Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Mast Cells as a Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts

Author(s): Thea Magrone*, Manrico Magrone and Emilio Jirillo

Volume 20, Issue 5, 2020

Page: [670 - 686] Pages: 17

DOI: 10.2174/1871530319666191202121644

Price: $65

Abstract

Mast cells (MCs) bear many receptors that allow them to respond to a variety of exogenous and endogenous stimuli. However, MC function is dual since they can initiate pathological events or protect the host against infectious challenges.

The role of MCs in disease will be analyzed in a broad sense, describing cellular and molecular mechanisms related to their involvement in auto-inflammatory diseases, asthma, autoimmune diseases and cancer. On the other hand, their protective role in the course of bacterial, fungal and parasitic infections will also be illustrated.

As far as treatment of MC-derived diseases is concerned, allergen immunotherapy as well as other attempts to reduce MC-activation will be outlined according to the recent data. Finally, in agreement with current literature and our own data polyphenols have been demonstrated to attenuate type I allergic reactions and contact dermatitis in response to nickel. The use of polyphenols in these diseases will be discussed also in view of MC involvement.

Keywords: Allergy, asthma, auto-immunity, cancer, inflammation, polyphenols.

Graphical Abstract

[1]
Magrone, T.; Magrone, M.; Jirillo, E. Mast cells as a double edged sword in immunity: their function in health and disease. First of two parts. Endocr. Metab. Immune Disord. Drug Targets submitted,
[2]
Frossi, B.; Mion, F.; Tripodo, C.; Colombo, M.P.; Pucillo, C.E. Rheostatic Functions of Mast Cells in the Control of Innate and Adaptive Immune Responses. Trends Immunol., 2017, 38(9), 648-656.
[http://dx.doi.org/10.1016/j.it.2017.04.001] [PMID: 28462845]
[3]
Siebenhaar, F.; Redegeld, F.A.; Bischoff, S.C.; Gibbs, B.F.; Maurer, M. Mast Cells as Drivers of Disease and Therapeutic Targets. Trends Immunol., 2018, 39(2), 151-162.
[http://dx.doi.org/10.1016/j.it.2017.10.005] [PMID: 29196147]
[4]
de Koning, H.D.; van Vlijmen-Willems, I.M.; Rodijk-Olthuis, D.; van der Meer, J.W.; Zeeuwen, P.L.; Simon, A.; Schalkwijk, J. Mast-cell interleukin-1β, neutrophil interleukin-17 and epidermal antimicrobial proteins in the neutrophilic urticarial dermatosis in Schnitzler’s syndrome. Br. J. Dermatol., 2015, 173(2), 448-456.
[http://dx.doi.org/10.1111/bjd.13857] [PMID: 25904179]
[5]
Walker, M.E.; Hatfield, J.K.; Brown, M.A. New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim. Biophys. Acta, 2012, 1822(1), 57-65.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.009] [PMID: 21354470]
[6]
Calabro, A.R.; Gazarian, D.I.; Barile, F.A. Effect of metals on β-actin and total protein synthesis in cultured human intestinal epithelial cells. J. Pharmacol. Toxicol. Methods, 2011, 63(1), 47-58.
[http://dx.doi.org/10.1016/j.vascn.2010.04.012] [PMID: 20452446]
[7]
Frossi, B.; Tripodo, C.; Guarnotta, C.; Carroccio, A.; De Carli, M.; De Carli, S.; Marino, M.; Calabrò, A.; Pucillo, C.E. Mast cells are associated with the onset and progression of celiac disease. J. Allergy Clin. Immunol., 2017, 139(4), 1266-1274.e1.
[http://dx.doi.org/10.1016/j.jaci.2016.08.011] [PMID: 27619824]
[8]
Shi, G.P.; Bot, I.; Kovanen, P.T. Mast cells in human and experimental cardiometabolic diseases. Nat. Rev. Cardiol., 2015, 12(11), 643-658.
[http://dx.doi.org/10.1038/nrcardio.2015.117] [PMID: 26259935]
[9]
Marichal, T.; Tsai, M.; Galli, S.J. Mast cells: potential positive and negative roles in tumor biology. Cancer Immunol. Res., 2013, 1(5), 269-279.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0119] [PMID: 24777963]
[10]
DeBruin, E.J.; Gold, M.; Lo, B.C.; Snyder, K.; Cait, A.; Lasic, N.; Lopez, M.; McNagny, K.M.; Hughes, M.R. Mast cells in human health and disease. Methods Mol. Biol., 2015, 1220, 93-119.
[http://dx.doi.org/10.1007/978-1-4939-1568-2_7] [PMID: 25388247]
[11]
Vieira Dos Santos, R.; Magerl, M.; Martus, P.; Zuberbier, T.; Church, M.K.; Escribano, L.; Maurer, M. Topical sodium cromoglicate relieves allergen- and histamine-induced dermal pruritus. Br. J. Dermatol., 2010, 162(3), 674-676.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09516.x] [PMID: 19785618]
[12]
Gauvreau, G.M.; El-Gammal, A.I.; O’Byrne, P.M. Allergen-induced airway responses. Eur. Respir. J., 2015, 46(3), 819-831.
[http://dx.doi.org/10.1183/13993003.00536-2015] [PMID: 26206871]
[13]
Bacon, A.S.; Ahluwalia, P.; Irani, A.M.; Schwartz, L.B.; Holgate, S.T.; Church, M.K.; McGill, J.I. Tear and conjunctival changes during the allergen-induced early- and late-phase responses. J. Allergy Clin. Immunol., 2000, 106(5), 948-954.
[http://dx.doi.org/10.1067/mai.2000.110930] [PMID: 11080719]
[14]
Pickert, C.N.; Lorentz, A.; Manns, M.P.; Bischoff, S.C. Colonoscopic allergen provocation test with rBet v 1 in patients with pollen-associated food allergy. Allergy, 2012, 67(10), 1308-1315.
[http://dx.doi.org/10.1111/all.12006] [PMID: 22913618]
[15]
Gorczyza, M.; Schoepke, N.; Krause, K.; Hawro, T.; Maurer, M. Patients with chronic cold urticaria may benefit from doxycycline therapy. Br. J. Dermatol., 2017, 176(1), 259-261.
[http://dx.doi.org/10.1111/bjd.14820] [PMID: 27343477]
[16]
Tsai, M.; Grimbaldeston, M.A.; Yu, M.; Tam, S.Y.; Galli, S.J. Using mast cell knock-in mice to analyze the roles of mast cells in allergic responses in vivo. Chem. Immunol. Allergy, 2005, 87, 179-197.
[http://dx.doi.org/10.1159/000087644] [PMID: 16107772]
[17]
Siebenhaar, F.; Falcone, F.H.; Tiligada, E.; Hammel, I.; Maurer, M.; Sagi-Eisenberg, R.; Levi-Schaffer, F. The search for mast cell and basophil models--are we getting closer to pathophysiological relevance? Allergy, 2015, 70(1), 1-5.
[http://dx.doi.org/10.1111/all.12517] [PMID: 25155287]
[18]
de Vries, V.C.; Noelle, R.J. Mast cell mediators in tolerance. Curr. Opin. Immunol., 2010, 22(5), 643-648.
[http://dx.doi.org/10.1016/j.coi.2010.08.015] [PMID: 20884193]
[19]
Maurer, M.; Echtenacher, B.; Hültner, L.; Kollias, G.; Männel, D.N.; Langley, K.E.; Galli, S.J. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. J. Exp. Med., 1998, 188(12), 2343-2348.
[http://dx.doi.org/10.1084/jem.188.12.2343] [PMID: 9858520]
[20]
Starkl, P.; Marichal, T.; Gaudenzio, N.; Reber, L.L.; Sibilano, R.; Tsai, M.; Galli, S.J. IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity. J. Allergy Clin. Immunol., 2016, 137(1), 246-257.e11.
[http://dx.doi.org/10.1016/j.jaci.2015.08.005] [PMID: 26410782]
[21]
Muto, Y.; Wang, Z.; Vanderberghe, M.; Two, A.; Gallo, R.L.; Di Nardo, A. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J. Invest. Dermatol., 2014, 134(11), 2728-2736.
[http://dx.doi.org/10.1038/jid.2014.222] [PMID: 24844861]
[22]
Nakamura, Y.; Franchi, L.; Kambe, N.; Meng, G.; Strober, W.; Núñez, G. Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the nlrp3 protein. Immunity, 2012, 37(1), 85-95.
[http://dx.doi.org/10.1016/j.immuni.2012.04.013] [PMID: 22819042]
[23]
Otsuka, A.; Kubo, M.; Honda, T.; Egawa, G.; Nakajima, S.; Tanizaki, H.; Kim, B.; Matsuoka, S.; Watanabe, T.; Nakae, S.; Miyachi, Y.; Kabashima, K. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One, 2011, 6(9)e25538
[http://dx.doi.org/10.1371/journal.pone.0025538] [PMID: 21980488]
[24]
Ando, T.; Xiao, W.; Gao, P.; Namiranian, S.; Matsumoto, K.; Tomimori, Y.; Hong, H.; Yamashita, H.; Kimura, M.; Kashiwakura, J.; Hata, T.R.; Izuhara, K.; Gurish, M.F.; Roers, A.; Rafaels, N.M.; Barnes, K.C.; Jamora, C.; Kawakami, Y.; Kawakami, T. Critical role for mast cell Stat5 activity in skin inflammation. Cell Rep., 2014, 6(2), 366-376.
[http://dx.doi.org/10.1016/j.celrep.2013.12.029] [PMID: 24412367]
[25]
Kaur, D.; Hollins, F.; Woodman, L.; Yang, W.; Monk, P.; May, R.; Bradding, P.; Brightling, C.E. Mast cells express IL-13R alpha 1: IL-13 promotes human lung mast cell proliferation and Fc epsilon RI expression. Allergy, 2006, 61(9), 1047-1053.
[http://dx.doi.org/10.1111/j.1398-9995.2006.01139.x] [PMID: 16918506]
[26]
Xia, H.Z.; Du, Z.; Craig, S.; Klisch, G.; Noben-Trauth, N.; Kochan, J.P.; Huff, T.H.; Irani, A.M.; Schwartz, L.B. Effect of recombinant human IL-4 on tryptase, chymase, and Fc epsilon receptor type I expression in recombinant human stem cell factor-dependent fetal liver-derived human mast cells. J. Immunol., 1997, 159(6), 2911-2921.
[PMID: 9300715]
[27]
Yamaguchi, M.; Sayama, K.; Yano, K.; Lantz, C.S.; Noben-Trauth, N.; Ra, C.; Costa, J.J.; Galli, S.J. IgE enhances Fc epsilon receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fc epsilon receptor I expression and mediator release. J. Immunol., 1999, 162(9), 5455-5465.
[PMID: 10228025]
[28]
Bradding, P.; Feather, I.H.; Howarth, P.H.; Mueller, R.; Roberts, J.A.; Britten, K.; Bews, J.P.; Hunt, T.C.; Okayama, Y.; Heusser, C.H.; Bullok, G.R.; Church, M.K.; Holgate, S.T. Interleukin 4 is localized to and released by human mast cells. J. Exp. Med., 1992, 176(5), 1381-1386.
[http://dx.doi.org/10.1084/jem.176.5.1381] [PMID: 1402683]
[29]
Shamji, M.H.; Durham, S.R. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J. Allergy Clin. Immunol., 2017, 140(6), 1485-1498.
[http://dx.doi.org/10.1016/j.jaci.2017.10.010] [PMID: 29221580]
[30]
Creticos, P.S.; Peters, S.P.; Adkinson, N.F., Jr; Naclerio, R.M.; Hayes, E.C.; Norman, P.S.; Lichtenstein, L.M. Peptide leukotriene release after antigen challenge in patients sensitive to ragweed. N. Engl. J. Med., 1984, 310(25), 1626-1630.
[http://dx.doi.org/10.1056/NEJM198406213102502] [PMID: 6328300]
[31]
Naclerio, R.M.; Proud, D.; Togias, A.G.; Adkinson, N.F., Jr; Meyers, D.A.; Kagey-Sobotka, A.; Plaut, M.; Norman, P.S.; Lichtenstein, L.M. Inflammatory mediators in late antigen-induced rhinitis. N. Engl. J. Med., 1985, 313(2), 65-70.
[http://dx.doi.org/10.1056/NEJM198507113130201] [PMID: 2582257]
[32]
Wechsler, M.E.; Fulkerson, P.C.; Bochner, B.S.; Gauvreau, G.M.; Gleich, G.J.; Henkel, T.; Kolbeck, R.; Mathur, S.K.; Ortega, H.; Patel, J.; Prussin, C.; Renzi, P.; Rothenberg, M.E.; Roufosse, F.; Simon, D.; Simon, H.U.; Wardlaw, A.; Weller, P.F.; Klion, A.D. Novel targeted therapies for eosinophilic disorders. J. Allergy Clin. Immunol., 2012, 130(3), 563-571.
[http://dx.doi.org/10.1016/j.jaci.2012.07.027] [PMID: 22935585]
[33]
Magrone, T.; Jirillo, E. The interleukin-17/interleukin-22 innate axis in the gut as a new drug target in allergic-inflammatory and autoimmune diseases. A working hypothesis. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(2), 145-151.
[http://dx.doi.org/10.2174/1871530314666140325094929] [PMID: 24678739]
[34]
Artis, D.; Spits, H. The biology of innate lymphoid cells. Nature, 2015, 517(7534), 293-301.
[http://dx.doi.org/10.1038/nature14189] [PMID: 25592534]
[35]
McGonagle, D.; Savic, S.; McDermott, M.F. The NLR network and the immunological disease continuum of adaptive and innate immune-mediated inflammation against self. Semin. Immunopathol., 2007, 29(3), 303-313.
[http://dx.doi.org/10.1007/s00281-007-0084-1] [PMID: 17805542]
[36]
Awad, F.; Assrawi, E.; Louvrier, C.; Jumeau, C.; Georgin-Lavialle, S.; Grateau, G.; Amselem, S.; Giurgea, I.; Karabina, S.A. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol. Ther., 2018, 187, 133-149.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.011] [PMID: 29466702]
[37]
Rathinam, V.A.K.; Chan, F.K. Inflammasome, Inflammation, and Tissue Homeostasis. Trends Mol. Med., 2018, 24(3), 304-318.
[http://dx.doi.org/10.1016/j.molmed.2018.01.004] [PMID: 29433944]
[38]
Nakamura, Y.; Kambe, N.; Saito, M.; Nishikomori, R.; Kim, Y.G.; Murakami, M.; Núñez, G.; Matsue, H. Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J. Exp. Med., 2009, 206(5), 1037-1046.
[http://dx.doi.org/10.1084/jem.20082179] [PMID: 19364881]
[39]
Bonnekoh, H.; Scheffel, J.; Kambe, N.; Krause, K. The role of mast cells in autoinflammation. Immunol. Rev., 2018, 282(1), 265-275.
[http://dx.doi.org/10.1111/imr.12633] [PMID: 29431217]
[40]
Satoh, T.; Kambe, N.; Matsue, H. NLRP3 activation induces ASCdependent programmed necrotic cell death, which leads to neutrophilic inflammation Cell. Death Dis, 2013. 23, 4:e644
[41]
Reber, L.L.; Marichal, T.; Sokolove, J.; Starkl, P.; Gaudenzio, N.; Iwakura, Y.; Karasuyama, H.; Schwartz, L.B.; Robinson, W.H.; Tsai, M.; Galli, S.J. Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol., 2014, 66(10), 2881-2891.
[http://dx.doi.org/10.1002/art.38747] [PMID: 24943488]
[42]
Gurung, P.; Kanneganti, T.D. Novel roles for caspase-8 in IL-1β and inflammasome regulation. Am. J. Pathol., 2015, 185(1), 17-25.
[http://dx.doi.org/10.1016/j.ajpath.2014.08.025] [PMID: 25451151]
[43]
Afonina, I.S.; Müller, C.; Martin, S.J.; Beyaert, R. Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity, 2015, 42(6), 991-1004.
[http://dx.doi.org/10.1016/j.immuni.2015.06.003] [PMID: 26084020]
[44]
Kuemmerle-Deschner, J.B. CAPS--pathogenesis, presentation and treatment of an autoinflammatory disease. Semin. Immunopathol., 2015, 37(4), 377-385.
[http://dx.doi.org/10.1007/s00281-015-0491-7] [PMID: 25963520]
[45]
Hoffman, H.M.; Rosengren, S.; Boyle, D.L.; Cho, J.Y.; Nayar, J.; Mueller, J.L.; Anderson, J.P.; Wanderer, A.A.; Firestein, G.S. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet, 2004, 364(9447), 1779-1785.
[http://dx.doi.org/10.1016/S0140-6736(04)17401-1] [PMID: 15541451]
[46]
Nakamura, Y.; Kambe, N. Linkage of bacterial colonization of skin and the urticaria-like rash of NLRP3-mediated autoinflammatory syndromes through mast cell-derived TNF-α. J. Dermatol. Sci., 2013, 71(2), 83-88.
[http://dx.doi.org/10.1016/j.jdermsci.2013.04.009] [PMID: 23684246]
[47]
Lidar, M.; Kedem, R.; Mor, A.; Levartovsky, D.; Langevitz, P.; Livneh, A. Arthritis as the sole episodic manifestation of familial Mediterranean fever. J. Rheumatol., 2005, 32(5), 859-862.
[PMID: 15868622]
[48]
Masters, S.L.; Simon, A.; Aksentijevich, I.; Kastner, D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu. Rev. Immunol., 2009, 27, 621-668.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141627] [PMID: 19302049]
[49]
Al-Salam, S.; Conca, W. Novel protagonists in autoinflammatory arthritis of familial Mediterranean fever. Pediatrics, 2011, 128(2), e464-e470.
[http://dx.doi.org/10.1542/peds.2010-2998] [PMID: 21727109]
[50]
Nigrovic, P.A.; Lee, D.M. Synovial mast cells: role in acute and chronic arthritis. Immunol. Rev., 2007, 217, 19-37.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00506.x] [PMID: 17498049]
[51]
Russi, A.E.; Walker-Caulfield, M.E.; Guo, Y.; Lucchinetti, C.F.; Brown, M.A. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J. Autoimmun., 2016, 73, 100-110.
[http://dx.doi.org/10.1016/j.jaut.2016.06.015] [PMID: 27396526]
[52]
Russi, A.E.; Walker-Caulfield, M.E.; Brown, M.A. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin. Immunol., 2018, 189, 14-22.
[http://dx.doi.org/10.1016/j.clim.2016.04.009] [PMID: 27108197]
[53]
Coll, R.C.; Robertson, A.A.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[54]
Griffiths, C.E.; Christophers, E.; Barker, J.N.; Chalmers, R.J.; Chimenti, S.; Krueger, G.G.; Leonardi, C.; Menter, A.; Ortonne, J.P.; Fry, L. A classification of psoriasis vulgaris according to phenotype. Br. J. Dermatol., 2007, 156(2), 258-262.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07675.x] [PMID: 17223864]
[55]
Christophers, E.; Metzler, G.; Röcken, M. Bimodal immune activation in psoriasis. Br. J. Dermatol., 2014, 170(1), 59-65.
[http://dx.doi.org/10.1111/bjd.12631] [PMID: 24117368]
[56]
Conti, P.; Gallenga, C.E.; Ronconi, G.; Caraffa, A.; Kritas, S.K. Activation of mast cells mediates inflammatory response in psoriasis: Potential new therapeutic approach with IL-37. Dermatol. Ther. (Heidelb.), 2019, 32(4)e12943
[http://dx.doi.org/10.1111/dth.12943] [PMID: 31012218]
[57]
Biedermann, T.; Kneilling, M.; Mailhammer, R.; Maier, K.; Sander, C.A.; Kollias, G.; Kunkel, S.L.; Hültner, L.; Röcken, M. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med., 2000, 192(10), 1441-1452.
[http://dx.doi.org/10.1084/jem.192.10.1441] [PMID: 11085746]
[58]
Weber, A.; Knop, J.; Maurer, M. Pattern analysis of human cutaneous mast cell populations by total body surface mapping. Br. J. Dermatol., 2003, 148(2), 224-228.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05090.x] [PMID: 12588371]
[59]
Watanabe, H.; Gaide, O.; Pétrilli, V.; Martinon, F.; Contassot, E.; Roques, S.; Kummer, J.A.; Tschopp, J.; French, L.E. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J. Invest. Dermatol., 2007, 127(8), 1956-1963.
[http://dx.doi.org/10.1038/sj.jid.5700819] [PMID: 17429439]
[60]
Li, X.; Zhong, F. Nickel induces interleukin-1β secretion via the NLRP3-ASC-caspase-1 pathway. Inflammation, 2014, 37(2), 457-466.
[http://dx.doi.org/10.1007/s10753-013-9759-z] [PMID: 24158569]
[61]
Dudeck, A.; Dudeck, J.; Scholten, J.; Petzold, A.; Surianarayanan, S.; Köhler, A.; Peschke, K.; Vöhringer, D.; Waskow, C.; Krieg, T.; Müller, W.; Waisman, A.; Hartmann, K.; Gunzer, M.; Roers, A. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity, 2011, 34(6), 973-984.
[http://dx.doi.org/10.1016/j.immuni.2011.03.028] [PMID: 21703544]
[62]
Brightling, C.E.; Bradding, P.; Symon, F.A.; Holgate, S.T.; Wardlaw, A.J.; Pavord, I.D. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med., 2002, 346(22), 1699-1705.
[http://dx.doi.org/10.1056/NEJMoa012705] [PMID: 12037149]
[63]
Al-Muhsen, S.Z.; Shablovsky, G.; Olivenstein, R.; Mazer, B.; Hamid, Q. The expression of stem cell factor and c-kit receptor in human asthmatic airways. Clin. Exp. Allergy, 2004, 34(6), 911-916.
[http://dx.doi.org/10.1111/j.1365-2222.2004.01975.x] [PMID: 15196279]
[64]
Ono, E.; Taniguchi, M.; Higashi, N.; Mita, H.; Kajiwara, K.; Yamaguchi, H.; Tatsuno, S.; Fukutomi, Y.; Tanimoto, H.; Sekiya, K.; Oshikata, C.; Tsuburai, T.; Tsurikisawa, N.; Otomo, M.; Maeda, Y.; Hasegawa, M.; Miyazaki, E.; Kumamoto, T.; Akiyama, K. CD203c expression on human basophils is associated with asthma exacerbation. J. Allergy Clin. Immunol., 2010, 125(2), 483-489.e3.
[http://dx.doi.org/10.1016/j.jaci.2009.10.074] [PMID: 20159259]
[65]
Gordon, E.D.; Simpson, L.J.; Rios, C.L.; Ringel, L.; Lachowicz-Scroggins, M.E.; Peters, M.C.; Wesolowska-Andersen, A.; Gonzalez, J.R.; MacLeod, H.J.; Christian, L.S.; Yuan, S.; Barry, L.; Woodruff, P.G.; Ansel, K.M.; Nocka, K.; Seibold, M.A.; Fahy, J.V. Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc. Natl. Acad. Sci. USA, 2016, 113(31), 8765-8770.
[http://dx.doi.org/10.1073/pnas.1601914113] [PMID: 27432971]
[66]
Marone, G.; Galli, S.J.; Kitamura, Y. Probing the roles of mast cells and basophils in natural and acquired immunity, physiology and disease. Trends Immunol., 2002, 23(9), 425-427.
[http://dx.doi.org/10.1016/S1471-4906(02)02274-3] [PMID: 12200056]
[67]
Thiriou, D.; Morianos, I.; Xanthou, G.; Samitas, K. Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int. Immunopharmacol., 2017, 48, 43-54.
[http://dx.doi.org/10.1016/j.intimp.2017.04.027] [PMID: 28463786]
[68]
Carter, R.J.; Bradding, P. The role of mast cells in the structural alterations of the airways as a potential mechanism in the pathogenesis of severe asthma. Curr. Pharm. Des., 2011, 17(7), 685-698.
[http://dx.doi.org/10.2174/138161211795428975] [PMID: 21410430]
[69]
Detoraki, A.; Granata, F.; Staibano, S.; Rossi, F.W.; Marone, G.; Genovese, A. Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy, 2010, 65(8), 946-958.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02372.x] [PMID: 20415716]
[70]
Salter, B.M.; Oliveria, J.P.; Nusca, G.; Smith, S.G.; Watson, R.M.; Comeau, M.; Sehmi, R.; Gauvreau, G.M. Thymic stromal lymphopoietin activation of basophils in patients with allergic asthma is IL-3 dependent. J. Allergy Clin. Immunol., 2015, 136(6), 1636-1644.
[http://dx.doi.org/10.1016/j.jaci.2015.03.039] [PMID: 25962901]
[71]
Schroeder, J.T.; Bieneman, A.P.; Chichester, K.L.; Breslin, L.; Xiao, H.; Liu, M.C. Pulmonary allergic responses augment interleukin-13 secretion by circulating basophils yet suppress interferon-alpha from plasmacytoid dendritic cells. Clin. Exp. Allergy, 2010, 40(5), 745-754.
[PMID: 20184608]
[72]
Suzuki, Y.; Wakahara, K.; Nishio, T.; Ito, S.; Hasegawa, Y. Airway basophils are increased and activated in eosinophilic asthma. Allergy, 2017, 72(10), 1532-1539.
[http://dx.doi.org/10.1111/all.13197] [PMID: 28474352]
[73]
Brooks, C.R.; van Dalen, C.J.; Hermans, I.F.; Gibson, P.G.; Simpson, J.L.; Douwes, J. Sputum basophils are increased in eosinophilic asthma compared with non-eosinophilic asthma phenotypes. Allergy, 2017, 72(10), 1583-1586.
[http://dx.doi.org/10.1111/all.13185] [PMID: 28426171]
[74]
Pouchlev, A.; Youroukova, Z.; Kiprov, D. A study of changes in the number of mast cells in the human arterial wall during the stages of development of atherosclerosis. J. Atheroscler. Res., 1966, 6(4), 342-351.
[http://dx.doi.org/10.1016/S0368-1319(66)80045-5] [PMID: 5975281]
[75]
Kaartinen, M.; Penttilä, A.; Kovanen, P.T. Mast cells of two types differing in neutral protease composition in the human aortic intima. Demonstration of tryptase- and tryptase/chymase-containing mast cells in normal intimas, fatty streaks, and the shoulder region of atheromas. Arterioscler. Thromb., 1994, 14(6), 966-972.
[http://dx.doi.org/10.1161/01.ATV.14.6.966] [PMID: 7515278]
[76]
Kovanen, P.T. Role of mast cells in atherosclerosis. Chem. Immunol., 1995, 62, 132-170.
[PMID: 7546279]
[77]
Kaartinen, M.; Penttilä, A.; Kovanen, P.T. Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-alpha. Circulation, 1996, 94(11), 2787-2792.
[http://dx.doi.org/10.1161/01.CIR.94.11.2787] [PMID: 8941103]
[78]
Ngkelo, A.; Richart, A.; Kirk, J.A.; Bonnin, P.; Vilar, J.; Lemitre, M.; Marck, P.; Branchereau, M.; Le Gall, S.; Renault, N.; Guerin, C.; Ranek, M.J.; Kervadec, A.; Danelli, L.; Gautier, G.; Blank, U.; Launay, P.; Camerer, E.; Bruneval, P.; Menasche, P.; Heymes, C.; Luche, E.; Casteilla, L.; Cousin, B.; Rodewald, H.R.; Kass, D.A.; Silvestre, J.S. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J. Exp. Med., 2016, 213(7), 1353-1374.
[http://dx.doi.org/10.1084/jem.20160081] [PMID: 27353089]
[79]
Higuchi, H.; Hara, M.; Yamamoto, K.; Miyamoto, T.; Kinoshita, M.; Yamada, T.; Uchiyama, K.; Matsumori, A. Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation, 2008, 118(4), 363-372.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.741595] [PMID: 18606918]
[80]
Kong, P.; Christia, P.; Frangogiannis, N.G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci., 2014, 71(4), 549-574.
[http://dx.doi.org/10.1007/s00018-013-1349-6] [PMID: 23649149]
[81]
Vitale, E.; Jirillo, E.; Magrone, T. Correlations between the Youth Healthy Eating Index, body mass index and the salivary nitric oxide concentration in overweight/obese children. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(2), 93-101.
[http://dx.doi.org/10.2174/1871530314666140307095630] [PMID: 24606838]
[82]
Magrone, T.; Jirillo, E. Childhood obesity: immune response and nutritional approaches. Front. Immunol., 2015, 6, 76.
[http://dx.doi.org/10.3389/fimmu.2015.00076] [PMID: 25759691]
[83]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune profile of obese people and in vitro effects of red grape polyphenols on peripheral blood mononuclear cells. Oxid. Med. Cell. Longev., 2017, 20179210862
[PMID: 28243360]
[84]
Sayed, B.A.; Christy, A.; Quirion, M.R.; Brown, M.A. The master switch: the role of mast cells in autoimmunity and tolerance. Annu. Rev. Immunol., 2008, 26, 705-739.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090320] [PMID: 18370925]
[85]
Galli, S.J.; Kalesnikoff, J.; Grimbaldeston, M.A.; Piliponsky, A.M.; Williams, C.M.; Tsai, M. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol., 2005, 23, 749-786.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141025] [PMID: 15771585]
[86]
Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet, 2016, 388(10055), 2023-2038.
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[87]
Rivellese, F.; Rossi, F.W.; Galdiero, M.R.; Pitzalis, C.; de Paulis, A. Mast Cells in Early Rheumatoid Arthritis. Int. J. Mol. Sci., 2019, 20(8)E2040
[http://dx.doi.org/10.3390/ijms20082040] [PMID: 31027208]
[88]
de Paulis, A.; Marinò, I.; Ciccarelli, A.; de Crescenzo, G.; Concardi, M.; Verga, L.; Arbustini, E.; Marone, G. Human synovial mast cells. I. Ultrastructural in situ and in vitro immunologic characterization. Arthritis Rheum., 1996, 39(7), 1222-1233.
[http://dx.doi.org/10.1002/art.1780390723] [PMID: 8670335]
[89]
Noordenbos, T.; Blijdorp, I.; Chen, S.; Stap, J.; Mul, E.; Cañete, J.D.; Lubberts, E.; Yeremenko, N.; Baeten, D. Human mast cells capture, store, and release bioactive, exogenous IL-17A. J. Leukoc. Biol., 2016, 100(3), 453-462.
[http://dx.doi.org/10.1189/jlb.3HI1215-542R] [PMID: 27034403]
[90]
van der Velden, D.; Lagraauw, H.M.; Wezel, A.; Launay, P.; Kuiper, J.; Huizinga, T.W.; Toes, R.E.; Bot, I.; Stoop, J.N. Mast cell depletion in the preclinical phase of collagen-induced arthritis reduces clinical outcome by lowering the inflammatory cytokine profile. Arthritis Res. Ther., 2016, 18(1), 138.
[http://dx.doi.org/10.1186/s13075-016-1036-8] [PMID: 27296719]
[91]
Rivellese, F.; Nerviani, A.; Rossi, F.W.; Marone, G.; Matucci-Cerinic, M.; de Paulis, A.; Pitzalis, C. Mast cells in rheumatoid arthritis: friends or foes? Autoimmun. Rev., 2017, 16(6), 557-563.
[http://dx.doi.org/10.1016/j.autrev.2017.04.001] [PMID: 28411167]
[92]
Hiromura, K.; Kurosawa, M.; Yano, S.; Naruse, T. Tubulointerstitial mast cell infiltration in glomerulonephritis. Am. J. Kidney Dis., 1998, 32(4), 593-599.
[http://dx.doi.org/10.1016/S0272-6386(98)70022-8] [PMID: 9774120]
[93]
Lisnevskaia, L.; Murphy, G.; Isenberg, D. Systemic lupus erythematosus. Lancet, 2014, 384(9957), 1878-1888.
[http://dx.doi.org/10.1016/S0140-6736(14)60128-8] [PMID: 24881804]
[94]
Lin, L.; Gerth, A.J.; Peng, S.L. Susceptibility of mast cell-deficient W/Wv mice to pristane-induced experimental lupus nephritis. Immunol. Lett., 2004, 91(2-3), 93-97.
[http://dx.doi.org/10.1016/j.imlet.2003.11.014] [PMID: 15019275]
[95]
Dema, B.; Charles, N.; Pellefigues, C.; Ricks, T.K.; Suzuki, R.; Jiang, C.; Scheffel, J.; Hasni, S.; Hoffman, V.; Jablonski, M.; Sacré, K.; Gobert, D.; Papo, T.; Daugas, E.; Crampton, S.; Bolland, S.; Rivera, J. Immunoglobulin E plays an immunoregulatory role in lupus. J. Exp. Med., 2014, 211(11), 2159-2168.
[http://dx.doi.org/10.1084/jem.20140066] [PMID: 25267791]
[96]
Henault, J.; Riggs, J.M.; Karnell, J.L.; Liarski, V.M.; Li, J.; Shirinian, L.; Xu, L.; Casey, K.A.; Smith, M.A.; Khatry, D.B.; Izhak, L.; Clarke, L.; Herbst, R.; Ettinger, R.; Petri, M.; Clark, M.R.; Mustelin, T.; Kolbeck, R.; Sanjuan, M.A. Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat. Immunol., 2016, 17(2), 196-203.
[http://dx.doi.org/10.1038/ni.3326] [PMID: 26692173]
[97]
Dema, B.; Lamri, Y.; Pellefigues, C.; Pacreau, E.; Saidoune, F.; Bidault, C.; Karasuyama, H.; Sacré, K.; Daugas, E.; Charles, N. Basophils contribute to pristane-induced Lupus-like nephritis model. Sci. Rep., 2017, 7(1), 7969.
[http://dx.doi.org/10.1038/s41598-017-08516-7] [PMID: 28801578]
[98]
Dema, B.; Pellefigues, C.; Hasni, S.; Gault, N.; Jiang, C.; Ricks, T.K.; Bonelli, M.M.; Scheffel, J.; Sacré, K.; Jablonski, M.; Gobert, D.; Papo, T.; Daugas, E.; Illei, G.; Charles, N.; Rivera, J. Autoreactive IgE is prevalent in systemic lupus erythematosus and is associated with increased disease activity and nephritis. PLoS One, 2014, 9(2)e90424
[http://dx.doi.org/10.1371/journal.pone.0090424] [PMID: 24587356]
[99]
Johnson, C.; Huynh, V.; Hargrove, L.; Kennedy, L.; Graf-Eaton, A.; Owens, J.; Trzeciakowski, J.P.; Hodges, K.; DeMorrow, S.; Han, Y.; Wong, L.; Alpini, G.; Francis, H. Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor-Dependent Signaling. Am. J. Pathol., 2016, 186(1), 123-133.
[http://dx.doi.org/10.1016/j.ajpath.2015.09.016] [PMID: 26597881]
[100]
Englund, A.; Molin, D.; Enblad, G.; Karlén, J.; Glimelius, I.; Ljungman, G.; Amini, R.M. The role of tumour-infiltrating eosinophils, mast cells and macrophages in Classical and Nodular Lymphocyte Predominant Hodgkin Lymphoma in children. Eur. J. Haematol., 2016, 97(5), 430-438.
[http://dx.doi.org/10.1111/ejh.12747] [PMID: 26872637]
[101]
Huang, B.; Lei, Z.; Zhang, G.M.; Li, D.; Song, C.; Li, B.; Liu, Y.; Yuan, Y.; Unkeless, J.; Xiong, H.; Feng, Z.H. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood, 2008, 112(4), 1269-1279.
[http://dx.doi.org/10.1182/blood-2008-03-147033] [PMID: 18524989]
[102]
Melillo, R.M.; Guarino, V.; Avilla, E.; Galdiero, M.R.; Liotti, F.; Prevete, N.; Rossi, F.W.; Basolo, F.; Ugolini, C.; de Paulis, A.; Santoro, M.; Marone, G. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 2010, 29(47), 6203-6215.
[http://dx.doi.org/10.1038/onc.2010.348] [PMID: 20729915]
[103]
Komi, D.E.A.; Redegeld, F.A. Role of Mast Cells in Shaping the Tumor Microenvironment. Clin. Rev. Allergy Immunol., 2019. Epub ahead of print
[http://dx.doi.org/10.1007/s12016-019-08753-w] [PMID: 31256327]
[104]
Yano, H.; Kinuta, M.; Tateishi, H.; Nakano, Y.; Matsui, S.; Monden, T.; Okamura, J.; Sakai, M.; Okamoto, S. Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer, 1999, 2(1), 26-32.
[http://dx.doi.org/10.1007/s101200050017] [PMID: 11957067]
[105]
Ma, Y.; Hwang, R.F.; Logsdon, C.D.; Ullrich, S.E. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res., 2013, 73(13), 3927-3937.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4479] [PMID: 23633481]
[106]
Molin, D.; Edström, A.; Glimelius, I.; Glimelius, B.; Nilsson, G.; Sundström, C.; Enblad, G. Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br. J. Haematol., 2002, 119(1), 122-124.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03768.x] [PMID: 12358914]
[107]
Rabenhorst, A.; Schlaak, M.; Heukamp, L.C.; Förster, A.; Theurich, S.; von Bergwelt-Baildon, M.; Büttner, R.; Kurschat, P.; Mauch, C.; Roers, A.; Hartmann, K. Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood, 2012, 120(10), 2042-2054.
[http://dx.doi.org/10.1182/blood-2012-03-415638] [PMID: 22837530]
[108]
Nakayama, T.; Yao, L.; Tosato, G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J. Clin. Invest., 2004, 114(9), 1317-1325.
[http://dx.doi.org/10.1172/JCI22089] [PMID: 15520864]
[109]
Dabiri, S.; Huntsman, D.; Makretsov, N.; Cheang, M.; Gilks, B.; Bajdik, C.; Gelmon, K.; Chia, S.; Hayes, M. The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod. Pathol., 2004, 17(6), 690-695.
[http://dx.doi.org/10.1038/modpathol.3800094] [PMID: 15044916]
[110]
Welsh, T.J.; Green, R.H.; Richardson, D.; Waller, D.A.; O’Byrne, K.J.; Bradding, P. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J. Clin. Oncol., 2005, 23(35), 8959-8967.
[http://dx.doi.org/10.1200/JCO.2005.01.4910] [PMID: 16219934]
[111]
Johansson, A.; Rudolfsson, S.; Hammarsten, P.; Halin, S.; Pietras, K.; Jones, J.; Stattin, P.; Egevad, L.; Granfors, T.; Wikström, P.; Bergh, A. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am. J. Pathol., 2010, 177(2), 1031-1041.
[http://dx.doi.org/10.2353/ajpath.2010.100070] [PMID: 20616342]
[112]
Folkman, J.; Shing, Y. Angiogenesis. J. Biol. Chem., 1992, 267(16), 10931-10934.
[PMID: 1375931]
[113]
Grützkau, A.; Krüger-Krasagakes, S.; Baumeister, H.; Schwarz, C.; Kögel, H.; Welker, P.; Lippert, U.; Henz, B.M.; Möller, A. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol. Biol. Cell, 1998, 9(4), 875-884.
[http://dx.doi.org/10.1091/mbc.9.4.875] [PMID: 9529385]
[114]
Baram, D.; Vaday, G.G.; Salamon, P.; Drucker, I.; Hershkoviz, R.; Mekori, Y.A. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J. Immunol., 2001, 167(7), 4008-4016.
[http://dx.doi.org/10.4049/jimmunol.167.7.4008] [PMID: 11564820]
[115]
Coussens, L.M.; Raymond, W.W.; Bergers, G.; Laig-Webster, M.; Behrendtsen, O.; Werb, Z.; Caughey, G.H.; Hanahan, D. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev., 1999, 13(11), 1382-1397.
[http://dx.doi.org/10.1101/gad.13.11.1382] [PMID: 10364156]
[116]
Beil, W.J.; Weller, P.F.; Tzizik, D.M.; Galli, S.J.; Dvorak, A.M. Ultrastructural immunogold localization of tumor necrosis factor-alpha to the matrix compartment of eosinophil secondary granules in patients with idiopathic hypereosinophilic syndrome. J. Histochem. Cytochem., 1993, 41(11), 1611-1615.
[http://dx.doi.org/10.1177/41.11.8409368] [PMID: 8409368]
[117]
Nissim Ben Efraim, A.H.; Levi-Schaffer, F. Roles of eosinophils in the modulation of angiogenesis. Chem. Immunol. Allergy, 2014, 99, 138-154.
[http://dx.doi.org/10.1159/000353251] [PMID: 24217607]
[118]
Metcalfe, D.D. Classification and diagnosis of mastocytosis: current status. J. Invest. Dermatol., 1991, 96(3)(Suppl.), 2S-4S.
[http://dx.doi.org/10.1111/1523-1747.ep12468882] [PMID: 2002248]
[119]
Akin, C.; Metcalfe, D.D. Systemic mastocytosis. Annu. Rev. Med., 2004, 55, 419-432.
[http://dx.doi.org/10.1146/annurev.med.55.091902.103822] [PMID: 14746529]
[120]
Escribano, L.; Akin, C.; Castells, M.; Orfao, A.; Metcalfe, D.D. Mastocytosis: current concepts in diagnosis and treatment. Ann. Hematol., 2002, 81(12), 677-690.
[http://dx.doi.org/10.1007/s00277-002-0575-z] [PMID: 12483363]
[121]
Gülen, T.; Hägglund, H.; Dahlén, B.; Nilsson, G. High prevalence of anaphylaxis in patients with systemic mastocytosis - a single-centre experience. Clin. Exp. Allergy, 2014, 44(1), 121-129.
[http://dx.doi.org/10.1111/cea.12225] [PMID: 24164252]
[122]
Valent, P. Risk factors and management of severe life-threatening anaphylaxis in patients with clonal mast cell disorders. Clin. Exp. Allergy, 2014, 44(7), 914-920.
[http://dx.doi.org/10.1111/cea.12318] [PMID: 24702655]
[123]
Valent, P.; Akin, C.; Gleixner, K.V.; Sperr, W.R.; Reiter, A.; Arock, M.; Triggiani, M. Multidisciplinary Challenges in Mastocytosis and How to Address with Personalized Medicine Approaches. Int. J. Mol. Sci., 2019, 20(12)E2976
[http://dx.doi.org/10.3390/ijms20122976] [PMID: 31216696]
[124]
Piliponsky, A.M.; Acharya, M.; Shubin, N.J. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int. J. Mol. Sci., 2019, 20(12)E2851
[http://dx.doi.org/10.3390/ijms20122851] [PMID: 31212724]
[125]
Orinska, Z.; Maurer, M.; Mirghomizadeh, F.; Bulanova, E.; Metz, M.; Nashkevich, N.; Schiemann, F.; Schulmistrat, J.; Budagian, V.; Giron-Michel, J.; Brandt, E.; Paus, R.; Bulfone-Paus, S. IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities. Nat. Med., 2007, 13(8), 927-934.
[http://dx.doi.org/10.1038/nm1615] [PMID: 17643110]
[126]
Magrone, T.; Russo, M.A.; Jirillo, E. Antimicrobial Peptides: Phylogenic Sources and Biological Activities. First of Two Parts. Curr. Pharm. Des., 2018, 24(10), 1043-1053.
[http://dx.doi.org/10.2174/1381612824666180403123736] [PMID: 29611476]
[127]
Magrone, T.; Russo, M.A.; Jirillo, E. Antimicrobial peptides in human disease: Therapeutic approaches. Second of Two Parts. Curr. Pharm. Des., 2018, 24(10), 1148-1156.
[http://dx.doi.org/10.2174/1381612824666180327155230] [PMID: 29589541]
[128]
Di Nardo, A.; Yamasaki, K.; Dorschner, R.A.; Lai, Y.; Gallo, R.L. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J. Immunol., 2008, 180(11), 7565-7573.
[http://dx.doi.org/10.4049/jimmunol.180.11.7565] [PMID: 18490758]
[129]
Sutherland, R.E.; Olsen, J.S.; McKinstry, A.; Villalta, S.A.; Wolters, P.J. Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing. J. Immunol., 2008, 181(8), 5598-5605.
[http://dx.doi.org/10.4049/jimmunol.181.8.5598] [PMID: 18832718]
[130]
Piliponsky, A.M.; Romani, L. The contribution of mast cells to bacterial and fungal infection immunity. Immunol. Rev., 2018, 282(1), 188-197.
[http://dx.doi.org/10.1111/imr.12623] [PMID: 29431211]
[131]
Choi, H.W.; Bowen, S.E.; Miao, Y.; Chan, C.Y.; Miao, E.A.; Abrink, M.; Moeser, A.J.; Abraham, S.N. Loss of Bladder Epithelium Induced by Cytolytic Mast Cell Granules. Immunity, 2016, 45(6), 1258-1269.
[http://dx.doi.org/10.1016/j.immuni.2016.11.003] [PMID: 27939674]
[132]
Piliponsky, A.M.; Chen, C.C.; Grimbaldeston, M.A.; Burns-Guydish, S.M.; Hardy, J.; Kalesnikoff, J.; Contag, C.H.; Tsai, M.; Galli, S.J. Mast cell-derived TNF can exacerbate mortality during severe bacterial infections in C57BL/6-KitW-sh/W-sh mice. Am. J. Pathol., 2010, 176(2), 926-938.
[http://dx.doi.org/10.2353/ajpath.2010.090342] [PMID: 20035049]
[133]
Chan, C.Y.; St John, A.L.; Abraham, S.N. Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity, 2013, 38(2), 349-359.
[http://dx.doi.org/10.1016/j.immuni.2012.10.019] [PMID: 23415912]
[134]
Pinke, K.H.; Lima, H.G.; Cunha, F.Q.; Lara, V.S. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1. Immunobiology, 2016, 221(2), 220-227.
[http://dx.doi.org/10.1016/j.imbio.2015.09.004] [PMID: 26421959]
[135]
Trevisan, E.; Vita, F.; Medic, N.; Soranzo, M.R.; Zabucchi, G.; Borelli, V. Mast cells kill Candida albicans in the extracellular environment but spare ingested fungi from death. Inflammation, 2014, 37(6), 2174-2189.
[http://dx.doi.org/10.1007/s10753-014-9951-9] [PMID: 24950781]
[136]
Moretti, S.; Bellocchio, S.; Bonifazi, P.; Bozza, S.; Zelante, T.; Bistoni, F.; Romani, L. The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol., 2008, 1(2), 156-168.
[http://dx.doi.org/10.1038/mi.2007.13] [PMID: 19079173]
[137]
Lopes, J.P.; Stylianou, M.; Nilsson, G.; Urban, C.F. Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells. Sci. Rep., 2015, 5, 12287.
[http://dx.doi.org/10.1038/srep12287] [PMID: 26192381]
[138]
Immune Response to Parasitic Infections. Immunity to Helminths and Novel Therapeutical Approaches. In: Jirillo, E. Bentham Science Publisher; , 2014. 2, EISBN: 978-1-60805-985-0
[139]
Magrone, T.; Jirillo, E.; Miragliotta, G. The impact of helminths on the human microbiota: therapeutic correction of disturbed gut microbial immunity. Jirillo, E.; Magrone, T.; Miragliotta, G. Immune Response to Parasitic Infections. Immunity to Helminths and Novel Therapeutic Approaches. Eds. Bentham Science Publisher, 2014, 2, 235-254.
[http://dx.doi.org/10.2174/9781608059850114020013]
[140]
Magrone, T.; Ianniello, G.; Buquicchio, R.; Galantino, V.; Jirillo, E.; Ventura, M.T. Cytokine Profile in Patients Infected with Anisakis simplex in Endemic Areas: Dietary Intervention with Polyphenols: A Working Hypothesis. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 74-79.
[http://dx.doi.org/10.2174/1871530316666160506150349] [PMID: 27150602]
[141]
Buquicchio, R.; Ventura, M.T.; Traetta, P.L.; Nenna, S.; Iadarola, G.; Magrone, T. A Multicenter Study of IgE Sensitization to Anisakis simplex and Diet Recommendations. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(2), 170-174.
[http://dx.doi.org/10.2174/1871530318666171129211350] [PMID: 29189183]
[142]
Lantz, C.S.; Boesiger, J.; Song, C.H.; Mach, N.; Kobayashi, T.; Mulligan, R.C.; Nawa, Y.; Dranoff, G.; Galli, S.J. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature, 1998, 392(6671), 90-93.
[http://dx.doi.org/10.1038/32190] [PMID: 9510253]
[143]
Sasaki, Y.; Yoshimoto, T.; Maruyama, H.; Tegoshi, T.; Ohta, N.; Arizono, N.; Nakanishi, K. IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity. J. Exp. Med., 2005, 202(5), 607-616.
[http://dx.doi.org/10.1084/jem.20042202] [PMID: 16129701]
[144]
Khan, A.I.; Horii, Y.; Nawa, Y. Defective mucosal immunity and normal systemic immunity of Mongolian gerbils, Meriones unguiculatus, to reinfection with Strongyloides venezuelensis. Parasite Immunol., 1993, 15(10), 565-571.
[http://dx.doi.org/10.1111/pim.1993.15.10.565] [PMID: 7877833]
[145]
Hepworth, M.R.; Daniłowicz-Luebert, E.; Rausch, S.; Metz, M.; Klotz, C.; Maurer, M.; Hartmann, S. Mast cells orchestrate type 2 immunity to helminths through regulation of tissue-derived cytokines. Proc. Natl. Acad. Sci. USA, 2012, 109(17), 6644-6649.
[http://dx.doi.org/10.1073/pnas.1112268109] [PMID: 22493240]
[146]
Ha, T.Y.; Reed, N.D.; Crowle, P.K. Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice. Infect. Immun., 1983, 41(1), 445-447.
[PMID: 6345400]
[147]
Mukai, K.; Karasuyama, H.; Kabashima, K.; Kubo, M.; Galli, S.J. Differences in the importance of mast cells, basophils, IgE, and IgG versus that of CD4+ T cells and ILC2 cells in primary and secondary immunity to Strongyloides venezuelensis. Infect. Immun., 2017, 85(5), e00053-e17.
[http://dx.doi.org/10.1128/IAI.00053-17] [PMID: 28264908]
[148]
Durham, S.R.; Walker, S.M.; Varga, E.M.; Jacobson, M.R.; O’Brien, F.; Noble, W.; Till, S.J.; Hamid, Q.A.; Nouri-Aria, K.T. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med., 1999, 341(7), 468-475.
[http://dx.doi.org/10.1056/NEJM199908123410702] [PMID: 10441602]
[149]
Canonica, G.W.; Cox, L.; Pawankar, R.; Baena-Cagnani, C.E.; Blaiss, M.; Bonini, S.; Bousquet, J.; Calderón, M.; Compalati, E.; Durham, S.R.; van Wijk, R.G.; Larenas-Linnemann, D.; Nelson, H.; Passalacqua, G.; Pfaar, O.; Rosário, N.; Ryan, D.; Rosenwasser, L.; Schmid-Grendelmeier, P.; Senna, G.; Valovirta, E.; Van Bever, H.; Vichyanond, P.; Wahn, U.; Yusuf, O. Sublingual immunotherapy: World Allergy Organization position paper 2013 update. World Allergy Organ. J., 2014, 7(1), 6.
[http://dx.doi.org/10.1186/1939-4551-7-6] [PMID: 24679069]
[150]
Francis, J.N.; James, L.K.; Paraskevopoulos, G.; Wong, C.; Calderon, M.A.; Durham, S.R.; Till, S.J. Grass pollen immunotherapy: IL-10 induction and suppression of late responses precedes IgG4 inhibitory antibody activity. J. Allergy Clin. Immunol., 2008, 121(5), 1120-1125.e2.
[http://dx.doi.org/10.1016/j.jaci.2008.01.072] [PMID: 18374405]
[151]
Tulic, M.K.; Fiset, P.O.; Christodoulopoulos, P.; Vaillancourt, P.; Desrosiers, M.; Lavigne, F.; Eiden, J.; Hamid, Q. Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J. Allergy Clin. Immunol., 2004, 113(2), 235-241.
[http://dx.doi.org/10.1016/j.jaci.2003.11.001] [PMID: 14767435]
[152]
Scadding, G.W.; Eifan, A.O.; Lao-Araya, M.; Penagos, M.; Poon, S.Y.; Steveling, E.; Yan, R.; Switzer, A.; Phippard, D.; Togias, A.; Shamji, M.H.; Durham, S.R. Effect of grass pollen immunotherapy on clinical and local immune response to nasal allergen challenge. Allergy, 2015, 70(6), 689-696.
[http://dx.doi.org/10.1111/all.12608] [PMID: 25773990]
[153]
O’Sullivan, J.A.; Bochner, B.S. Eosinophils and eosinophil-associated diseases: An update. J. Allergy Clin. Immunol., 2018, 141(2), 505-517.
[http://dx.doi.org/10.1016/j.jaci.2017.09.022] [PMID: 29045815]
[154]
Nouri-Aria, K.T.; Wachholz, P.A.; Francis, J.N.; Jacobson, M.R.; Walker, S.M.; Wilcock, L.K.; Staple, S.Q.; Aalberse, R.C.; Till, S.J.; Durham, S.R. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J. Immunol., 2004, 172(5), 3252-3259.
[http://dx.doi.org/10.4049/jimmunol.172.5.3252] [PMID: 14978133]
[155]
Pilette, C.; Nouri-Aria, K.T.; Jacobson, M.R.; Wilcock, L.K.; Detry, B.; Walker, S.M.; Francis, J.N.; Durham, S.R. Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression. J. Immunol., 2007, 178(7), 4658-4666.
[http://dx.doi.org/10.4049/jimmunol.178.7.4658] [PMID: 17372025]
[156]
Guerra, F.; Carracedo, J.; Solana-Lara, R.; Sánchez-Guijo, P.; Ramírez, R. TH2 lymphocytes from atopic patients treated with immunotherapy undergo rapid apoptosis after culture with specific allergens. J. Allergy Clin. Immunol., 2001, 107(4), 647-653.
[http://dx.doi.org/10.1067/mai.2001.112263] [PMID: 11295653]
[157]
Hamid, Q.A.; Schotman, E.; Jacobson, M.R.; Walker, S.M.; Durham, S.R. Increases in IL-12 messenger RNA+ cells accompany inhibition of allergen-induced late skin responses after successful grass pollen immunotherapy. J. Allergy Clin. Immunol., 1997, 99(2), 254-260.
[http://dx.doi.org/10.1016/S0091-6749(97)70106-4] [PMID: 9042055]
[158]
Zimmer, A.; Bouley, J.; Le Mignon, M.; Pliquet, E.; Horiot, S.; Turfkruyer, M.; Baron-Bodo, V.; Horak, F.; Nony, E.; Louise, A.; Moussu, H.; Mascarell, L.; Moingeon, P. A regulatory dendritic cell signature correlates with the clinical efficacy of allergen-specific sublingual immunotherapy. J. Allergy Clin. Immunol., 2012, 129(4), 1020-1030.
[http://dx.doi.org/10.1016/j.jaci.2012.02.014] [PMID: 22464673]
[159]
Normansell, R.; Walker, S.; Milan, S.J.; Walters, E.H.; Nair, P. Omalizumab for asthma in adults and children. Cochrane Database Syst. Rev., 2014, (1)CD003559
[http://dx.doi.org/10.1002/14651858.CD003559.pub4] [PMID: 24414989]
[160]
Kaplan, A.; Ledford, D.; Ashby, M.; Canvin, J.; Zazzali, J.L.; Conner, E.; Veith, J.; Kamath, N.; Staubach, P.; Jakob, T.; Stirling, R.G.; Kuna, P.; Berger, W.; Maurer, M.; Rosén, K. Omalizumab in patients with symptomatic chronic idiopathic/spontaneous urticaria despite standard combination therapy. J. Allergy Clin. Immunol., 2013, 132(1), 101-109.
[http://dx.doi.org/10.1016/j.jaci.2013.05.013] [PMID: 23810097]
[161]
Riccio, A.M.; Dal Negro, R.W.; Micheletto, C.; De Ferrari, L.; Folli, C.; Chiappori, A.; Canonica, G.W. Omalizumab modulates bronchial reticular basement membrane thickness and eosinophil infiltration in severe persistent allergic asthma patients. Int. J. Immunopathol. Pharmacol., 2012, 25(2), 475-484.
[http://dx.doi.org/10.1177/039463201202500217] [PMID: 22697079]
[162]
Kallieri, M.; Papaioannou, A.I.; Papathanasiou, E.; Ntontsi, P.; Papiris, S.; Loukides, S. Predictors of response to therapy with omalizumab in patients with severe allergic asthma - a real life study. Postgrad. Med., 2017, 129(6), 598-604.
[http://dx.doi.org/10.1080/00325481.2017.1321945] [PMID: 28427296]
[163]
Noga, O.; Hanf, G.; Brachmann, I.; Klucken, A.C.; Kleine-Tebbe, J.; Rosseau, S.; Kunkel, G.; Suttorp, N.; Seybold, J. Effect of omalizumab treatment on peripheral eosinophil and T-lymphocyte function in patients with allergic asthma. J. Allergy Clin. Immunol., 2006, 117(6), 1493-1499.
[http://dx.doi.org/10.1016/j.jaci.2006.02.028] [PMID: 16751018]
[164]
Seminario, M.C.; Saini, S.S.; MacGlashan, D.W., Jr; Bochner, B.S. Intracellular expression and release of Fc epsilon RI alpha by human eosinophils. J. Immunol., 1999, 162(11), 6893-6900.
[PMID: 10352311]
[165]
Fahy, J.V. Type 2 inflammation in asthma--present in most, absent in many. Nat. Rev. Immunol., 2015, 15(1), 57-65.
[http://dx.doi.org/10.1038/nri3786] [PMID: 25534623]
[166]
Rubinsztajn, R.; Chazan, R. Monoclonal Antibodies for the Management of Severe Asthma. Adv. Exp. Med. Biol., 2016, 935, 35-42.
[http://dx.doi.org/10.1007/5584_2016_29] [PMID: 27334730]
[167]
Eggel, A.; Baravalle, G.; Hobi, G.; Kim, B.; Buschor, P.; Forrer, P.; Shin, J.S.; Vogel, M.; Stadler, B.M.; Dahinden, C.A.; Jardetzky, T.S. Accelerated dissociation of IgE-FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells. J. Allergy Clin. Immunol., 2014, 133(6), 1709-19.e8.
[http://dx.doi.org/10.1016/j.jaci.2014.02.005] [PMID: 24642143]
[168]
Harvima, I.T.; Levi-Schaffer, F.; Draber, P.; Friedman, S.; Polakovicova, I.; Gibbs, B.F.; Blank, U.; Nilsson, G.; Maurer, M. Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol., 2014, 134(3), 530-544.
[http://dx.doi.org/10.1016/j.jaci.2014.03.007] [PMID: 24767877]
[169]
Horak, F.; Puri, K.D.; Steiner, B.H.; Holes, L.; Xing, G.; Zieglmayer, P.; Zieglmayer, R.; Lemell, P.; Yu, A. Randomized phase 1 study of the phosphatidylinositol 3-kinase δ inhibitor idelalisib in patients with allergic rhinitis. J. Allergy Clin. Immunol., 2016, 137(6), 1733-1741.
[http://dx.doi.org/10.1016/j.jaci.2015.12.1313] [PMID: 26915677]
[170]
Stenton, G.R.; Mackenzie, L.F.; Tam, P.; Cross, J.L.; Harwig, C.; Raymond, J.; Toews, J.; Chernoff, D.; MacRury, T.; Szabo, C. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br. J. Pharmacol., 2013, 168(6), 1519-1529.
[http://dx.doi.org/10.1111/bph.12038] [PMID: 23121409]
[171]
Leaker, B.R.; Barnes, P.J.; O’Connor, B.J.; Ali, F.Y.; Tam, P.; Neville, J.; Mackenzie, L.F.; MacRury, T. The effects of the novel SHIP1 activator AQX-1125 on allergen-induced responses in mild-to-moderate asthma. Clin. Exp. Allergy, 2014, 44(9), 1146-1153.
[http://dx.doi.org/10.1111/cea.12370] [PMID: 25040039]
[172]
Price, M.M.; Oskeritzian, C.A.; Falanga, Y.T.; Harikumar, K.B.; Allegood, J.C.; Alvarez, S.E.; Conrad, D.; Ryan, J.J.; Milstien, S.; Spiegel, S. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J. Allergy Clin. Immunol., 2013, 131(2), 501-11.e1.
[http://dx.doi.org/10.1016/j.jaci.2012.07.014] [PMID: 22939756]
[173]
Harrison, C.A.; Bastan, R.; Peirce, M.J.; Munday, M.R.; Peachell, P.T. Role of calcineurin in the regulation of human lung mast cell and basophil function by cyclosporine and FK506. Br. J. Pharmacol., 2007, 150(4), 509-518.
[http://dx.doi.org/10.1038/sj.bjp.0707002] [PMID: 17200674]
[174]
Gotlib, J. Tyrosine Kinase Inhibitors and Therapeutic Antibodies in Advanced Eosinophilic Disorders and Systemic Mastocytosis. Curr. Hematol. Malig. Rep., 2015, 10(4), 351-361.
[http://dx.doi.org/10.1007/s11899-015-0280-3] [PMID: 26404639]
[175]
BLU-285. BLU-285, DCC-2618 Show Activity against GIST. Cancer Discov., 2017, 7(2), 121-122.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2016-165] [PMID: 28077435]
[176]
Kiwamoto, T.; Kawasaki, N.; Paulson, J.C.; Bochner, B.S. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther., 2012, 135(3), 327-336.
[http://dx.doi.org/10.1016/j.pharmthera.2012.06.005] [PMID: 22749793]
[177]
Senti, G.; Prinz Vavricka, B.M.; Erdmann, I.; Diaz, M.I.; Markus, R.; McCormack, S.J.; Simard, J.J.; Wüthrich, B.; Crameri, R.; Graf, N.; Johansen, P.; Kündig, T.M. Intralymphatic allergen administration renders specific immunotherapy faster and safer: a randomized controlled trial. Proc. Natl. Acad. Sci. USA, 2008, 105(46), 17908-17912.
[http://dx.doi.org/10.1073/pnas.0803725105] [PMID: 19001265]
[178]
Hylander, T.; Latif, L.; Petersson-Westin, U.; Cardell, L.O. Intralymphatic allergen-specific immunotherapy: an effective and safe alternative treatment route for pollen-induced allergic rhinitis. J. Allergy Clin. Immunol., 2013, 131(2), 412-420.
[http://dx.doi.org/10.1016/j.jaci.2012.10.056] [PMID: 23374268]
[179]
DuBuske, L.M.; Frew, A.J.; Horak, F.; Keith, P.K.; Corrigan, C.J.; Aberer, W.; Holdich, T.; von Weikersthal-Drachenberg, K.J. Ultrashort-specific immunotherapy successfully treats seasonal allergic rhinoconjunctivitis to grass pollen. Allergy Asthma Proc., 2011, 32(3), 239-247.
[http://dx.doi.org/10.2500/aap.2011.32.3453] [PMID: 21535913]
[180]
Creticos, P.S.; Schroeder, J.T.; Hamilton, R.G.; Balcer-Whaley, S.L.; Khattignavong, A.P.; Lindblad, R.; Li, H.; Coffman, R.; Seyfert, V.; Eiden, J.J.; Broide, D. Immune Tolerance Network Group.Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med., 2006, 355(14), 1445-1455.
[http://dx.doi.org/10.1056/NEJMoa052916] [PMID: 17021320]
[181]
Valenta, R.; Campana, R.; Focke-Tejkl, M.; Niederberger, V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. J. Allergy Clin. Immunol., 2016, 137(2), 351-357.
[http://dx.doi.org/10.1016/j.jaci.2015.12.1299] [PMID: 26853127]
[182]
Patel, D.; Couroux, P.; Hickey, P.; Salapatek, A.M.; Laidler, P.; Larché, M.; Hafner, R.P. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: a randomized, placebo-controlled study J. Allergy Clin.Immunol, 2013. 131(1), 103-109.e1-7.
[183]
Ellis, A.K.; Frankish, C.W.; O’Hehir, R.E.; Armstrong, K.; Steacy, L.; Larché, M.; Hafner, R.P. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis. J. Allergy Clin. Immunol., 2017, 140(2), 486-496.
[http://dx.doi.org/10.1016/j.jaci.2016.11.043] [PMID: 28236469]
[184]
Focke-Tejkl, M.; Weber, M.; Niespodziana, K.; Neubauer, A.; Huber, H.; Henning, R.; Stegfellner, G.; Maderegger, B.; Hauer, M.; Stolz, F.; Niederberger, V.; Marth, K.; Eckl-Dorna, J.; Weiss, R.; Thalhamer, J.; Blatt, K.; Valent, P.; Valenta, R. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. J. Allergy Clin. Immunol,, 2015, 135(5), 1207-1207. e1-11
[http://dx.doi.org/10.1016/j.jaci.2014.09.012]
[185]
Zieglmayer, P.; Focke-Tejkl, M.; Schmutz, R.; Lemell, P.; Zieglmayer, R.; Weber, M.; Kiss, R.; Blatt, K.; Valent, P.; Stolz, F.; Huber, H.; Neubauer, A.; Knoll, A.; Horak, F.; Henning, R.; Valenta, R. Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine, 2016, 11, 43-57.
[http://dx.doi.org/10.1016/j.ebiom.2016.08.022] [PMID: 27650868]
[186]
Conti, P.; Caraffa, A.; Ronconi, G.; Kritas, S.K.; Mastrangelo, F.; Tettamanti, L.; Theoharides, T.C. Impact of mast cells in mucosal immunity of intestinal inflammation: Inhibitory effect of IL-37. Eur. J. Pharmacol., 2018, 818, 294-299.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.044] [PMID: 28970014]
[187]
Effects of Polyphenols on Inflammatory-Allergic Conditions: Experimental and Clinical Evidences. Magrone, T.; Jirillo, E. Polyphenols: prevention and treatment of human disease. In:Watson, R.R.; Preedy, V.R. Zibaldi. S. Eds. Elsevier.,. 2018. Vol. 2, Second Edition, pp.253-261. ISBN 978-0-12-813008-7
[188]
Polyphenol-mediated beneficial effects in healthy status and disease with special references to immune-based mechanisms. In: Watson, R.R.; Preedy, V.R.; Zibaldi, S. Polyphenols in Human Health and Disease. Eds. Elsevier, 2014. Vol. 1, ISBN: 978-0-12-398471-5.
[189]
Polyphenol-mediated beneficial effects in healthy status and disease with special references to immune-based mechanisms. In: Watson,R.R.; Preedy, V.R.; Zibaldi, S. Polyphenols in Human Health and Disease. Eds. Elsevier, 2014. Vol. 2, ISBN: 978-0-12-398472-2.
[190]
Magrone, T.; Kumazawa, Y.; Jirillo, E. Polyphenol-mediated beneficial effects in healthy status and disease with special references to immune-based mechanisms. Watson, R.R.; Preedy, V.R.; Zibaldi S. Polyphenols in Human Health and Disease. Eds. Elsevier , 2014. 1, pp. 467-479. ISBN: 978-0-12-398472-2
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00035-9]
[191]
Magrone, T.; Panaro, M.A.; Jirillo, E.; Covelli, V. Molecular effects elicited in vitro by red wine on human healthy peripheral blood mononuclear cells: potential therapeutical application of polyphenols to diet-related chronic diseases. Curr. Pharm. Des., 2008, 14(26), 2758-2766.
[http://dx.doi.org/10.2174/138161208786264179] [PMID: 18991694]
[192]
Marzulli, G.; Magrone, T.; Kawaguchi, K.; Kumazawa, Y.; Jirillo, E. Fermented grape marc (FGM): immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. Curr. Pharm. Des., 2012, 18(1), 43-50.
[http://dx.doi.org/10.2174/138161212798919011] [PMID: 22211687]
[193]
Vitale, E.; Jirillo, E.; Magrone, T. Determination of body mass index and physical activity in normal weight children and evaluation of salivary levels of IL-10 and IL-17. Clin. Immunol. Endocr. Metab. Drugs, 2014, 1, 81-88.
[http://dx.doi.org/10.2174/2212707002666150402225920]
[194]
Kaneko, M.; Kanesaka, M.; Yoneyama, M.; Tominaga, T.; Jirillo, E.; Kumazawa, Y. Inhibitory effects of fermented grape marc from Vitis vinifera Negroamaro on antigen-induced degranulation. Immunopharmacol. Immunotoxicol., 2010, 32(3), 454-461.
[http://dx.doi.org/10.3109/08923970903513139] [PMID: 20100066]
[195]
Tominaga, T.; Kawaguchi, K.; Kanesaka, M.; Kawauchi, H.; Jirillo, E.; Kumazawa, Y. Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum. Immunopharmacol. Immunotoxicol., 2010, 32(4), 593-599.
[http://dx.doi.org/10.3109/08923971003604786] [PMID: 20136581]
[196]
Magrone, T.; Romita, P.; Verni, P.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E.; Foti, C. In vitro Effects of Polyphenols on the Peripheral Immune Responses in Nickel-sensitized Patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 324-331.
[http://dx.doi.org/10.2174/1871530317666171003161314] [PMID: 28982342]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy