] [PMID: 23770346]
[113]
Tsigkos S, Koutsilieris M, Papapetropoulos A. Angiopoietins in angiogenesis and beyond. Expert Opin Investig Drugs 2003; 12(6): 933-41.
[http://dx.doi.org/10.1517/13543784.12.6.933] [PMID: 12783598]
[114]
Satchell SC, Harper SJ, Tooke JE, Kerjaschki D, Saleem MA, Mathieson PW. Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor. J Am Soc Nephrol 2002; 13(2): 544-50.
[PMID: 11805186]
[115]
Dessapt-Baradez C, Woolf AS, White KE, et al. Targeted glomerular angiopoietin-1 therapy for early diabetic kidney disease. J Am Soc Nephrol 2014; 25(1): 33-42.
[http://dx.doi.org/10.1681/ASN.2012121218] [PMID: 24009238]
[116]
Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 2007; 18(11): 2885-93.
[http://dx.doi.org/10.1681/ASN.2007010119] [PMID: 17942961]
[117]
Lennon R, Singh A, Welsh GI, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008; 19(11): 2140-9.
[http://dx.doi.org/10.1681/ASN.2007080940] [PMID: 18753258]
[118]
Singh A, Fridén V, Dasgupta I, et al. High glucose causes dysfunction of the human glomerular endothelial glycocalyx. Am J Physiol Renal Physiol 2011; 300(1): F40-8.
[http://dx.doi.org/10.1152/ajprenal.00103.2010] [PMID: 20980411]
[119]
Singh A, Ramnath RD, Foster RR, et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One 2013; 8(2): e55852.
[http://dx.doi.org/10.1371/journal.pone.0055852] [PMID: 23457483]
[120]
van den Berg BM, Wang G, Boels MGS, et al. Glomerular function and structural integrity depend on hyaluronan synthesis by glomerular endothelium. J Am Soc Nephrol 2019; 30(10): 1886-97.
[http://dx.doi.org/10.1681/ASN.2019020192] [PMID: 31308073]
[121]
Gelberg H, Healy L, Whiteley H, Miller LA, Vimr E. In vivo enzymatic removal of α 2-->6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. Lab Invest 1996; 74(5): 907-20.
[PMID: 8642786]
[122]
Dane MJ, van den Berg BM, Avramut MC, et al. Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am J Pathol 2013; 182(5): 1532-40.
[http://dx.doi.org/10.1016/j.ajpath.2013.01.049] [PMID: 23518410]
[123]
Meuwese MC, Broekhuizen LN, Kuikhoven M, et al. Endothelial surface layer degradation by chronic hyaluronidase infusion induces proteinuria in apolipoprotein E-deficient mice. PLoS One 2010; 5(12): e14262.
[http://dx.doi.org/10.1371/journal.pone.0014262] [PMID: 21170388]
[124]
Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 2004; 15(1): 68-78.
[http://dx.doi.org/10.1097/01.ASN.0000103229.25389.40] [PMID: 14694159]
[125]
Levidiotis V, Freeman C, Punler M, et al. A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol 2004; 15(11): 2882-92.
[http://dx.doi.org/10.1097/01.ASN.0000142426.55612.6D] [PMID: 15504941]
[126]
Gil N, Goldberg R, Neuman T, et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 2012; 61(1): 208-16.
[http://dx.doi.org/10.2337/db11-1024] [PMID: 22106160]
[127]
Jeansson M, Björck K, Tenstad O, Haraldsson B. Adriamycin alters glomerular endothelium to induce proteinuria. J Am Soc Nephrol 2009; 20(1): 114-22.
[http://dx.doi.org/10.1681/ASN.2007111205] [PMID: 19073829]
[128]
Kuwabara A, Satoh M, Tomita N, Sasaki T, Kashihara N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia 2010; 53(9): 2056-65.
[http://dx.doi.org/10.1007/s00125-010-1810-0] [PMID: 20526760]
[129]
Salmon AH, Ferguson JK, Burford JL, et al. Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 2012; 23(8): 1339-50.
[http://dx.doi.org/10.1681/ASN.2012010017] [PMID: 22797190]
[130]
Xu C, Chang A, Hack BK, Eadon MT, Alper SL, Cunningham PN. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int 2014; 85(1): 72-81.
[http://dx.doi.org/10.1038/ki.2013.286] [PMID: 23903370]
[131]
Adembri C, Sgambati E, Vitali L, et al. Sepsis induces albuminuria and alterations in the glomerular filtration barrier: a morphofunctional study in the rat. Crit Care 2011; 15(6): R277.
[http://dx.doi.org/10.1186/cc10559] [PMID: 22108136]
[132]
Rops AL, van den Hoven MJ, Veldman BA, et al. Urinary heparanase activity in patients with type 1 and type 2 diabetes. Nephrol Dial Transplant 2012; 27(7): 2853-61.
[http://dx.doi.org/10.1093/ndt/gfr732] [PMID: 22187315]
[133]
Deckert T, Kofoed-Enevoldsen A, Vidal P, Nørgaard K, Andreasen HB, Feldt-Rasmussen B. Size- and charge selectivity of glomerular filtration in Type 1 (insulin-dependent) diabetic patients with and without albuminuria. Diabetologia 1993; 36(3): 244-51.
[http://dx.doi.org/10.1007/BF00399958] [PMID: 8462774]
[134]
Jacob M, Paul O, Mehringer L, et al. Albumin augmentation improves condition of guinea pig hearts after 4 hr of cold ischemia. Transplantation 2009; 87(7): 956-65.
[http://dx.doi.org/10.1097/TP.0b013e31819c83b5] [PMID: 19352113]
[135]
Nieuwdorp M, Meuwese MC, Mooij HL, et al. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 2009; 202(1): 296-303.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.024] [PMID: 18550063]
[136]
Chappell D, Jacob M, Hofmann-Kiefer K, et al. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res 2009; 83(2): 388-96.
[http://dx.doi.org/10.1093/cvr/cvp097] [PMID: 19307232]
[137]
Kilger E, Weis F, Briegel J, et al. Stress doses of hydrocortisone reduce severe systemic inflammatory response syndrome and improve early outcome in a risk group of patients after cardiac surgery. Crit Care Med 2003; 31(4): 1068-74.
[http://dx.doi.org/10.1097/01.CCM.0000059646.89546.98] [PMID: 12682474]
[138]
Cébe Suarez S, Pieren M, Cariolato L, et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci 2006; 63(17): 2067-77.
[http://dx.doi.org/10.1007/s00018-006-6254-9] [PMID: 16909199]
[139]
Onions KL, Gamez M, Buckner NR, et al. VEGFC reduces glomerular albumin permeability and protects against alterations in VEGF receptor expression in diabetic nephropathy. Diabetes 2019; 68(1): 172-87.
[http://dx.doi.org/10.2337/db18-0045] [PMID: 30389746]
[140]
Desideri S, Onions KL, Qiu Y, et al. A novel assay provides sensitive measurement of physiologically relevant changes in albumin permeability in isolated human and rodent glomeruli. Kidney Int 2018; 93(5): 1086-97.
[http://dx.doi.org/10.1016/j.kint.2017.12.003] [PMID: 29433915]
[141]
Desideri S, Onions KL, Baker SL, et al. Endothelial glycocalyx restoration by growth factors in diabetic nephropathy 2019.https://content.iospress.com/articles/biorheology/bir180199 Available From:
[http://dx.doi.org/10.3233/bir-180199]
[142]
van der Pijl JW, van der Woude FJ, Geelhoed-Duijvestijn PH, et al. Danaparoid sodium lowers proteinuria in diabetic nephropathy. J Am Soc Nephrol 1997; 8(3): 456-62.
[PMID: 9071714]
[143]
Myrup B, Hansen PM, Jensen T, et al. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus. Lancet 1995; 345(8947): 421-2.
[http://dx.doi.org/10.1016/S0140-6736(95)90403-4] [PMID: 7853952]
[144]
Gambaro G, Venturini AP, Noonan DM, et al. Treatment with a glycosaminoglycan formulation ameliorates experimental diabetic nephropathy. Kidney Int 1994; 46(3): 797-806.
[http://dx.doi.org/10.1038/ki.1994.335] [PMID: 7527876]
[145]
Bang K, Chin HJ, Chae DW, et al. Anti-proteinuric effect of sulodexide in immunoglobulin a nephropathy. Yonsei Med J 2011; 52(4): 588-94.
[http://dx.doi.org/10.3349/ymj.2011.52.4.588] [PMID: 21623600]
[146]
Gambaro G, Kinalska I, Oksa A, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the D.N.A.S. randomized trial. J Am Soc Nephrol 2002; 13(6): 1615-25.
[http://dx.doi.org/10.1097/01.ASN.0000014254.87188.E5] [PMID: 12039991]
[147]
Lewis EJ, Lewis JB, Greene T, et al. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am J Kidney Dis 2011; 58(5): 729-36.
[http://dx.doi.org/10.1053/j.ajkd.2011.06.020] [PMID: 21872376]
[148]
Packham DK, Wolfe R, Reutens AT, et al. Collaborative Study Group Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol 2012; 23(1): 123-30.
[http://dx.doi.org/10.1681/ASN.2011040378] [PMID: 22034636]
[149]
van den Hoven MJ, Waanders F, Rops AL, et al. Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrol Dial Transplant 2009; 24(9): 2637-45.
[http://dx.doi.org/10.1093/ndt/gfp182] [PMID: 19429930]
[150]
Verhaar MC, Strachan FE, Newby DE, et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation 1998; 97(8): 752-6.
[http://dx.doi.org/10.1161/01.CIR.97.8.752] [PMID: 9498538]
[151]
Boels MG, Avramut MC, Koudijs A, et al. Atrasentan reduces albuminuria by restoring the glomerular endothelial glycocalyx barrier in diabetic nephropathy. Diabetes 2016; 65(8): 2429-39.
[http://dx.doi.org/10.2337/db15-1413] [PMID: 27207530]
[152]
Lambadiari V, Pavlidis G, Kousathana F, et al. Effects of different antidiabetic medications on endothelial glycocalyx, myocardial function, and vascular function in type 2 diabetic patients: one year follow-up study. J Clin Med 2019; 8(7): E983.
[http://dx.doi.org/10.3390/jcm8070983] [PMID: 31284526]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy