Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Mast Cells as a Double-Edged Sword in Immunity: Their Function in Health and Disease. First of Two Parts

Author(s): Thea Magrone*, Manrico Magrone and Emilio Jirillo

Volume 20, Issue 5, 2020

Page: [654 - 669] Pages: 16

DOI: 10.2174/1871530319666191202120301

Price: $65

Abstract

Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.

Keywords: Allergy, basophils, eosinophils, inflammation, mast cells, receptors.

Graphical Abstract

[1]
Dwyer, D.F.; Barrett, N.A.; Austen, K.F. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol., 2016, 17(7), 878-887.
[http://dx.doi.org/10.1038/ni.3445] [PMID: 27135604]
[2]
Espinosa, E.; Valitutti, S. New roles and controls of mast cells. Curr. Opin. Immunol., 2018, 50, 39-47.
[http://dx.doi.org/10.1016/j.coi.2017.10.012] [PMID: 29144996]
[3]
Galli, S.J.; Tsai, M. Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur. J. Immunol., 2010, 40(7), 1843-1851.
[http://dx.doi.org/10.1002/eji.201040559] [PMID: 20583030]
[4]
Galli, S.J.; Grimbaldeston, M.; Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol., 2008, 8(6), 478-486.
[http://dx.doi.org/10.1038/nri2327] [PMID: 18483499]
[5]
Abraham, S.N.; St John, A.L. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol., 2010, 10(6), 440-452.
[http://dx.doi.org/10.1038/nri2782] [PMID: 20498670]
[6]
Pejler, G.; Abrink, M.; Ringvall, M.; Wernersson, S. Mast cell proteases. Adv. Immunol., 2007, 95, 167-255.
[http://dx.doi.org/10.1016/S0065-2776(07)95006-3] [PMID: 17869614]
[7]
Frossi, B.; Mion, F.; Sibilano, R.; Danelli, L.; Pucillo, C.E.M. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol. Rev., 2018, 282(1), 35-46.
[http://dx.doi.org/10.1111/imr.12636] [PMID: 29431204]
[8]
Wernersson, S.; Pejler, G. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol., 2014, 14(7), 478-494.
[http://dx.doi.org/10.1038/nri3690] [PMID: 24903914]
[9]
Mukai, K.; Tsai, M.; Starkl, P.; Marichal, T.; Galli, S.J. IgE and mast cells in host defense against parasites and venoms. Semin. Immunopathol., 2016, 38(5), 581-603.
[http://dx.doi.org/10.1007/s00281-016-0565-1] [PMID: 27225312]
[10]
Blank, U. The mechanisms of exocytosis in mast cells. Adv. Exp. Med. Biol., 2011, 716, 107-122.
[http://dx.doi.org/10.1007/978-1-4419-9533-9_7] [PMID: 21713654]
[11]
Lorentz, A.; Baumann, A.; Vitte, J.; Blank, U. The SNARE Machinery in Mast Cell Secretion. Front. Immunol., 2012, 3, 143.
[http://dx.doi.org/10.3389/fimmu.2012.00143] [PMID: 22679448]
[12]
Dvorak, A.M. Piecemeal degranulation of basophils and mast cells is effected by vesicular transport of stored secretory granule contents. Chem. Immunol. Allergy, 2005, 85, 135-184.
[http://dx.doi.org/10.1159/000086516] [PMID: 15970657]
[13]
Klein, O.; Sagi-Eisenberg, R. Anaphylactic Degranulation of Mast Cells: Focus on Compound Exocytosis. J. Immunol. Res., 2019, 20199542656
[http://dx.doi.org/10.1155/2019/9542656] [PMID: 31011586]
[14]
Sibilano, R.; Frossi, B.; Pucillo, C.E. Mast cell activation: a complex interplay of positive and negative signaling pathways. Eur. J. Immunol., 2014, 44(9), 2558-2566.
[http://dx.doi.org/10.1002/eji.201444546] [PMID: 25066089]
[15]
Burton, O.T.; Darling, A.R.; Zhou, J.S.; Noval-Rivas, M.; Jones, T.G.; Gurish, M.F.; Chatila, T.A.; Oettgen, H.C. Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol., 2013, 6(4), 740-750.
[http://dx.doi.org/10.1038/mi.2012.112] [PMID: 23149659]
[16]
Leist, M.; Sünder, C.A.; Drube, S.; Zimmermann, C.; Geldmacher, A.; Metz, M.; Dudeck, A.; Maurer, M. Membrane-bound stem cell factor is the major but not only driver of fibroblast-induced murine skin mast cell differentiation. Exp. Dermatol., 2017, 26(3), 255-262.
[http://dx.doi.org/10.1111/exd.13206] [PMID: 27619074]
[17]
Wang, Z.; Mascarenhas, N.; Eckmann, L.; Miyamoto, Y.; Sun, X.; Kawakami, T.; Di Nardo, A. Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes. J. Allergy Clin. Immunol., 2017, 139(4), 1205-1216.e6.
[http://dx.doi.org/10.1016/j.jaci.2016.09.019] [PMID: 27746235]
[18]
Douaiher, J.; Succar, J.; Lancerotto, L.; Gurish, M.F.; Orgill, D.P.; Hamilton, M.J.; Krilis, S.A.; Stevens, R.L. Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv. Immunol., 2014, 122, 211-252.
[http://dx.doi.org/10.1016/B978-0-12-800267-4.00006-7] [PMID: 24507159]
[19]
Cowen, T.; Trigg, P.; Eady, R.A. Distribution of mast cells in human dermis: development of a mapping technique. Br. J. Dermatol., 1979, 100(6), 635-640.
[http://dx.doi.org/10.1111/j.1365-2133.1979.tb08066.x] [PMID: 465311]
[20]
Motakis, E.; Guhl, S.; Ishizu, Y.; Itoh, M.; Kawaji, H.; de Hoon, M.; Lassmann, T.; Carninci, P.; Hayashizaki, Y.; Zuberbier, T.; Forrest, A.R.; Babina, M. Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood, 2014, 123(17), e58-e67.
[http://dx.doi.org/10.1182/blood-2013-02-483792] [PMID: 24671954]
[21]
Kurashima, Y.; Amiya, T.; Fujisawa, K.; Shibata, N.; Suzuki, Y.; Kogure, Y.; Hashimoto, E.; Otsuka, A.; Kabashima, K.; Sato, S.; Sato, T.; Kubo, M.; Akira, S.; Miyake, K.; Kunisawa, J.; Kiyono, H. The enzyme Cyp26b1 mediates inhibition of mast cell activation by fibroblasts to maintain skin-barrier homeostasis. Immunity, 2014, 40(4), 530-541.
[http://dx.doi.org/10.1016/j.immuni.2014.01.014] [PMID: 24726878]
[22]
Wang, Z.; MacLeod, D.T.; Di Nardo, A. Commensal bacteria lipoteichoic acid increases skin mast cell antimicrobial activity against vaccinia viruses. J. Immunol., 2012, 189(4), 1551-1558.
[http://dx.doi.org/10.4049/jimmunol.1200471] [PMID: 22772452]
[23]
Mashiko, S.; Bouguermouh, S.; Rubio, M.; Baba, N.; Bissonnette, R.; Sarfati, M. Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J. Allergy Clin. Immunol., 2015, 136(2), 351-9.e1.
[http://dx.doi.org/10.1016/j.jaci.2015.01.033] [PMID: 25792465]
[24]
Zhan, M.; Zheng, W.; Jiang, Q.; Zhao, Z.; Wang, Z.; Wang, J.; Zhang, H.; He, S. Upregulated expression of substance P (SP) and NK1R in eczema and SP-induced mast cell accumulation. Cell Biol. Toxicol., 2017, 33(4), 389-405.
[http://dx.doi.org/10.1007/s10565-016-9379-0] [PMID: 28154998]
[25]
Füreder, W.; Agis, H.; Willheim, M.; Bankl, H.C.; Maier, U.; Kishi, K.; Müller, M.R.; Czerwenka, K.; Radaszkiewicz, T.; Butterfield, J.H.; Klappacher, G.W.; Sperr, W.R.; Oppermann, M.; Lechner, K.; Valent, P. Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J. Immunol., 1995, 155(6), 3152-3160.
[PMID: 7673728]
[26]
Andersson, C.K.; Mori, M.; Bjermer, L.; Löfdahl, C.G.; Erjefält, J.S. Novel site-specific mast cell subpopulations in the human lung. Thorax, 2009, 64(4), 297-305.
[http://dx.doi.org/10.1136/thx.2008.101683] [PMID: 19131451]
[27]
Gersch, C.; Dewald, O.; Zoerlein, M.; Michael, L.H.; Entman, M.L.; Frangogiannis, N.G. Mast cells and macrophages in normal C57/BL/6 mice. Histochem. Cell Biol., 2002, 118(1), 41-49.
[http://dx.doi.org/10.1007/s00418-002-0425-z] [PMID: 12122446]
[28]
Shimbori, C.; Upagupta, C.; Bellaye, P.S.; Ayaub, E.A.; Sato, S.; Yanagihara, T.; Zhou, Q.; Ognjanovic, A.; Ask, K.; Gauldie, J.; Forsythe, P.; Kolb, M.R.J. Mechanical stress-induced mast cell degranulation activates TGF-β1 signalling pathway in pulmonary fibrosis. Thorax, 2019, 74(5), 455-465.
[http://dx.doi.org/10.1136/thoraxjnl-2018-211516] [PMID: 30808717]
[29]
Sibilano, R.; Frossi, B.; Calvaruso, M.; Danelli, L.; Betto, E.; Dall’Agnese, A.; Tripodo, C.; Colombo, M.P.; Pucillo, C.E.; Gri, G. The aryl hydrocarbon receptor modulates acute and late mast cell responses. J. Immunol., 2012, 189(1), 120-127.
[http://dx.doi.org/10.4049/jimmunol.1200009] [PMID: 22649193]
[30]
Schemann, M.; Camilleri, M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology, 2013, 144(4), 698-704.e4.
[http://dx.doi.org/10.1053/j.gastro.2013.01.040] [PMID: 23354018]
[31]
Shea-Donohue, T.; Stiltz, J.; Zhao, A.; Notari, L. Mast cells. Curr. Gastroenterol. Rep., 2010, 12(5), 349-357.
[http://dx.doi.org/10.1007/s11894-010-0132-1] [PMID: 20711694]
[32]
Bischoff, S.C. Mast cells in gastrointestinal disorders. Eur. J. Pharmacol., 2016, 778, 139-145.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.018] [PMID: 26852959]
[33]
Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3(1), 4-14.
[http://dx.doi.org/10.4161/gmic.19320] [PMID: 22356853]
[34]
Kunii, J.; Takahashi, K.; Kasakura, K.; Tsuda, M.; Nakano, K.; Hosono, A.; Kaminogawa, S. Commensal bacteria promote migration of mast cells into the intestine. Immunobiology, 2011, 216(6), 692-697.
[http://dx.doi.org/10.1016/j.imbio.2010.10.007] [PMID: 21281976]
[35]
Buhner, S.; Schemann, M. Mast cell-nerve axis with a focus on the human gut. Biochim. Biophys. Acta, 2012, 1822(1), 85-92.
[http://dx.doi.org/10.1016/j.bbadis.2011.06.004] [PMID: 21704703]
[36]
He, S.H. Key role of mast cells and their major secretory products in inflammatory bowel disease. World J. Gastroenterol., 2004, 10(3), 309-318.
[http://dx.doi.org/10.3748/wjg.v10.i3.309] [PMID: 14760748]
[37]
Esposito, I.; Friess, H.; Kappeler, A.; Shrikhande, S.; Kleeff, J.; Ramesh, H.; Zimmermann, A.; Büchler, M.W. Mast cell distribution and activation in chronic pancreatitis. Hum. Pathol., 2001, 32(11), 1174-1183.
[http://dx.doi.org/10.1053/hupa.2001.28947] [PMID: 11727255]
[38]
Zimnoch, L.; Szynaka, B.; Puchalski, Z. Mast cells and pancreatic stellate cells in chronic pancreatitis with differently intensified fibrosis. Hepatogastroenterology, 2002, 49(46), 1135-1138.
[PMID: 12143220]
[39]
Hoogerwerf, W.A.; Gondesen, K.; Xiao, S.Y.; Winston, J.H.; Willis, W.D.; Pasricha, P.J. The role of mast cells in the pathogenesis of pain in chronic pancreatitis. BMC Gastroenterol., 2005, 5, 8.
[http://dx.doi.org/10.1186/1471-230X-5-8] [PMID: 15745445]
[40]
Francis, T.; Graf, A.; Hodges, K.; Kennedy, L.; Hargrove, L.; Price, M.; Kearney, K.; Francis, H. Histamine regulation of pancreatitis and pancreatic cancer: a review of recent findings. Hepatobiliary Surg. Nutr., 2013, 2(4), 216-226.
[PMID: 24570946]
[41]
Demir, I.E.; Schorn, S.; Schremmer-Danninger, E.; Wang, K.; Kehl, T.; Giese, N.A.; Algül, H.; Friess, H.; Ceyhan, G.O. Perineural mast cells are specifically enriched in pancreatic neuritis and neuropathic pain in pancreatic cancer and chronic pancreatitis. PLoS One, 2013, 8(3)e60529
[http://dx.doi.org/10.1371/journal.pone.0060529] [PMID: 23555989]
[42]
Cai, S.W.; Yang, S.Z.; Gao, J.; Pan, K.; Chen, J.Y.; Wang, Y.L.; Wei, L.X.; Dong, J.H. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery, 2011, 149(4), 576-584.
[http://dx.doi.org/10.1016/j.surg.2010.10.009] [PMID: 21167541]
[43]
Wang, W.Q.; Liu, L.; Xu, H.X.; Wu, C.T.; Xiang, J.F.; Xu, J.; Liu, C.; Long, J.; Ni, Q.X.; Yu, X.J. Infiltrating immune cells and gene mutations in pancreatic ductal adenocarcinoma. Br. J. Surg., 2016, 103(9), 1189-1199.
[http://dx.doi.org/10.1002/bjs.10187] [PMID: 27256393]
[44]
Chang, D.Z.; Ma, Y.; Ji, B.; Wang, H.; Deng, D.; Liu, Y.; Abbruzzese, J.L.; Liu, Y.J.; Logsdon, C.D.; Hwu, P. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin. Cancer Res., 2011, 17(22), 7015-7023.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0607] [PMID: 21976550]
[45]
Massó-Vallés, D.; Jauset, T.; Serrano, E.; Sodir, N.M.; Pedersen, K.; Affara, N.I.; Whitfield, J.R.; Beaulieu, M.E.; Evan, G.I.; Elias, L.; Arribas, J.; Soucek, L. Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res., 2015, 75(8), 1675-1681.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2852] [PMID: 25878147]
[46]
Schönhuber, N.; Seidler, B.; Schuck, K.; Veltkamp, C.; Schachtler, C.; Zukowska, M.; Eser, S.; Feyerabend, T.B.; Paul, M.C.; Eser, P.; Klein, S.; Lowy, A.M.; Banerjee, R.; Yang, F.; Lee, C.L.; Moding, E.J.; Kirsch, D.G.; Scheideler, A.; Alessi, D.R.; Varela, I.; Bradley, A.; Kind, A.; Schnieke, A.E.; Rodewald, H.R.; Rad, R.; Schmid, R.M.; Schneider, G.; Saur, D. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med., 2014, 20(11), 1340-1347.
[http://dx.doi.org/10.1038/nm.3646] [PMID: 25326799]
[47]
Wang, Z.; Zhang, H.; Shen, X.H.; Jin, K.L.; Ye, G.F.; Qiu, W.; Qian, L.; Li, B.; Zhang, Y.H.; Shi, G.P. Immunoglobulin E and mast cell proteases are potential risk factors of impaired fasting glucose and impaired glucose tolerance in humans. Ann. Med., 2013, 45(3), 220-229.
[http://dx.doi.org/10.3109/07853890.2012.732234] [PMID: 23110545]
[48]
Kaur, D.; Hollins, F.; Woodman, L.; Yang, W.; Monk, P.; May, R.; Bradding, P.; Brightling, C.E. Mast cells express IL-13R alpha 1: IL-13 promotes human lung mast cell proliferation and Fc epsilon RI expression. Allergy, 2006, 61(9), 1047-1053.
[http://dx.doi.org/10.1111/j.1398-9995.2006.01139.x] [PMID: 16918506]
[49]
Novak, N.; Bieber, T.; Kraft, S. Immunoglobulin E-bearing antigen-presenting cells in atopic dermatitis. Curr. Allergy Asthma Rep., 2004, 4(4), 263-269.
[http://dx.doi.org/10.1007/s11882-004-0069-2] [PMID: 15175139]
[50]
McLeod, J.J.; Baker, B.; Ryan, J.J. Mast cell production and response to IL-4 and IL-13. Cytokine, 2015, 75(1), 57-61.
[http://dx.doi.org/10.1016/j.cyto.2015.05.019] [PMID: 26088754]
[51]
Welker, P.; Grabbe, J.; Zuberbier, T.; Grützkau, A.; Henz, B.M. GM-CSF downmodulates c-kit, Fc(epsilon)RI(alpha) and GM-CSF receptor expression as well as histamine and tryptase levels in cultured human mast cells. Arch. Dermatol. Res., 2001, 293(5), 249-258.
[http://dx.doi.org/10.1007/s004030100225] [PMID: 11409570]
[52]
Gomez, G.; Ramirez, C.D.; Rivera, J.; Patel, M.; Norozian, F.; Wright, H.V.; Kashyap, M.V.; Barnstein, B.O.; Fischer-Stenger, K.; Schwartz, L.B.; Kepley, C.L.; Ryan, J.J. TGF-beta 1 inhibits mast cell Fc epsilon RI expression. J. Immunol., 2005, 174(10), 5987-5993.
[http://dx.doi.org/10.4049/jimmunol.174.10.5987] [PMID: 15879091]
[53]
Ra, C.; Nunomura, S.; Okayama, Y. Fine-Tuning of Mast Cell Activation by FcεRIβ Chain. Front. Immunol., 2012, 3, 112.
[http://dx.doi.org/10.3389/fimmu.2012.00112] [PMID: 22623922]
[54]
Ryan, J.J.; Kinzer, C.A.; Paul, W.E. Mast cells lacking the high affinity immunoglobulin E receptor are deficient in Fc epsilon RI gamma messenger RNA. J. Exp. Med., 1995, 182(2), 567-574.
[http://dx.doi.org/10.1084/jem.182.2.567] [PMID: 7629513]
[55]
Kepley, C.L.; Taghavi, S.; Mackay, G.; Zhu, D.; Morel, P.A.; Zhang, K.; Ryan, J.J.; Satin, L.S.; Zhang, M.; Pandolfi, P.P.; Saxon, A. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J. Biol. Chem., 2004, 279(34), 35139-35149.
[http://dx.doi.org/10.1074/jbc.M404318200] [PMID: 15151996]
[56]
Tkaczyk, C.; Okayama, Y.; Woolhiser, M.R.; Hagaman, D.D.; Gilfillan, A.M.; Metcalfe, D.D. Activation of human mast cells through the high affinity IgG receptor. Mol. Immunol., 2002, 38(16-18), 1289-1293.
[http://dx.doi.org/10.1016/S0161-5890(02)00077-9] [PMID: 12217397]
[57]
Okayama, Y.; Kirshenbaum, A.S.; Metcalfe, D.D. Expression of a functional high-affinity IgG receptor, Fc gamma RI, on human mast cells: Up-regulation by IFN-gamma. J. Immunol., 2000, 164(8), 4332-4339.
[http://dx.doi.org/10.4049/jimmunol.164.8.4332] [PMID: 10754333]
[58]
Zhao, W.; Kepley, C.L.; Morel, P.A.; Okumoto, L.M.; Fukuoka, Y.; Schwartz, L.B. Fc gamma RIIa, not Fc gamma RIIb, is constitutively and functionally expressed on skin-derived human mast cells. J. Immunol., 2006, 177(1), 694-701.
[http://dx.doi.org/10.4049/jimmunol.177.1.694] [PMID: 16785568]
[59]
Daëron, M.; Bonnerot, C.; Latour, S.; Fridman, W.H. Murine recombinant Fc gamma RIII, but not Fc gamma RII, trigger serotonin release in rat basophilic leukemia cells. J. Immunol., 1992, 149(4), 1365-1373.
[PMID: 1386863]
[60]
Latour, S.; Bonnerot, C.; Fridman, W.H.; Daëron, M. Induction of tumor necrosis factor-alpha production by mast cells via Fc gamma R. Role of the Fc gamma RIII gamma subunit. J. Immunol., 1992, 149(6), 2155-2162.
[PMID: 1387672]
[61]
Jönsson, F.; Daëron, M. Mast cells and company. Front. Immunol., 2012, 3, 16.
[http://dx.doi.org/10.3389/fimmu.2012.00016] [PMID: 22566901]
[62]
Pauls, S.D.; Marshall, A.J. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. Eur. J. Immunol., 2017, 47(6), 932-945.
[http://dx.doi.org/10.1002/eji.201646795] [PMID: 28480512]
[63]
Bruhns, P.; Iannascoli, B.; England, P.; Mancardi, D.A.; Fernandez, N.; Jorieux, S.; Daëron, M. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood, 2009, 113(16), 3716-3725.
[http://dx.doi.org/10.1182/blood-2008-09-179754] [PMID: 19018092]
[64]
James, L.K.; Till, S.J. Potential Mechanisms for IgG4 Inhibition of Immediate Hypersensitivity Reactions. Curr. Allergy Asthma Rep., 2016, 16(3), 23.
[http://dx.doi.org/10.1007/s11882-016-0600-2] [PMID: 26892721]
[65]
Pasquier, B.; Launay, P.; Kanamaru, Y.; Moura, I.C.; Pfirsch, S.; Ruffié, C.; Hénin, D.; Benhamou, M.; Pretolani, M.; Blank, U.; Monteiro, R.C. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity, 2005, 22(1), 31-42.
[PMID: 15664157]
[66]
Groot Kormelink, T.; Powe, D.G.; Kuijpers, S.A.; Abudukelimu, A.; Fens, M.H.; Pieters, E.H.; Kassing van der Ven, W.W.; Habashy, H.O.; Ellis, I.O.; Blokhuis, B.R.; Thio, M.; Hennink, W.E.; Storm, G.; Redegeld, F.A.; Schiffelers, R.M. Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation. Oncotarget, 2014, 5(10), 3159-3167.
[http://dx.doi.org/10.18632/oncotarget.1868] [PMID: 24931643]
[67]
Kraneveld, A.D.; Kool, M.; van Houwelingen, A.H.; Roholl, P.; Solomon, A.; Postma, D.S.; Nijkamp, F.P.; Redegeld, F.A. Elicitation of allergic asthma by immunoglobulin free light chains. Proc. Natl. Acad. Sci. USA, 2005, 102(5), 1578-1583.
[http://dx.doi.org/10.1073/pnas.0406808102] [PMID: 15653775]
[68]
Redegeld, F.A.; van der Heijden, M.W.; Kool, M.; Heijdra, B.M.; Garssen, J.; Kraneveld, A.D.; Van Loveren, H.; Roholl, P.; Saito, T.; Verbeek, J.S.; Claassens, J.; Koster, A.S.; Nijkamp, F.P. Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nat. Med., 2002, 8(7), 694-701.
[http://dx.doi.org/10.1038/nm722] [PMID: 12068287]
[69]
Thio, M.; Groot Kormelink, T.; Fischer, M.J.; Blokhuis, B.R.; Nijkamp, F.P.; Redegeld, F.A. Antigen binding characteristics of immunoglobulin free light chains: crosslinking by antigen is essential to induce allergic inflammation. PLoS One, 2012, 7(7)e40986
[http://dx.doi.org/10.1371/journal.pone.0040986] [PMID: 22911727]
[70]
Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol., 2004, 4(10), 787-799.
[http://dx.doi.org/10.1038/nri1460] [PMID: 15459670]
[71]
Sandig, H.; Bulfone-Paus, S. TLR signaling in mast cells: common and unique features. Front. Immunol., 2012, 3, 185.
[http://dx.doi.org/10.3389/fimmu.2012.00185] [PMID: 22783258]
[72]
Mrabet-Dahbi, S.; Metz, M.; Dudeck, A.; Zuberbier, T.; Maurer, M. Murine mast cells secrete a unique profile of cytokines and prostaglandins in response to distinct TLR2 ligands. Exp. Dermatol., 2009, 18(5), 437-444.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00878.x] [PMID: 19382314]
[73]
Supajatura, V.; Ushio, H.; Nakao, A.; Akira, S.; Okumura, K.; Ra, C.; Ogawa, H. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest., 2002, 109(10), 1351-1359.
[http://dx.doi.org/10.1172/JCI0214704] [PMID: 12021251]
[74]
Tancowny, B.P.; Karpov, V.; Schleimer, R.P.; Kulka, M. Substance P primes lipoteichoic acid- and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating Toll-like receptor 2. Immunology, 2010, 131(2), 220-230.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03296.x] [PMID: 20497485]
[75]
Yoshioka, M.; Fukuishi, N.; Iriguchi, S.; Ohsaki, K.; Yamanobe, H.; Inukai, A.; Kurihara, D.; Imajo, N.; Yasui, Y.; Matsui, N.; Tsujita, T.; Ishii, A.; Seya, T.; Takahama, M.; Akagi, M. Lipoteichoic acid downregulates FcepsilonRI expression on human mast cells through Toll-like receptor 2. J. Allergy Clin. Immunol., 2007, 120(2), 452-461.
[http://dx.doi.org/10.1016/j.jaci.2007.03.027] [PMID: 17481719]
[76]
Zhang, Y.Y.; Yu, Y.Y.; Zhang, Y.R.; Zhang, W.; Yu, B. The modulatory effect of TLR2 on LL-37-induced human mast cells activation. Biochem. Biophys. Res. Commun., 2016, 470(2), 368-374.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.037] [PMID: 26778002]
[77]
Redegeld, F.A.; Yu, Y.; Kumari, S.; Charles, N.; Blank, U. Non-IgE mediated mast cell activation. Immunol. Rev., 2018, 282(1), 87-113.
[http://dx.doi.org/10.1111/imr.12629] [PMID: 29431205]
[78]
Lee, C.C.; Avalos, A.M.; Ploegh, H.L. Accessory molecules for Toll-like receptors and their function. Nat. Rev. Immunol., 2012, 12(3), 168-179.
[http://dx.doi.org/10.1038/nri3151] [PMID: 22301850]
[79]
Lee, A.J.; Ro, M.; Cho, K.J.; Kim, J.H. Lipopolysaccharide/TLR4 Stimulates IL-13 Production through a MyD88-BLT2-Linked Cascade in Mast Cells, Potentially Contributing to the Allergic Response. J. Immunol., 2017, 199(2), 409-417.
[http://dx.doi.org/10.4049/jimmunol.1602062] [PMID: 28600286]
[80]
Peng, S.; Li, C.; Wang, X.; Liu, X.; Han, C.; Jin, T.; Liu, S.; Zhang, X.; Zhang, H.; He, X.; Xie, X.; Yu, X.; Wang, C.; Shan, L.; Fan, C.; Shan, Z.; Teng, W. Increased Toll-Like Receptors Activity and TLR Ligands in Patients with Autoimmune Thyroid Diseases. Front. Immunol., 2016, 7, 578.
[http://dx.doi.org/10.3389/fimmu.2016.00578] [PMID: 28018345]
[81]
Wang, N.; McKell, M.; Dang, A.; Yamani, A.; Waggoner, L.; Vanoni, S.; Noah, T.; Wu, D.; Kordowski, A.; Köhl, J.; Hoebe, K.; Divanovic, S.; Hogan, S.P. Lipopolysaccharide suppresses IgE-mast cell-mediated reactions. Clin. Exp. Allergy, 2017, 47(12), 1574-1585.
[http://dx.doi.org/10.1111/cea.13013] [PMID: 28833704]
[82]
Orinska, Z.; Bulanova, E.; Budagian, V.; Metz, M.; Maurer, M.; Bulfone-Paus, S. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood, 2005, 106(3), 978-987.
[http://dx.doi.org/10.1182/blood-2004-07-2656] [PMID: 15840693]
[83]
Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol., 2015, 33, 257-290.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112240] [PMID: 25581309]
[84]
Witczak, P.; Pietrzak, A.; Wódz, K.; Brzezińska-Błaszczyk, E. Mast cells generate cysteinyl leukotrienes and interferon-beta as well as evince impaired IgE-dependent degranulation upon TLR7 engagement. Indian J. Exp. Biol., 2014, 52(6), 589-596.
[PMID: 24956889]
[85]
Enoksson, M.; Ejendal, K.F.; McAlpine, S.; Nilsson, G.; Lunderius-Andersson, C. Human cord blood-derived mast cells are activated by the Nod1 agonist M-TriDAP to release pro-inflammatory cytokines and chemokines. J. Innate Immun., 2011, 3(2), 142-149.
[http://dx.doi.org/10.1159/000321933] [PMID: 21099203]
[86]
Wu, L.; Feng, B.S.; He, S.H.; Zheng, P.Y.; Croitoru, K.; Yang, P.C. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: the role of TLR2 and NOD2. Immunol. Cell Biol., 2007, 85(7), 538-545.
[http://dx.doi.org/10.1038/sj.icb.7100079] [PMID: 17563761]
[87]
Okumura, S.; Yuki, K.; Kobayashi, R.; Okamura, S.; Ohmori, K.; Saito, H.; Ra, C.; Okayama, Y. Hyperexpression of NOD2 in intestinal mast cells of Crohn’s disease patients: preferential expression of inflammatory cell-recruiting molecules via NOD2 in mast cells. Clin. Immunol., 2009, 130(2), 175-185.
[http://dx.doi.org/10.1016/j.clim.2008.08.027] [PMID: 18938111]
[88]
Subramanian, H.; Gupta, K.; Ali, H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allergy Clin. Immunol., 2016, 138(3), 700-710.
[http://dx.doi.org/10.1016/j.jaci.2016.04.051] [PMID: 27448446]
[89]
McNeil, B.D.; Pundir, P.; Meeker, S.; Han, L.; Undem, B.J.; Kulka, M.; Dong, X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature, 2015, 519(7542), 237-241.
[http://dx.doi.org/10.1038/nature14022] [PMID: 25517090]
[90]
Scheb-Wetzel, M.; Rohde, M.; Bravo, A.; Goldmann, O. New insights into the antimicrobial effect of mast cells against Enterococcus faecalis. Infect. Immun., 2014, 82(11), 4496-4507.
[http://dx.doi.org/10.1128/IAI.02114-14] [PMID: 25114115]
[91]
Theoharides, T.C. Neuroendocrinology of mast cells: Challenges and controversies. Exp. Dermatol., 2017, 26(9), 751-759.
[http://dx.doi.org/10.1111/exd.13288] [PMID: 28094875]
[92]
Schäfer, B.; Piliponsky, A.M.; Oka, T.; Song, C.H.; Gerard, N.P.; Gerard, C.; Tsai, M.; Kalesnikoff, J.; Galli, S.J. Mast cell anaphylatoxin receptor expression can enhance IgE-dependent skin inflammation in mice. J. Allergy Clin. Immunol., 2013, 131(2), 541-8.
[http://dx.doi.org/10.1016/j.jaci.2012.05.009]
[93]
Schneider, L.A.; Schlenner, S.M.; Feyerabend, T.B.; Wunderlin, M.; Rodewald, H.R. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J. Exp. Med., 2007, 204(11), 2629-2639.
[http://dx.doi.org/10.1084/jem.20071262] [PMID: 17923505]
[94]
Oppong, E.; Flink, N.; Cato, A.C. Molecular mechanisms of glucocorticoid action in mast cells. Mol. Cell. Endocrinol., 2013, 380(1-2), 119-126.
[http://dx.doi.org/10.1016/j.mce.2013.05.014] [PMID: 23707629]
[95]
De Leo, B.; Esnal-Zufiaurre, A.; Collins, F.; Critchley, H.O.D.; Saunders, P.T.K. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor. F1000 Res., 2017, 6, 667.
[http://dx.doi.org/10.12688/f1000research.11432.1] [PMID: 28620462]
[96]
Zhou, J.; Liu, D.F.; Liu, C.; Kang, Z.M.; Shen, X.H.; Chen, Y.Z.; Xu, T.; Jiang, C.L. Glucocorticoids inhibit degranulation of mast cells in allergic asthma via nongenomic mechanism. Allergy, 2008, 63(9), 1177-1185.
[http://dx.doi.org/10.1111/j.1398-9995.2008.01725.x] [PMID: 18699934]
[97]
Oppong, E.; Hedde, P.N.; Sekula-Neuner, S.; Yang, L.; Brinkmann, F.; Dörlich, R.M.; Hirtz, M.; Fuchs, H.; Nienhaus, G.U.; Cato, A.C. Localization and dynamics of glucocorticoid receptor at the plasma membrane of activated mast cells. Small, 2014, 10(10), 1991-1998.
[http://dx.doi.org/10.1002/smll.201303677] [PMID: 24616258]
[98]
Zaitsu, M.; Narita, S.; Lambert, K.C.; Grady, J.J.; Estes, D.M.; Curran, E.M.; Brooks, E.G.; Watson, C.S.; Goldblum, R.M.; Midoro-Horiuti, T. Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol. Immunol., 2007, 44(8), 1977-1985.
[http://dx.doi.org/10.1016/j.molimm.2006.09.030] [PMID: 17084457]
[99]
Chen, W.; Beck, I.; Schober, W.; Brockow, K.; Effner, R.; Buters, J.T.; Behrendt, H.; Ring, J. Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE-independent mast cell degranulation elicited by neuromuscular blocking agents. Exp. Dermatol., 2010, 19(3), 302-304.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00969.x] [PMID: 19758318]
[100]
Levin, E.R. Minireview: Extranuclear steroid receptors: roles in modulation of cell functions. Mol. Endocrinol., 2011, 25(3), 377-384.
[http://dx.doi.org/10.1210/me.2010-0284] [PMID: 20861220]
[101]
Corteling, R.; Trifilieff, A. Gender comparison in a murine model of allergen-driven airway inflammation and the response to budesonide treatment. BMC Pharmacol., 2004, 4, 4.
[http://dx.doi.org/10.1186/1471-2210-4-4] [PMID: 15086961]
[102]
Ligeiro de Oliveira, A.P.; Oliveira-Filho, R.M.; da Silva, Z.L.; Borelli, P.; Tavares de Lima, W. Regulation of allergic lung inflammation in rats: interaction between estradiol and corticosterone. Neuroimmunomodulation, 2004, 11(1), 20-27.
[http://dx.doi.org/10.1159/000072965] [PMID: 14557675]
[103]
Keita, A.V.; Carlsson, A.H.; Cigéhn, M.; Ericson, A.C.; McKay, D.M.; Söderholm, J.D. Vasoactive intestinal polypeptide regulates barrier function via mast cells in human intestinal follicle-associated epithelium and during stress in rats. Neurogastroenterol. Motil., 2013, 25(6), e406-e417.
[http://dx.doi.org/10.1111/nmo.12127] [PMID: 23600853]
[104]
Amrani, Y.; Bradding, P. β2-Adrenoceptor Function in Asthma. Adv. Immunol., 2017, 136, 1-28.
[http://dx.doi.org/10.1016/bs.ai.2017.06.003] [PMID: 28950943]
[105]
Lin, A.M.; Rubin, C.J.; Khandpur, R.; Wang, J.Y.; Riblett, M.; Yalavarthi, S.; Villanueva, E.C.; Shah, P.; Kaplan, M.J.; Bruce, A.T. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol., 2011, 187(1), 490-500.
[http://dx.doi.org/10.4049/jimmunol.1100123] [PMID: 21606249]
[106]
de Boer, O.J.; van der Meer, J.J.; Teeling, P.; van der Loos, C.M.; Idu, M.M.; van Maldegem, F.; Aten, J.; van der Wal, A.C. Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J. Pathol., 2010, 220(4), 499-508.
[PMID: 20020510]
[107]
Yip, K.H.; Kolesnikoff, N.; Yu, C.; Hauschild, N.; Taing, H.; Biggs, L. Mechanisms of vitamin D3 metabolite repression of IgE-dependent mast cell activation. J. Allergy Clin. Immunol., 2014, 133(5), 1356-1364.
[108]
Biggs, L.; Yu, C.; Fedoric, B.; Lopez, A.F.; Galli, S.J.; Grimbaldeston, M.A. Evidence that vitamin D(3) promotes mast cell-dependent reduction of chronic UVB-induced skin pathology in mice. J. Exp. Med., 2010, 207(3), 455-463.
[http://dx.doi.org/10.1084/jem.20091725] [PMID: 20194632]
[109]
Kulinski, J.M.; Muñoz-Cano, R.; Olivera, A. Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function. Eur. J. Pharmacol., 2016, 778, 56-67.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.058] [PMID: 25941085]
[110]
Jolly, P.S.; Bektas, M.; Olivera, A.; Gonzalez-Espinosa, C.; Proia, R.L.; Rivera, J.; Milstien, S.; Spiegel, S. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med., 2004, 199(7), 959-970.
[http://dx.doi.org/10.1084/jem.20030680] [PMID: 15067032]
[111]
Taketomi, Y.; Ueno, N.; Kojima, T.; Sato, H.; Murase, R.; Yamamoto, K.; Tanaka, S.; Sakanaka, M.; Nakamura, M.; Nishito, Y.; Kawana, M.; Kambe, N.; Ikeda, K.; Taguchi, R.; Nakamizo, S.; Kabashima, K.; Gelb, M.H.; Arita, M.; Yokomizo, T.; Nakamura, M.; Watanabe, K.; Hirai, H.; Nakamura, M.; Okayama, Y.; Ra, C.; Aritake, K.; Urade, Y.; Morimoto, K.; Sugimoto, Y.; Shimizu, T.; Narumiya, S.; Hara, S.; Murakami, M. Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis. Nat. Immunol., 2013, 14(6), 554-563.
[http://dx.doi.org/10.1038/ni.2586] [PMID: 23624557]
[112]
Gauvreau, G.M.; Watson, R.M.; O’Byrne, P.M. Protective effects of inhaled PGE2 on allergen-induced airway responses and airway inflammation. Am. J. Respir. Crit. Care Med., 1999, 159(1), 31-36.
[http://dx.doi.org/10.1164/ajrccm.159.1.9804030] [PMID: 9872814]
[113]
Serra-Pages, M.; Olivera, A.; Torres, R.; Picado, C.; de Mora, F.; Rivera, J. E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling. J. Leukoc. Biol., 2012, 92(6), 1155-1165.
[http://dx.doi.org/10.1189/jlb.0212109] [PMID: 22859831]
[114]
Agier, J.; Różalska, S.; Wódz, K.; Brzezińska-Błaszczyk, E. Leukotriene receptor expression in mast cells is affected by their agonists. Cell. Immunol., 2017, 317, 37-47.
[http://dx.doi.org/10.1016/j.cellimm.2017.04.010] [PMID: 28477840]
[115]
Lundeen, K.A.; Sun, B.; Karlsson, L.; Fourie, A.M. Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J. Immunol., 2006, 177(5), 3439-3447.
[http://dx.doi.org/10.4049/jimmunol.177.5.3439] [PMID: 16920986]
[116]
Jiang, Y.; Borrelli, L.A.; Kanaoka, Y.; Bacskai, B.J.; Boyce, J.A. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood, 2007, 110(9), 3263-3270.
[http://dx.doi.org/10.1182/blood-2007-07-100453] [PMID: 17693579]
[117]
Kondeti, V.; Al-Azzam, N.; Duah, E.; Thodeti, C.K.; Boyce, J.A.; Paruchuri, S. Leukotriene D4 and prostaglandin E2 signals synergize and potentiate vascular inflammation in a mast cell-dependent manner through cysteinyl leukotriene receptor 1 and E-prostanoid receptor 3. J. Allergy Clin. Immunol., 2016, 137(1), 289-298.
[http://dx.doi.org/10.1016/j.jaci.2015.06.030] [PMID: 26255103]
[118]
Vadas, P.; Gold, M.; Perelman, B.; Liss, G.M.; Lack, G.; Blyth, T.; Simons, F.E.; Simons, K.J.; Cass, D.; Yeung, J. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med., 2008, 358(1), 28-35.
[http://dx.doi.org/10.1056/NEJMoa070030] [PMID: 18172172]
[119]
Kajiwara, N.; Sasaki, T.; Bradding, P.; Cruse, G.; Sagara, H.; Ohmori, K.; Saito, H.; Ra, C.; Okayama, Y. Activation of human mast cells through the platelet-activating factor receptor. J. Allergy Clin. Immunol., 2010, 125(5), 1137-1145.e6.
[http://dx.doi.org/10.1016/j.jaci.2010.01.056] [PMID: 20392487]
[120]
Sugiyama, H.; Nonaka, T.; Kishimoto, T.; Komoriya, K.; Tsuji, K.; Nakahata, T. Peroxisome proliferator-activated receptors are expressed in human cultured mast cells: a possible role of these receptors in negative regulation of mast cell activation. Eur. J. Immunol., 2000, 30(12), 3363-3370.
[http://dx.doi.org/10.1002/1521-4141(2000012)30:12<3363:AID-IMMU3363>3.0.CO;2-B] [PMID: 11093153]
[121]
Paruchuri, S.; Jiang, Y.; Feng, C.; Francis, S.A.; Plutzky, J.; Boyce, J.A. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells. J. Biol. Chem., 2008, 283(24), 16477-16487.
[http://dx.doi.org/10.1074/jbc.M705822200] [PMID: 18411276]
[122]
Zhang, Y.; Li, X.; Fang, S.; Zhu, Z.; Yao, M.; Ying, L.; Zhu, L.; Ma, Z.; Wang, W. Peroxisome proliferator-activated receptor γ agonist suppresses mast cell maturation and induces apoptosis. Mol. Med. Rep., 2017, 16(2), 1793-1800.
[http://dx.doi.org/10.3892/mmr.2017.6802] [PMID: 28656266]
[123]
Kandere-Grzybowska, K.; Letourneau, R.; Kempuraj, D.; Donelan, J.; Poplawski, S.; Boucher, W.; Athanassiou, A.; Theoharides, T.C. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J. Immunol., 2003, 171(9), 4830-4836.
[http://dx.doi.org/10.4049/jimmunol.171.9.4830] [PMID: 14568962]
[124]
Kandere-Grzybowska, K.; Kempuraj, D.; Cao, J.; Cetrulo, C.L.; Theoharides, T.C. Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br. J. Pharmacol., 2006, 148(2), 208-215.
[http://dx.doi.org/10.1038/sj.bjp.0706695] [PMID: 16532021]
[125]
Tete, S.; Saggini, A.; Maccauro, G.; Rosati, M.; Conti, F.; Cianchetti, E.; Tripodi, D.; Toniato, E.; Fulcheri, M.; Salini, V.; Caraffa, A.; Antinolfi, P.; Frydas, S.; Pandolfi, F.; Conti, P.; Potalivo, G.; Nicoletti, M.; Theoharides, T.C. Interleukin-9 and mast cells. J. Biol. Regul. Homeost. Agents, 2012, 26(3), 319-326.
[PMID: 23034251]
[126]
Nagarkar, D.R.; Poposki, J.A.; Comeau, M.R.; Biyasheva, A.; Avila, P.C.; Schleimer, R.P.; Kato, A. Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. J. Allergy Clin. Immunol., 2012, 130(1), 225-32.e4.
[http://dx.doi.org/10.1016/j.jaci.2012.04.019] [PMID: 22633328]
[127]
Bertheloot, D.; Latz, E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell. Mol. Immunol., 2017, 14(1), 43-64.
[http://dx.doi.org/10.1038/cmi.2016.34] [PMID: 27569562]
[128]
Wavrin, S.; Bernard, H.; Wal, J.M.; Adel-Patient, K. Influence of the route of exposure and the matrix on the sensitisation potency of a major cows’ milk allergen. Clin. Transl. Allergy, 2015, 5(1), 3.
[http://dx.doi.org/10.1186/s13601-015-0047-x] [PMID: 25671077]
[129]
Zhang, B.; Weng, Z.; Sismanopoulos, N.; Asadi, S.; Therianou, A.; Alysandratos, K.D.; Angelidou, A.; Shirihai, O.; Theoharides, T.C. Mitochondria distinguish granule-stored from de novo synthesized tumor necrosis factor secretion in human mast cells. Int. Arch. Allergy Immunol., 2012, 159(1), 23-32.
[http://dx.doi.org/10.1159/000335178] [PMID: 22555146]
[130]
Doener, F.; Michel, A.; Reuter, S.; Friedrich, P.; Böhm, L.; Relle, M.; Codarri, L.; Tenzer, S.; Klein, M.; Bopp, T.; Schmitt, E.; Schild, H.; Radsak, M.P.; Taube, C.; Stassen, M.; Becker, M. Mast cell-derived mediators promote murine neutrophil effector functions. Int. Immunol., 2013, 25(10), 553-561.
[http://dx.doi.org/10.1093/intimm/dxt019] [PMID: 23728776]
[131]
Thomas, P.S. Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma. Immunol. Cell Biol., 2001, 79(2), 132-140.
[http://dx.doi.org/10.1046/j.1440-1711.2001.00980.x] [PMID: 11264706]
[132]
Nakae, S.; Suto, H.; Berry, G.J.; Galli, S.J. Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood, 2007, 109(9), 3640-3648.
[http://dx.doi.org/10.1182/blood-2006-09-046128] [PMID: 17197430]
[133]
Suto, H.; Nakae, S.; Kakurai, M.; Sedgwick, J.D.; Tsai, M.; Galli, S.J. Mast cell-associated TNF promotes dendritic cell migration. J. Immunol., 2006, 176(7), 4102-4112.
[http://dx.doi.org/10.4049/jimmunol.176.7.4102] [PMID: 16547246]
[134]
McLachlan, J.B.; Hart, J.P.; Pizzo, S.V.; Shelburne, C.P.; Staats, H.F.; Gunn, M.D.; Abraham, S.N. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol., 2003, 4(12), 1199-1205.
[http://dx.doi.org/10.1038/ni1005] [PMID: 14595438]
[135]
Gaudenzio, N.; Sibilano, R.; Marichal, T.; Starkl, P.; Reber, L.L.; Cenac, N.; McNeil, B.D.; Dong, X.; Hernandez, J.D.; Sagi-Eisenberg, R.; Hammel, I.; Roers, A.; Valitutti, S.; Tsai, M.; Espinosa, E.; Galli, S.J. Different activation signals induce distinct mast cell degranulation strategies. J. Clin. Invest., 2016, 126(10), 3981-3998.
[http://dx.doi.org/10.1172/JCI85538] [PMID: 27643442]
[136]
Nakae, S.; Suto, H.; Iikura, M.; Kakurai, M.; Sedgwick, J.D.; Tsai, M.; Galli, S.J. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J. Immunol., 2006, 176(4), 2238-2248.
[http://dx.doi.org/10.4049/jimmunol.176.4.2238] [PMID: 16455980]
[137]
Nigrovic, P.A.; Binstadt, B.A.; Monach, P.A.; Johnsen, A.; Gurish, M.; Iwakura, Y.; Benoist, C.; Mathis, D.; Lee, D.M. Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2325-2330.
[http://dx.doi.org/10.1073/pnas.0610852103] [PMID: 17277081]
[138]
Nakamura, Y.; Franchi, L.; Kambe, N.; Meng, G.; Strober, W.; Núñez, G. Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the nlrp3 protein. Immunity, 2012, 37(1), 85-95.
[http://dx.doi.org/10.1016/j.immuni.2012.04.013] [PMID: 22819042]
[139]
Bradding, P.; Roberts, J.A.; Britten, K.M.; Montefort, S.; Djukanovic, R.; Mueller, R.; Heusser, C.H.; Howarth, P.H.; Holgate, S.T. Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am. J. Respir. Cell Mol. Biol., 1994, 10(5), 471-480.
[http://dx.doi.org/10.1165/ajrcmb.10.5.8179909] [PMID: 8179909]
[140]
Desai, A.; Jung, M.Y.; Olivera, A.; Gilfillan, A.M.; Prussin, C.; Kirshenbaum, A.S.; Beaven, M.A.; Metcalfe, D.D. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. J. Allergy Clin. Immunol., 2016, 137(6), 1863-1871.e6.
[http://dx.doi.org/10.1016/j.jaci.2015.09.059] [PMID: 26774658]
[141]
Lorentz, A.; Schwengberg, S.; Sellge, G.; Manns, M.P.; Bischoff, S.C. Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4. J. Immunol., 2000, 164(1), 43-48.
[http://dx.doi.org/10.4049/jimmunol.164.1.43] [PMID: 10604991]
[142]
Middel, P.; Reich, K.; Polzien, F.; Blaschke, V.; Hemmerlein, B.; Herms, J.; Korabiowska, M.; Radzun, H.J. Interleukin 16 expression and phenotype of interleukin 16 producing cells in Crohn’s disease. Gut, 2001, 49(6), 795-803.
[http://dx.doi.org/10.1136/gut.49.6.795] [PMID: 11709514]
[143]
Qi, J.C.; Stevens, R.L.; Wadley, R.; Collins, A.; Cooley, M.; Naif, H.M.; Nasr, N.; Cunningham, A.; Katsoulotos, G.; Wanigasek, Y.; Roufogalis, B.; Krilis, S.A. IL-16 regulation of human mast cells/basophils and their susceptibility to HIV-1. J. Immunol., 2002, 168(8), 4127-4134.
[http://dx.doi.org/10.4049/jimmunol.168.8.4127] [PMID: 11937573]
[144]
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol., 2003, 3(2), 133-146.
[http://dx.doi.org/10.1038/nri1001] [PMID: 12563297]
[145]
Kirshenbaum, A.S.; Swindle, E.; Kulka, M.; Wu, Y.; Metcalfe, D.D. Effect of lipopolysaccharide (LPS) and peptidoglycan (PGN) on human mast cell numbers, cytokine production, and protease composition. BMC Immunol., 2008, 9, 45.
[http://dx.doi.org/10.1186/1471-2172-9-45] [PMID: 18687131]
[146]
Nakano, N.; Nishiyama, C.; Kanada, S.; Niwa, Y.; Shimokawa, N.; Ushio, H.; Nishiyama, M.; Okumura, K.; Ogawa, H. Involvement of mast cells in IL-12/23 p40 production is essential for survival from polymicrobial infections. Blood, 2007, 109(11), 4846-4855.
[http://dx.doi.org/10.1182/blood-2006-09-045641] [PMID: 17289816]
[147]
Gupta, A.A.; Leal-Berumen, I.; Croitoru, K.; Marshall, J.S. Rat peritoneal mast cells produce IFN-gamma following IL-12 treatment but not in response to IgE-mediated activation. J. Immunol., 1996, 157(5), 2123-2128.
[PMID: 8757336]
[148]
Hershko, A.Y.; Suzuki, R.; Charles, N.; Alvarez-Errico, D.; Sargent, J.L.; Laurence, A.; Rivera, J. Mast cell interleukin-2 production contributes to suppression of chronic allergic dermatitis. Immunity, 2011, 35(4), 562-571.
[http://dx.doi.org/10.1016/j.immuni.2011.07.013] [PMID: 21982597]
[149]
Morita, H.; Arae, K.; Unno, H.; Miyauchi, K.; Toyama, S.; Nambu, A.; Oboki, K.; Ohno, T.; Motomura, K.; Matsuda, A.; Yamaguchi, S.; Narushima, S.; Kajiwara, N.; Iikura, M.; Suto, H.; McKenzie, A.N.; Takahashi, T.; Karasuyama, H.; Okumura, K.; Azuma, M.; Moro, K.; Akdis, C.A.; Galli, S.J.; Koyasu, S.; Kubo, M.; Sudo, K.; Saito, H.; Matsumoto, K.; Nakae, S. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity, 2015, 43(1), 175-186.
[http://dx.doi.org/10.1016/j.immuni.2015.06.021] [PMID: 26200013]
[150]
Moretti, S.; Renga, G.; Oikonomou, V.; Galosi, C.; Pariano, M.; Iannitti, R.G.; Borghi, M.; Puccetti, M.; De Zuani, M.; Pucillo, C.E.; Paolicelli, G.; Zelante, T.; Renauld, J.C.; Bereshchenko, O.; Sportoletti, P.; Lucidi, V.; Russo, M.C.; Colombo, C.; Fiscarelli, E.; Lass-Flörl, C.; Majo, F.; Ricciotti, G.; Ellemunter, H.; Ratclif, L.; Talesa, V.N.; Napolioni, V.; Romani, L. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat. Commun., 2017, 8, 14017.
[http://dx.doi.org/10.1038/ncomms14017] [PMID: 28090087]
[151]
Nafziger, J.; Arock, M.; Guillosson, J.J.; Wietzerbin, J. Specific high-affinity receptors for interferon-gamma on mouse bone marrow-derived mast cells: inhibitory effect of interferon-gamma on mast cell precursors. Eur. J. Immunol., 1990, 20(1), 113-117.
[http://dx.doi.org/10.1002/eji.1830200117] [PMID: 2137779]
[152]
Mann-Chandler, M.N.; Kashyap, M.; Wright, H.V.; Norozian, F.; Barnstein, B.O.; Gingras, S.; Parganas, E.; Ryan, J.J. IFN-gamma induces apoptosis in developing mast cells. J. Immunol., 2005, 175(5), 3000-3005.
[http://dx.doi.org/10.4049/jimmunol.175.5.3000] [PMID: 16116187]
[153]
Coleman, J.W.; Buckley, M.G.; Holliday, M.R.; Morris, A.G. Interferon-gamma inhibits serotonin release from mouse peritoneal mast cells. Eur. J. Immunol., 1991, 21(10), 2559-2564.
[http://dx.doi.org/10.1002/eji.1830211037] [PMID: 1915558]
[154]
Holliday, M.R.; Banks, E.M.; Dearman, R.J.; Kimber, I.; Coleman, J.W. Interactions of IFN-gamma with IL-3 and IL-4 in the regulation of serotonin and arachidonate release from mouse peritoneal mast cells. Immunology, 1994, 82(1), 70-74.
[PMID: 8045595]
[155]
Bissonnette, E.Y.; Befus, A.D. Inhibition of mast cell-mediated cytotoxicity by IFN-alpha/beta and -gamma. J. Immunol., 1990, 145(10), 3385-3390.
[PMID: 1700008]
[156]
Yanagida, M.; Fukamachi, H.; Takei, M.; Hagiwara, T.; Uzumaki, H.; Tokiwa, T.; Saito, H.; Iikura, Y.; Nakahata, T. Interferon-gamma promotes the survival and Fc epsilon RI-mediated histamine release in cultured human mast cells. Immunology, 1996, 89(4), 547-552.
[http://dx.doi.org/10.1046/j.1365-2567.1996.d01-768.x] [PMID: 9014819]
[157]
Okumura, S.; Kashiwakura, J.; Tomita, H.; Matsumoto, K.; Nakajima, T.; Saito, H.; Okayama, Y. Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcepsilonRI. Blood, 2003, 102(7), 2547-2554.
[http://dx.doi.org/10.1182/blood-2002-12-3929] [PMID: 12855579]
[158]
Lewis, C.C.; Aronow, B.; Hutton, J.; Santeliz, J.; Dienger, K.; Herman, N.; Finkelman, F.D.; Wills-Karp, M. Unique and overlapping gene expression patterns driven by IL-4 and IL-13 in the mouse lung. J. Allergy Clin. Immunol., 2009, 123(4), 795-804.e8.
[http://dx.doi.org/10.1016/j.jaci.2009.01.003] [PMID: 19249085]
[159]
Gessner, A.; Mohrs, K.; Mohrs, M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J. Immunol., 2005, 174(2), 1063-1072.
[http://dx.doi.org/10.4049/jimmunol.174.2.1063] [PMID: 15634931]
[160]
MacNeil, A.J.; Yang, Y.J.; Lin, T.J. MAPK kinase 3 specifically regulates Fc epsilonRI-mediated IL-4 production by mast cells. J. Immunol., 2011, 187(6), 3374-3382.
[http://dx.doi.org/10.4049/jimmunol.1003126] [PMID: 21841136]
[161]
Komai-Koma, M.; Brombacher, F.; Pushparaj, P.N.; Arendse, B.; McSharry, C.; Alexander, J.; Chaudhuri, R.; Thomson, N.C.; McKenzie, A.N.; McInnes, I.; Liew, F.Y.; Xu, D. Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naïve mice. Allergy, 2012, 67(9), 1118-1126.
[http://dx.doi.org/10.1111/j.1398-9995.2012.02859.x] [PMID: 22702477]
[162]
Hoffmann, H.J.; Dahl, C.; Schiøtz, P.O.; Berglund, L.; Dahl, R. Lectins interact differentially with purified human eosinophils, cultured cord blood-derived mast cells and the myeloid leukaemic cell line AML14.3D10: induction of interleukin-4 secretion is conserved among granulocytes, but is not proportional to agglutination or lectin-glycoprotein interaction. Clin. Exp. Allergy, 2003, 33(7), 930-935.
[http://dx.doi.org/10.1046/j.1365-2222.2003.01625.x] [PMID: 12859449]
[163]
Gregory, G.D.; Raju, S.S.; Winandy, S.; Brown, M.A. Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE. J. Clin. Invest., 2006, 116(5), 1327-1336.
[http://dx.doi.org/10.1172/JCI27227] [PMID: 16628252]
[164]
Bradding, P.; Feather, I.H.; Wilson, S.; Bardin, P.G.; Heusser, C.H.; Holgate, S.T.; Howarth, P.H. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J. Immunol., 1993, 151(7), 3853-3865.
[PMID: 8376806]
[165]
Horsmanheimo, L.; Harvima, I.T.; Järvikallio, A.; Harvima, R.J.; Naukkarinen, A.; Horsmanheimo, M. Mast cells are one major source of interleukin-4 in atopic dermatitis. Br. J. Dermatol., 1994, 131(3), 348-353.
[http://dx.doi.org/10.1111/j.1365-2133.1994.tb08522.x] [PMID: 7918008]
[166]
Ochi, H.; De Jesus, N.H.; Hsieh, F.H.; Austen, K.F.; Boyce, J.A. IL-4 and -5 prime human mast cells for different profiles of IgE-dependent cytokine production. Proc. Natl. Acad. Sci. USA, 2000, 97(19), 10509-10513.
[http://dx.doi.org/10.1073/pnas.180318697] [PMID: 10973484]
[167]
Schmitt, E.; Bopp, T. Discovery and initial characterization of Th9 cells: the early years. Semin. Immunopathol., 2017, 39(1), 5-10.
[http://dx.doi.org/10.1007/s00281-016-0610-0] [PMID: 27896635]
[168]
Chen, C.Y.; Lee, J.B.; Liu, B.; Ohta, S.; Wang, P.Y.; Kartashov, A.V.; Mugge, L.; Abonia, J.P.; Barski, A.; Izuhara, K.; Rothenberg, M.E.; Finkelman, F.D.; Hogan, S.P.; Wang, Y.H. Induction of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-Mediated Experimental Food Allergy. Immunity, 2015, 43(4), 788-802.
[http://dx.doi.org/10.1016/j.immuni.2015.08.020] [PMID: 26410628]
[169]
Barlow, J.L.; McKenzie, A.N. Type-2 innate lymphoid cells in human allergic disease. Curr. Opin. Allergy Clin. Immunol., 2014, 14(5), 397-403.
[http://dx.doi.org/10.1097/ACI.0000000000000090] [PMID: 25115682]
[170]
Magrone, T.; Jirillo, E. Intestinal regulatory T cells: their function and modulation by dietary nutrients. Nutr. Ther. & Metab., 2014, 32(2), 157-165.
[171]
Soukou, S.; Brockmann, L.; Bedke, T.; Gagliani, N.; Flavell, R.A.; Huber, S. Role of IL-10 Receptor Signaling in the Function of CD4+ T-Regulatory Type 1 cells: T-Cell Therapy in Patients with Inflammatory Bowel Disease. Crit. Rev. Immunol., 2018, 38(5), 415-431.
[http://dx.doi.org/10.1615/CritRevImmunol.2018026850] [PMID: 30806217]
[172]
Marzulli, G.; Magrone, T.; Kawaguchi, K.; Kumazawa, Y.; Jirillo, E. Fermented grape marc (FGM): immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. Curr. Pharm. Des., 2012, 18(1), 43-50.
[http://dx.doi.org/10.2174/138161212798919011] [PMID: 22211687]
[173]
Magrone, T.; Pugliese, V.; Fontana, S.; Jirillo, E. Human use of Leucoselect® Phytosome® with special reference to inflammatory-allergic pathologies in frail elderly patients. Curr. Pharm. Des., 2014, 20(6), 1011-1019.
[http://dx.doi.org/10.2174/138161282006140220144411] [PMID: 23701566]
[174]
Magrone, T.; Romita, P.; Verni, P.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E.; Foti, C. In vitro effects of polyphenols on the peripheral immune responses in nickel-sensitized patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 324-331.
[http://dx.doi.org/10.2174/1871530317666171003161314] [PMID: 28982342]
[175]
Magrone, T.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E. In Vitro Effects of Nickel on Healthy Non-Allergic Peripheral Blood Mononuclear Cells. The Role of Red Grape Polyphenols. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 166-173.
[http://dx.doi.org/10.2174/1871530317666170713145350] [PMID: 28707594]
[176]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive leaf extracts act as modulators of the human immune response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 85-93.
[http://dx.doi.org/10.2174/1871530317666171116110537] [PMID: 29149822]
[177]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune Profile of Obese People and In Vitro Effects of Red Grape Polyphenols on Peripheral Blood Mononuclear Cells. Oxid. Med. Cell. Longev., 2017, 20179210862http://dx.org.doi/10.1155/2017/9210862
[PMID: 28243360]
[178]
Vitale, E.; Jirillo, E.; Magrone, T. Determination of body mass index and physical activity in normal weight children and evaluation of salivary levels of IL-10 and IL-17. Clin. Immunol. Endocr. Metab. Drugs, 2014, 1, 81-88.
[http://dx.doi.org/10.2174/2212707002666150402225920]
[179]
Magrone, T.; Jirillo, E. Immunity to Tuberculosis and Novel Therapeutic Strategies. Clin. Immunol. Endocr. Metab. Drugs, 2014, 1, 46-60.
[http://dx.doi.org/10.2174/221270700101140721001419]
[180]
Grimbaldeston, M.A.; Nakae, S.; Kalesnikoff, J.; Tsai, M.; Galli, S.J. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat. Immunol., 2007, 8(10), 1095-1104.
[http://dx.doi.org/10.1038/ni1503] [PMID: 17767162]
[181]
Chan, C.Y.; St John, A.L.; Abraham, S.N. Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity, 2013, 38(2), 349-359.
[http://dx.doi.org/10.1016/j.immuni.2012.10.019] [PMID: 23415912]
[182]
Chacón-Salinas, R.; Limón-Flores, A.Y.; Chávez-Blanco, A.D.; Gonzalez-Estrada, A.; Ullrich, S.E. Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J. Immunol., 2011, 186(1), 25-31.
[http://dx.doi.org/10.4049/jimmunol.1001657] [PMID: 21098222]
[183]
Komi, D.E.A.; Khomtchouk, K.; Santa Maria, P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin. Rev. Allergy Immunol., 2019. Epub ahead of print
[http://dx.doi.org/10.1007/s12016-019-08729-w] [PMID: 30729428]
[184]
Ndaw, V.S.; Abebayehu, D.; Spence, A.J.; Paez, P.A.; Kolawole, E.M.; Taruselli, M.T.; Caslin, H.L.; Chumanevich, A.P.; Paranjape, A.; Baker, B.; Barnstein, B.O.; Haque, T.T.; Kiwanuka, K.N.; Oskeritzian, C.A.; Ryan, J.J. TGF-β1 Suppresses IL-33-Induced Mast Cell Function. J. Immunol., 2017, 199(3), 866-873.
[http://dx.doi.org/10.4049/jimmunol.1601983] [PMID: 28637902]
[185]
Moussion, C.; Ortega, N.; Girard, J.P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One, 2008, 3(10)e3331
[http://dx.doi.org/10.1371/journal.pone.0003331] [PMID: 18836528]
[186]
Liew, F.Y.; Girard, J.P.; Turnquist, H.R. Interleukin-33 in health and disease. Nat. Rev. Immunol., 2016, 16(11), 676-689.
[http://dx.doi.org/10.1038/nri.2016.95] [PMID: 27640624]
[187]
Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol. Rev., 2018, 281(1), 154-168.
[http://dx.doi.org/10.1111/imr.12619] [PMID: 29247993]
[188]
Mukai, K.; Tsai, M.; Saito, H.; Galli, S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev., 2018, 282(1), 121-150.
[http://dx.doi.org/10.1111/imr.12634] [PMID: 29431212]
[189]
Allakhverdi, Z.; Smith, D.E.; Comeau, M.R.; Delespesse, G. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol., 2007, 179(4), 2051-2054.
[http://dx.doi.org/10.4049/jimmunol.179.4.2051] [PMID: 17675461]
[190]
Hsu, C.L.; Neilsen, C.V.; Bryce, P.J. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS One, 2010, 5(8)e11944
[http://dx.doi.org/10.1371/journal.pone.0011944] [PMID: 20689814]
[191]
Lefrançais, E.; Duval, A.; Mirey, E.; Roga, S.; Espinosa, E.; Cayrol, C.; Girard, J.P. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc. Natl. Acad. Sci. USA, 2014, 111(43), 15502-15507.
[http://dx.doi.org/10.1073/pnas.1410700111] [PMID: 25313073]
[192]
Morita, H.; Nakae, S.; Saito, H.; Matsumoto, K. IL-33 in clinical practice: Size matters? J. Allergy Clin. Immunol., 2017, 140(2), 381-383.
[http://dx.doi.org/10.1016/j.jaci.2017.03.042] [PMID: 28478050]
[193]
Waern, I.; Lundequist, A.; Pejler, G.; Wernersson, S. Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation. Mucosal Immunol., 2013, 6(5), 911-920.
[http://dx.doi.org/10.1038/mi.2012.129] [PMID: 23235745]
[194]
Roy, A.; Ganesh, G.; Sippola, H.; Bolin, S.; Sawesi, O.; Dagälv, A.; Schlenner, S.M.; Feyerabend, T.; Rodewald, H.R.; Kjellén, L.; Hellman, L.; Åbrink, M. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J. Biol. Chem., 2014, 289(1), 237-250.
[http://dx.doi.org/10.1074/jbc.M112.435156] [PMID: 24257755]
[195]
Varricchi, G.; Raap, U.; Rivellese, F.; Marone, G.; Gibbs, B.F. Human mast cells and basophils-How are they similar how are they different? Immunol. Rev., 2018, 282(1), 8-34.
[http://dx.doi.org/10.1111/imr.12627] [PMID: 29431214]
[196]
Genovese, A.; Borgia, G.; Björck, L.; Petraroli, A.; de Paulis, A.; Piazza, M.; Marone, G. Immunoglobulin superantigen protein L induces IL-4 and IL-13 secretion from human Fc epsilon RI+ cells through interaction with the kappa light chains of IgE. J. Immunol., 2003, 170(4), 1854-1861.
[http://dx.doi.org/10.4049/jimmunol.170.4.1854] [PMID: 12574351]
[197]
Yamanishi, Y.; Miyake, K.; Iki, M.; Tsutsui, H.; Karasuyama, H. Recent advances in understanding basophil-mediated Th2 immune responses. Immunol. Rev., 2017, 278(1), 237-245.
[http://dx.doi.org/10.1111/imr.12548] [PMID: 28658549]
[198]
Ulambayar, B.; Lee, H.; Yang, E.M.; Park, H.S.; Lee, K.; Ye, Y.M. Dimerized, not monomeric, translationally controlled tumor protein induces basophil activation and mast cell degranulation in chronic urticaria. Immune Netw., 2019, 19(3)e20
[http://dx.doi.org/10.4110/in.2019.19.e20] [PMID: 31281717]
[199]
Robida, P.A.; Puzzovio, P.G.; Pahima, H.; Levi-Schaffer, F.; Bochner, B.S. Human eosinophils and mast cells: Birds of a feather flock together. Immunol. Rev., 2018, 282(1), 151-167.
[http://dx.doi.org/10.1111/imr.12638] [PMID: 29431215]
[200]
Bandara, G.; Beaven, M.A.; Olivera, A.; Gilfillan, A.M.; Metcalfe, D.D. Activated mast cells synthesize and release soluble ST2-a decoy receptor for IL-33. Eur. J. Immunol., 2015, 45(11), 3034-3044.
[http://dx.doi.org/10.1002/eji.201545501] [PMID: 26256265]
[201]
Cherry, W.B.; Yoon, J.; Bartemes, K.R.; Iijima, K.; Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol., 2008, 121(6), 1484-1490.
[http://dx.doi.org/10.1016/j.jaci.2008.04.005] [PMID: 18539196]
[202]
Willebrand, R.; Voehringer, D. IL-33-Induced Cytokine Secretion and Survival of Mouse Eosinophils Is Promoted by Autocrine GM-CSF. PLoS One, 2016, 11(9)e0163751
[http://dx.doi.org/10.1371/journal.pone.0163751] [PMID: 27690378]
[203]
Lorentz, A.; Wilke, M.; Sellge, G.; Worthmann, H.; Klempnauer, J.; Manns, M.P.; Bischoff, S.C. IL-4-induced priming of human intestinal mast cells for enhanced survival and Th2 cytokine generation is reversible and associated with increased activity of ERK1/2 and c-Fos. J. Immunol., 2005, 174(11), 6751-6756.
[http://dx.doi.org/10.4049/jimmunol.174.11.6751] [PMID: 15905515]
[204]
McBrien, C.N.; Menzies-Gow, A. The Biology of Eosinophils and Their Role in Asthma. Front. Med. (Lausanne), 2017, 4, 93.
[http://dx.doi.org/10.3389/fmed.2017.00093] [PMID: 28713812]
[205]
Dahl, C.; Hoffmann, H.J.; Saito, H.; Schiøtz, P.O. Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy, 2004, 59(10), 1087-1096.
[http://dx.doi.org/10.1111/j.1398-9995.2004.00606.x] [PMID: 15355468]
[206]
Magrone, T.; Magrone, M.; Jirillo, E. Mast cells as a double edged sword in immunity: Disorders of mast cells activation and therapeutic management. Second of two parts. Endocr. Metab. Immune Disord. Drug Targets, 2019. submitted
[http://dx.doi.org/10.2174/1871530319666191202121644] [PMID: 31789136]
[207]
Frossi, B.; Mion, F.; Tripodo, C.; Colombo, M.P.; Pucillo, C.E. Rheostatic Functions of Mast Cells in the Control of Innate and AdaptiveAdaptive Immune Responses. Trends Immunol., 2017, 38(9), 648-656.
[http://dx.doi.org/10.1016/j.it.2017.04.001] [PMID: 28462845]
[208]
Méndez-Enríquez, E.; Hallgren, J. Mast Cells and Their Progenitors in Allergic Asthma. Front. Immunol., 2019, 10, 821.
[http://dx.doi.org/10.3389/fimmu.2019.00821] [PMID: 31191511]
[209]
Pejler, G. The emerging role of mast cell proteases in asthma. Eur. Respir. J., 2019.1900685
[http://dx.doi.org/10.1183/13993003.00685-2019]
[210]
Piliponsky, A.M.; Acharya, M.; Shubin, N.J. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int. J. Mol. Sci., 2019, 20(12)E2851
[http://dx.doi.org/10.3390/ijms20122851] [PMID: 31212724]
[211]
Varricchi, G.; Rossi, F.W.; Galdiero, M.R.; Granata, F.; Criscuolo, G.; Spadaro, G.; de Paulis, A.; Marone, G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int. Arch. Allergy Immunol., 2019, 179(4), 247-261.
[http://dx.doi.org/10.1159/000500088] [PMID: 31137021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy