Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Elucidating Paclitaxel Resistance Mechanisms in Non-small Cell Lung Cancer and Strategies to Overcome Drug Resistance

Author(s): Hongmei Cui, Kinsie Arnst, Duane D. Miller and Wei Li*

Volume 27, Issue 39, 2020

Page: [6573 - 6595] Pages: 23

DOI: 10.2174/0929867326666191016113631

Price: $65

Abstract

Paclitaxel (PTX) is a first-line drug for late-stage non-small cell lung cancer (NSCLC) patients who do not benefit from targeted therapy or immunotherapy. However, patients invariably develop resistance to PTX upon prolonged treatments. Although diverse mechanisms leading to PTX resistance have been well-documented in the literature, strategies to overcome PTX resistance in NSCLC based on these mechanisms are still challenging. In this article, we reviewed recent advancements elucidating major mechanisms of PTX resistance in NSCLC, including the overexpression of ABC transporters, alternations to tubulin structures, and the involvement of cytokines, miRNAs, kinase signaling pathways, and epithelial-mesenchymal transition. Potential markers of PTX resistance or PTX response that could help to direct treatment decisions and restore cellular sensitivity to PTX were also discussed. Finally, we summarized the corresponding strategies to overcome PTX resistance in NSCLC cells, which might provide new insights into clinical trials and benefit lung cancer patients in the future.

Keywords: Paclitaxel resistance, NSCLC, P-gp, Microtubule, Cancer cell survival and apoptosis, EMT, Activated kinase pathway.

[1]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[2]
Dempke, W.C.; Sellmann, L.; Fenchel, K.; Edvardsen, K. Immunotherapies for NSCLC: are we cutting the gordian helix? Anticancer Res., 2015, 35(11), 5745-5757.
[PMID: 26503995]
[3]
Baxevanos, P.; Mountzios, G. Novel chemotherapy regimens for advanced lung cancer: have we reached a plateau? Ann. Transl. Med., 2018, 6(8), 139.
[http://dx.doi.org/10.21037/atm.2018.04.04] [PMID: 29862228]
[4]
Socinski, M.A. Single-agent paclitaxel in the treatment of advanced non-small cell lung cancer. Oncologist, 1999, 4(5), 408-416.
[http://dx.doi.org/10.1634/theoncologist.4-5-408] [PMID: 10551557]
[5]
Hidaka, M.; Koga, T.; Kiyota, H.; Horiguchi, T.; Shi, Q.W.; Hirose, K.; Uchida, T. Relationship between the structures of taxane derivatives and their microtubule polymerization activity. Biosci. Biotechnol. Biochem., 2012, 76(2), 349-352.
[http://dx.doi.org/10.1271/bbb.110797] [PMID: 22313785]
[6]
Rivera-Rodriguez, A.; Chiu-Lam, A.; Morozov, V.M.; Ishov, A.M.; Rinaldi, C. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int. J. Nanomedicine, 2018, 13, 4771-4779.
[http://dx.doi.org/10.2147/IJN.S171130] [PMID: 30197514]
[7]
Tischer, J.; Gergely, F. Anti-mitotic therapies in cancer. J. Cell Biol., 2019, 218(1), 10-11.
[http://dx.doi.org/10.1083/jcb.201808077] [PMID: 30545842]
[8]
Olziersky, A.M.; Labidi-Galy, S.I. Clinical development of anti-mitotic drugs in cancer. Adv. Exp. Med. Biol., 2017, 1002, 125-152.
[http://dx.doi.org/10.1007/978-3-319-57127-0_6] [PMID: 28600785]
[9]
Sève, P.; Dumontet, C. Chemoresistance in non-small cell lung cancer. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 73-88.
[http://dx.doi.org/10.2174/1568011053352604] [PMID: 15720263]
[10]
Kim, E.S. Chemotherapy resistance in lung cancer. Adv. Exp. Med. Biol., 2016, 893, 189-209.
[http://dx.doi.org/10.1007/978-3-319-24223-1_10] [PMID: 26667345]
[11]
Hendrikx, J.J.; Beijnen, J.H.; Schinkel, A.H. P-GP and taxanes. Oncoscience, 2014, 1(7), 478-479.
[http://dx.doi.org/10.18632/oncoscience.56] [PMID: 25594047]
[12]
Yabuki, N.; Sakata, K.; Yamasaki, T.; Terashima, H.; Mio, T.; Miyazaki, Y.; Fujii, T.; Kitada, K. Gene amplification and expression in lung cancer cells with acquired paclitaxel resistance. Cancer Genet. Cytogenet., 2007, 173(1), 1-9.
[http://dx.doi.org/10.1016/j.cancergencyto.2006.07.020] [PMID: 17284363]
[13]
Aldonza, M.B.; Hong, J.Y.; Alinsug, M.V.; Song, J.; Lee, S.K. Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation. Oncotarget, 2016, 7(23), 34395-34419.
[http://dx.doi.org/10.18632/oncotarget.9118] [PMID: 27284014]
[14]
Chen, Y.; Huang, W.; Chen, F.; Hu, G.; Li, F.; Li, J.; Xuan, A. Pregnane X receptors regulate CYP2C8 and P-glycoprotein to impact on the resistance of NSCLC cells to Taxol. Cancer Med., 2016, 5(12), 3564-3571.
[http://dx.doi.org/10.1002/cam4.960] [PMID: 27878971]
[15]
van Eijk, M.; Boosman, R.J.; Schinkel, A.H.; Huitema, A.D.R.; Beijnen, J.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes. Cancer Chemother. Pharmacol., 2019, 84(3), 487-499.
[http://dx.doi.org/10.1007/s00280-019-03905-3] [PMID: 31309254]
[16]
Banerjee Mustafi, S.; Chakraborty, P.K.; Naz, S.; Dwivedi, S.K.; Street, M.; Basak, R.; Yang, D.; Ding, K.; Mukherjee, P.; Bhattacharya, R. MDR1 mediated chemoresistance: BMI1 and TIP60 in action. Biochim. Biophys. Acta, 2016, 1859(8), 983-993.
[http://dx.doi.org/10.1016/j.bbagrm.2016.06.002] [PMID: 27295567]
[17]
Li, B.; Gu, W.; Zhu, X. NEAT1 mediates paclitaxel-resistance of non-small cell of lung cancer through activation of Akt/mTOR signaling pathway. J. Drug Target., 2019, 27(10), 1061-1067.
[http://dx.doi.org/10.1080/1061186X.2019.1585437] [PMID: 30782035]
[18]
Wang, L.; Ma, L.; Xu, F.; Zhai, W.; Dong, S.; Yin, L.; Liu, J.; Yu, Z. Role of long non-coding RNA in drug resistance in non-small cell lung cancer. Thorac. Cancer, 2018, 9(7), 761-768.
[http://dx.doi.org/10.1111/1759-7714.12652] [PMID: 29726094]
[19]
Xu, R.; Mao, Y.; Chen, K.; He, W.; Shi, W.; Han, Y. The long noncoding RNA ANRIL acts as an oncogene and contributes to paclitaxel resistance of lung adenocarcinoma A549 cells. Oncotarget, 2017, 8(24), 39177-39184.
[http://dx.doi.org/10.18632/oncotarget.16640] [PMID: 28402932]
[20]
Wang, P.; Chen, D.; Ma, H.; Li, Y. LncRNA SNHG12 contributes to multidrug resistance through activating the MAPK/Slug pathway by sponging miR-181a in non-small cell lung cancer. Oncotarget, 2017, 8(48), 84086-84101.
[http://dx.doi.org/10.18632/oncotarget.20475] [PMID: 29137407]
[21]
Tian, X.; Zhang, H.; Zhang, B.; Zhao, J.; Li, T.; Zhao, Y. Microarray expression profile of long non-coding RNAs in paclitaxel-resistant human lung adenocarcinoma cells. Oncol. Rep., 2017, 38(1), 293-300.
[http://dx.doi.org/10.3892/or.2017.5691] [PMID: 28586074]
[22]
Ren, K.; Xu, R.; Huang, J.; Zhao, J.; Shi, W. Knockdown of long non-coding RNA KCNQ1OT1 depressed chemoresistance to paclitaxel in lung adenocarcinoma. Cancer Chemother. Pharmacol., 2017, 80(2), 243-250.
[http://dx.doi.org/10.1007/s00280-017-3356-z] [PMID: 28600629]
[23]
Pan, Y.; Chen, J.; Tao, L.; Zhang, K.; Wang, R.; Chu, X.; Chen, L. Long noncoding RNA ROR regulates chemoresistance in docetaxel-resistant lung adenocarcinoma cells via epithelial mesenchymal transition pathway. Oncotarget, 2017, 8(20), 33144-33158.
[http://dx.doi.org/10.18632/oncotarget.16562] [PMID: 28388536]
[24]
Chen, J.; Zhang, K.; Song, H.; Wang, R.; Chu, X.; Chen, L. Long noncoding RNA CCAT1 acts as an oncogene and promotes chemoresistance in docetaxel-resistant lung adenocarcinoma cells. Oncotarget, 2016, 7(38), 62474-62489.
[http://dx.doi.org/10.18632/oncotarget.11518] [PMID: 27566568]
[25]
Liu, W.; Lo, Y.L.; Hsu, C.; Wu, Y.T.; Liao, Z.X.; Wu, W.J.; Chen, Y.J.; Kao, C.; Chiu, C.C.; Wang, L.F. CS-PEI/Beclin-siRNA downregulate multidrug resistance proteins and increase paclitaxel therapeutic efficacy against NSCLC. Mol. Ther. Nucleic Acids, 2019, 17, 477-490.
[http://dx.doi.org/10.1016/j.omtn.2019.06.017] [PMID: 31336235]
[26]
Kim, E.H.; Min, H.Y.; Chung, H.J.; Song, J.; Park, H.J.; Kim, S.; Lee, S.K. Anti-proliferative activity and suppression of P-glycoprotein by (-)-antofine, a natural phenanthroindolizidine alkaloid, in paclitaxel-resistant human lung cancer cells. Food Chem. Toxicol., 2012, 50(3-4), 1060-1065.
[http://dx.doi.org/10.1016/j.fct.2011.11.008] [PMID: 22120505]
[27]
Ma, W.; Feng, S.; Yao, X.; Yuan, Z.; Liu, L.; Xie, Y. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells. Sci. Rep., 2015, 5, 18789.
[http://dx.doi.org/10.1038/srep18789] [PMID: 26689156]
[28]
Cui, Q.; Cai, C.Y.; Gao, H.L.; Ren, L.; Ji, N.; Gupta, P.; Yang, Y.; Shukla, S.; Ambudkar, S.V.; Yang, D.H.; Chen, Z.S. Glesatinib, a c-MET/SMO dual inhibitor, antagonizes P-glycoprotein mediated multidrug resistance in cancer cells. Front. Oncol., 2019, 9, 313.
[http://dx.doi.org/10.3389/fonc.2019.00313] [PMID: 31106148]
[29]
Hopper-Borge, E.A.; Churchill, T.; Paulose, C.; Nicolas, E.; Jacobs, J.D.; Ngo, O.; Kuang, Y.; Grinberg, A.; Westphal, H.; Chen, Z.S.; Klein-Szanto, A.J.; Belinsky, M.G.; Kruh, G.D. Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res., 2011, 71(10), 3649-3657.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3623] [PMID: 21576088]
[30]
Oguri, T.; Ozasa, H.; Uemura, T.; Bessho, Y.; Miyazaki, M.; Maeno, K.; Maeda, H.; Sato, S.; Ueda, R. MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer. Mol. Cancer Ther., 2008, 7(5), 1150-1155.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2088] [PMID: 18445659]
[31]
Westover, D.; Li, F. New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. J. Exp. Clin. Cancer Res., 2015, 34, 159.
[http://dx.doi.org/10.1186/s13046-015-0275-x] [PMID: 26714461]
[32]
Nagashima, S.; Soda, H.; Oka, M.; Kitazaki, T.; Shiozawa, K.; Nakamura, Y.; Takemura, M.; Yabuuchi, H.; Fukuda, M.; Tsukamoto, K.; Kohno, S. BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer. Cancer Chemother. Pharmacol., 2006, 58(5), 594-600.
[http://dx.doi.org/10.1007/s00280-006-0212-y] [PMID: 16520985]
[33]
Tang, Y.; Hou, J.; Li, G.; Song, Z.; Li, X.; Yang, C.; Liu, W.; Hu, Y.; Xu, Y. ABCG2 regulates the pattern of self-renewing divisions in cisplatin-resistant non-small cell lung cancer cell lines. Oncol. Rep., 2014, 32(5), 2168-2174.
[http://dx.doi.org/10.3892/or.2014.3470] [PMID: 25200103]
[34]
Chen, Y.J.; Huang, W.C.; Wei, Y.L.; Hsu, S.C.; Yuan, P.; Lin, H.Y.; Wistuba, I.I.; Lee, J.J.; Yen, C.J.; Su, W.C.; Chang, K.Y.; Chang, W.C.; Chou, T.C.; Chou, C.K.; Tsai, C.H.; Hung, M.C. Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PLoS One, 2011, 6(6)e21428
[http://dx.doi.org/10.1371/journal.pone.0021428] [PMID: 21731744]
[35]
Rosenfeldt, M.T.; Bell, L.A.; Long, J.S.; O’Prey, J.; Nixon, C.; Roberts, F.; Dufès, C.; Ryan, K.M. E2F1 drives chemotherapeutic drug resistance via ABCG2. Oncogene, 2014, 33(32), 4164-4172.
[http://dx.doi.org/10.1038/onc.2013.470] [PMID: 24276245]
[36]
Singh, A.; Wu, H.; Zhang, P.; Happel, C.; Ma, J.; Biswal, S. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol. Cancer Ther., 2010, 9(8), 2365-2376.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0108] [PMID: 20682644]
[37]
Gonçalves, A.; Braguer, D.; Kamath, K.; Martello, L.; Briand, C.; Horwitz, S.; Wilson, L.; Jordan, M.A. Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11737-11742.
[http://dx.doi.org/10.1073/pnas.191388598] [PMID: 11562465]
[38]
Monzó, M.; Rosell, R.; Sánchez, J.J.; Lee, J.S.; O’Brate, A.; González-Larriba, J.L.; Alberola, V.; Lorenzo, J.C.; Núñez, L.; Ro, J.Y.; Martín, C. Paclitaxel resistance in non-small-cell lung cancer associated with beta-tubulin gene mutations. J. Clin. Oncol., 1999, 17(6), 1786-1793.
[http://dx.doi.org/10.1200/JCO.1999.17.6.1786] [PMID: 10561216]
[39]
Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of taxol resistance related to microtubules. Oncogene, 2003, 22(47), 7280-7295.
[http://dx.doi.org/10.1038/sj.onc.1206934] [PMID: 14576838]
[40]
Verdier-Pinard, P.; Wang, F.; Martello, L.; Burd, B.; Orr, G.A.; Horwitz, S.B. Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry, 2003, 42(18), 5349-5357.
[http://dx.doi.org/10.1021/bi027293o] [PMID: 12731876]
[41]
Kavallaris, M.; Burkhart, C.A.; Horwitz, S.B. Antisense oligonucleotides to class III beta-tubulin sensitize drug-resistant cells to Taxol. Br. J. Cancer, 1999, 80(7), 1020-1025.
[http://dx.doi.org/10.1038/sj.bjc.6690507] [PMID: 10362110]
[42]
Atjanasuppat, K.; Lirdprapamongkol, K.; Jantaree, P.; Svasti, J. Non-adherent culture induces paclitaxel resistance in H460 lung cancer cells via ERK-mediated up-regulation of βIVa-tubulin. Biochem. Biophys. Res. Commun., 2015, 466(3), 493-498.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.057] [PMID: 26375501]
[43]
Nogales, E.; Wolf, S.G.; Khan, I.A.; Ludueña, R.F.; Downing, K.H. Structure of tubulin at 6.5 A and location of the taxol-binding site. Nature, 1995, 375(6530), 424-427.
[http://dx.doi.org/10.1038/375424a0] [PMID: 7760939]
[44]
Amos, L.A.; Löwe, J. How Taxol stabilises microtubule structure. Chem. Biol., 1999, 6(3), R65-R69.
[http://dx.doi.org/10.1016/S1074-5521(99)89002-4] [PMID: 10074470]
[45]
Arnst, K.E.; Wang, Y.; Hwang, D.J.; Xue, Y.; Costello, T.; Hamilton, D.; Chen, Q.; Yang, J.; Park, F.; Dalton, J.T.; Miller, D.D.; Li, W. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res., 2018, 78(1), 265-277.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0577] [PMID: 29180476]
[46]
Zheng, Y.B.; Gong, J.H.; Liu, X.J.; Wu, S.Y.; Li, Y.; Xu, X.D.; Shang, B.Y.; Zhou, J.M.; Zhu, Z.L.; Si, S.Y.; Zhen, Y.S. A novel nitrobenzoate microtubule inhibitor that overcomes multidrug resistance exhibits antitumor activity. Sci. Rep., 2016, 6, 31472.
[http://dx.doi.org/10.1038/srep31472] [PMID: 27510727]
[47]
Tsai, A.C.; Wang, C.Y.; Liou, J.P.; Pai, H.C.; Hsiao, C.J.; Chang, J.Y.; Wang, J.C.; Teng, C.M.; Pan, S.L. Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib. Cell Death Dis., 2014, 5(4)e1162
[http://dx.doi.org/10.1038/cddis.2014.128] [PMID: 24722287]
[48]
Pettit, G.R.; Singh, S.B.; Hamel, E.; Lin, C.M.; Alberts, D.S.; Garcia-Kendall, D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia, 1989, 45(2), 209-211.
[http://dx.doi.org/10.1007/BF01954881] [PMID: 2920809]
[49]
do Amaral, D.N.; Cavalcanti, B.C.; Bezerra, D.P.; Ferreira, P.M. Castro, Rde.P.; Sabino, J.R.; Machado, C.M.; Chammas, R.; Pessoa, C.; Sant’Anna, C.M.; Barreiro, E.J.; Lima, L.M. Docking, synthesis and antiproliferative activity of N-acylhydrazone derivatives designed as combretastatin A4 analogues. PLoS One, 2014, 9(3)e85380
[http://dx.doi.org/10.1371/journal.pone.0085380] [PMID: 24614859]
[50]
Chen, J.; Sun, W.L.; Wasylyk, B.; Wang, Y.P.; Zheng, H. c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells. Anticancer Drugs, 2012, 23(1), 98-107.
[http://dx.doi.org/10.1097/CAD.0b013e32834bc978] [PMID: 21968419]
[51]
Quan, H.; Xu, Y.; Lou, L. p38 MAPK, but not ERK1/2, is critically involved in the cytotoxicity of the novel vascular disrupting agent combretastatin A4. Int. J. Cancer, 2008, 122(8), 1730-1737.
[http://dx.doi.org/10.1002/ijc.23262] [PMID: 18074350]
[52]
Tron, G.C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A.A. Medicinal chemistry of combretastatin A4: present and future directions. J. Med. Chem., 2006, 49(11), 3033-3044.
[http://dx.doi.org/10.1021/jm0512903] [PMID: 16722619]
[53]
Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: more than just vascular targeting agents? J. Pharmacol. Exp. Ther., 2015, 355(2), 212-227.
[http://dx.doi.org/10.1124/jpet.115.226225] [PMID: 26354991]
[54]
Sung, M.; Giannakakou, P. BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene, 2014, 33(11), 1418-1428.
[http://dx.doi.org/10.1038/onc.2013.85] [PMID: 23524581]
[55]
Wu, J.; Huang, Y.F.; Zhou, X.K.; Zhang, W.; Lian, Y.F.; Lv, X.B.; Gao, X.R.; Lin, H.K.; Zeng, Y.X.; Huang, J.Q. Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint. Cell Cycle, 2015, 14(24), 3877-3884.
[http://dx.doi.org/10.1080/15384101.2015.1120916] [PMID: 26697838]
[56]
Huang, T.; Yang, L.; Wang, G.; Ding, G.; Peng, B.; Wen, Y.; Wang, Z. Inhibition of Skp2 sensitizes lung cancer cells to paclitaxel. OncoTargets Ther., 2017, 10, 439-446.
[http://dx.doi.org/10.2147/OTT.S125789] [PMID: 28176922]
[57]
Scolnick, D.M.; Halazonetis, T.D. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature, 2000, 406(6794), 430-435.
[http://dx.doi.org/10.1038/35019108] [PMID: 10935642]
[58]
Zhang, X.; Feng, Y.; Wang, X.Y.; Zhang, Y.N.; Yuan, C.N.; Zhang, S.F.; Shen, Y.M.; Fu, Y.F.; Zhou, C.Y.; Li, X.; Cheng, X.D.; Lu, W.G.; Xie, X. The inhibition of UBC13 expression and blockage of the DNMT1-CHFR-Aurora A pathway contribute to paclitaxel resistance in ovarian cancer. Cell Death Dis., 2018, 9(2), 93.
[http://dx.doi.org/10.1038/s41419-017-0137-x] [PMID: 29367628]
[59]
Brodie, S.A.; Li, G.; Harvey, D.; Khuri, F.R.; Vertino, P.M.; Brandes, J.C. Small molecule inhibition of the CHFR-PARP1 interaction as novel approach to overcome intrinsic taxane resistance in cancer. Oncotarget, 2015, 6(31), 30773-30786.
[http://dx.doi.org/10.18632/oncotarget.5040] [PMID: 26356822]
[60]
Xu, Q.; Lin, G.; Xu, H.; Hu, L.; Wang, Y.; Du, S.; Deng, W.; Hu, W.; Cheng, W.; Jiang, K. MLN4924 neddylation inhibitor promotes cell death in paclitaxel-resistant human lung adenocarcinoma cells. Oncol. Lett., 2018, 15(1), 515-521.
[http://dx.doi.org/10.3892/ol.2017.7314 ] [PMID: 29387232]
[61]
Schou, J.; Kelstrup, C.D.; Hayward, D.G.; Olsen, J.V.; Nilsson, J. Comprehensive identification of SUMO2/3 targets and their dynamics during mitosis. PLoS One, 2014, 9(6)e100692
[http://dx.doi.org/10.1371/journal.pone.0100692] [PMID: 24971888]
[62]
Rong, F.; Li, W.; Chen, K.; Li, D.M.; Duan, W.M.; Feng, Y.Z.; Li, F.; Zhou, X.W.; Fan, S.J.; Liu, Y.; Tao, M. Knockdown of RhoGDIα induces apoptosis and increases lung cancer cell chemosensitivity to paclitaxel. Neoplasma, 2012, 59(5), 541-550.
[http://dx.doi.org/10.4149/neo_2012_070] [PMID: 22668020]
[63]
Mills, C.A.; Suzuki, A.; Arceci, A.; Mo, J.Y.; Duncan, A.; Salmon, E.D.; Emanuele, M.J. Nucleolar and spindle-associated protein 1 (NUSAP1) interacts with a SUMO E3 ligase complex during chromosome segregation. J. Biol. Chem., 2017, 292(42), 17178-17189.
[http://dx.doi.org/10.1074/jbc.M117.796045] [PMID: 28900032]
[64]
Okamoto, A.; Higo, M.; Shiiba, M.; Nakashima, D.; Koyama, T.; Miyamoto, I.; Kasama, H.; Kasamatsu, A.; Ogawara, K.; Yokoe, H.; Tanzawa, H.; Uzawa, K. Down-regulation of nucleolar and spindle-associated protein 1 (NUSAP1) expression suppresses tumor and cell proliferation and enhances anti-tumor effect of paclitaxel in oral squamous cell carcinoma. PLoS One, 2015, 10(11)e0142252
[http://dx.doi.org/10.1371/journal.pone.0142252] [PMID: 26554377]
[65]
Clute, P.; Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat. Cell Biol., 1999, 1(2), 82-87.
[http://dx.doi.org/10.1038/10049] [PMID: 10559878]
[66]
Yuan, J.; Krämer, A.; Matthess, Y.; Yan, R.; Spänkuch, B.; Gätje, R.; Knecht, R.; Kaufmann, M.; Strebhardt, K. Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene, 2006, 25(12), 1753-1762.
[http://dx.doi.org/10.1038/sj.onc.1209202] [PMID: 16278675]
[67]
van Leuken, R.J.; Luna-Vargas, M.P.; Sixma, T.K.; Wolthuis, R.M.; Medema, R.H. Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B. Cell Cycle, 2008, 7(17), 2710-2719.
[http://dx.doi.org/10.4161/cc.7.17.6553] [PMID: 18728397]
[68]
Xu, M.; Takanashi, M.; Oikawa, K.; Tanaka, M.; Nishi, H.; Isaka, K.; Kudo, M.; Kuroda, M. USP15 plays an essential role for caspase-3 activation during Paclitaxel-induced apoptosis. Biochem. Biophys. Res. Commun., 2009, 388(2), 366-371.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.015] [PMID: 19665996]
[69]
Cui, H.; Guo, M.; Xu, D.; Ding, Z.C.; Zhou, G.; Ding, H.F.; Zhang, J.; Tang, Y.; Yan, C. The stress-responsive gene ATF3 regulates the histone acetyltransferase Tip60. Nat. Commun., 2015, 6, 6752.
[http://dx.doi.org/10.1038/ncomms7752] [PMID: 25865756]
[70]
Li, M.; Brooks, C.L.; Kon, N.; Gu, W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell, 2004, 13(6), 879-886.
[http://dx.doi.org/10.1016/S1097-2765(04)00157-1] [PMID: 15053880]
[71]
Li, M.; Chen, D.; Shiloh, A.; Luo, J.; Nikolaev, A.Y.; Qin, J.; Gu, W. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature, 2002, 416(6881), 648-653.
[http://dx.doi.org/10.1038/nature737] [PMID: 11923872]
[72]
Zhang, C.; Lu, J.; Zhang, Q.W.; Zhao, W.; Guo, J.H.; Liu, S.L.; Wu, Y.L.; Jiang, B.; Gao, F.H. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int. J. Biochem. Cell Biol., 2016, 79, 209-221.
[http://dx.doi.org/10.1016/j.biocel.2016.08.025] [PMID: 27590858]
[73]
Giovinazzi, S.; Morozov, V.M.; Summers, M.K.; Reinhold, W.C.; Ishov, A.M. USP7 and Daxx regulate mitosis progression and taxane sensitivity by affecting stability of Aurora-A kinase. Cell Death Differ., 2013, 20(5), 721-731.
[http://dx.doi.org/10.1038/cdd.2012.169] [PMID: 23348568]
[74]
Stegmeier, F.; Rape, M.; Draviam, V.M.; Nalepa, G.; Sowa, M.E.; Ang, X.L.; McDonald, E.R., III; Li, M.Z.; Hannon, G.J.; Sorger, P.K.; Kirschner, M.W.; Harper, J.W.; Elledge, S.J. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature, 2007, 446(7138), 876-881.
[http://dx.doi.org/10.1038/nature05694] [PMID: 17443180]
[75]
Shimomura, M.; Yaoi, T.; Itoh, K.; Kato, D.; Terauchi, K.; Shimada, J.; Fushiki, S. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines. Int. J. Oncol., 2012, 40(4), 995-1004.
[http://dx.doi.org/10.3892/ijo.2011.1297] [PMID: 22179563]
[76]
Dowdy, S.C.; Jiang, S.; Zhou, X.C.; Hou, X.; Jin, F.; Podratz, K.C.; Jiang, S.W. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol. Cancer Ther., 2006, 5(11), 2767-2776.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0209] [PMID: 17121923]
[77]
Wang, L.; Li, H.; Ren, Y.; Zou, S.; Fang, W.; Jiang, X.; Jia, L.; Li, M.; Liu, X.; Yuan, X.; Chen, G.; Yang, J.; Wu, C. Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis., 2016, 7(1)e2063
[http://dx.doi.org/10.1038/cddis.2015.328] [PMID: 26794658]
[78]
Kwon, W.S.; Rha, S.Y.; Jeung, H.C.; Kim, T.S.; Chung, H.C. Modulation of HAT activity by the BRCA2 N372H variation is a novel mechanism of paclitaxel resistance in breast cancer cell lines. Biochem. Pharmacol., 2017, 138, 163-173.
[http://dx.doi.org/10.1016/j.bcp.2017.04.015] [PMID: 28431939]
[79]
Zeng, L.; Kizaka-Kondoh, S.; Itasaka, S.; Xie, X.; Inoue, M.; Tanimoto, K.; Shibuya, K.; Hiraoka, M. Hypoxia inducible factor-1 influences sensitivity to paclitaxel of human lung cancer cell lines under normoxic conditions. Cancer Sci., 2007, 98(9), 1394-1401.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00537.x] [PMID: 17608771]
[80]
MacDonagh, L.; Gray, S.G.; Finn, S.P.; Cuffe, S.; O’Byrne, K.J.; Barr, M.P. The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat. Rev., 2015, 41(2), 160-169.
[http://dx.doi.org/10.1016/j.ctrv.2014.12.009] [PMID: 25592062]
[81]
Corrà, F.; Agnoletto, C.; Minotti, L.; Baldassari, F.; Volinia, S. The network of non-coding RNAs in cancer drug resistance. Front. Oncol., 2018, 8, 327.
[http://dx.doi.org/10.3389/fonc.2018.00327] [PMID: 30211115]
[82]
Biersack, B. Non-coding RNA/microRNA-modulatory dietary factors and natural products for improved cancer therapy and prevention: Alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins. Noncoding RNA Res., 2016, 1(1), 51-63.
[http://dx.doi.org/10.1016/j.ncrna.2016.09.001] [PMID: 30159411]
[83]
Liang, Z.; Xi, Y. MicroRNAs mediate therapeutic and preventive effects of natural agents in breast cancer. Chin. J. Nat. Med., 2016, 14(12), 881-887.
[http://dx.doi.org/10.1016/S1875-5364(17)30012-2] [PMID: 28262114]
[84]
Zhao, Y.F.; Han, M.L.; Xiong, Y.J.; Wang, L.; Fei, Y.; Shen, X.; Zhu, Y.; Liang, Z.Q. A micRNA-200c/cathepsin L feedback loop determines paclitaxel resistance in human lung cancer A549 cells in vitro through regulating epithelial-mesenchymal transition. Acta Pharmacol. Sin., 2018, 39(6), 1034-1047.
[http://dx.doi.org/10.1038/aps.2017.164] [PMID: 29219949]
[85]
Xu, X.; Jin, S.; Ma, Y.; Fan, Z.; Yan, Z.; Li, W.; Song, Q.; You, W.; Lyu, Z.; Song, Y.; Shi, P.; Liu, Y.; Han, X.; Li, L.; Li, Y.; Liu, Y.; Ye, Q. miR-30a-5p enhances paclitaxel sensitivity in non-small cell lung cancer through targeting BCL-2 expression. J. Mol. Med. (Berl.), 2017, 95(8), 861-871.
[http://dx.doi.org/10.1007/s00109-017-1539-z] [PMID: 28487996]
[86]
Lu, C.; Xie, Z.; Peng, Q. MiRNA-107 enhances chemosensitivity to paclitaxel by targeting antiapoptotic factor Bcl-w in non small cell lung cancer. Am. J. Cancer Res., 2017, 7(9), 1863-1873.
[PMID: 28979809]
[87]
Koh, H.; Park, H.; Chandimali, N.; Huynh, D.L.; Zhang, J.J.; Ghosh, M.; Gera, M.; Kim, N.; Bak, Y.; Yoon, D.Y.; Park, Y.H.; Kwon, T.; Jeong, D.K.; Zhang, Y.; Huang, S.; Zhang, Y.; Huang, S.; Chatterjee, A.; Chattopadhyay, D.; Chakrabarti, G.; Sen, Z.; Zhan, X.K.; Jing, J.; Yi, Z.; Wanqi, Z. MicroRNA-128 suppresses paclitaxel-resistant lung cancer by inhibiting MUC1-C and BMI-1 in cancer stem cells. Oncotarget, 2017, 8(66), 110540-110551.
[http://dx.doi.org/10.18632/oncotarget.22818] [PMID: 29299167]
[88]
Shen, H.; Wang, L.; Ge, X.; Jiang, C.F.; Shi, Z.M.; Li, D.M.; Liu, W.T.; Yu, X.; Shu, Y.Q. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget, 2016, 7(15), 20728-20742.
[http://dx.doi.org/10.18632/oncotarget.8011] [PMID: 26989074]
[89]
Li, H.; Zhang, P.; Sun, X.; Sun, Y.; Shi, C.; Liu, H.; Liu, X. MicroRNA-181a regulates epithelial-mesenchymal transition by targeting PTEN in drug-resistant lung adenocarcinoma cells. Int. J. Oncol., 2015, 47(4), 1379-1392.
[http://dx.doi.org/10.3892/ijo.2015.3144] [PMID: 26323677]
[90]
Chatterjee, A.; Chattopadhyay, D.; Chakrabarti, G. MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis. Cell. Signal., 2015, 27(2), 189-203.
[http://dx.doi.org/10.1016/j.cellsig.2014.11.023] [PMID: 25435430]
[91]
Chatterjee, A.; Chattopadhyay, D.; Chakrabarti, G. miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One, 2014, 9(4)e95716
[http://dx.doi.org/10.1371/journal.pone.0095716] [PMID: 24755562]
[92]
Holleman, A.; Chung, I.; Olsen, R.R.; Kwak, B.; Mizokami, A.; Saijo, N.; Parissenti, A.; Duan, Z.; Voest, E.E.; Zetter, B.R. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene, 2011, 30(43), 4386-4398.
[http://dx.doi.org/10.1038/onc.2011.148] [PMID: 21552288]
[93]
Chen, K.; Shi, W. Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel. Tumour Biol., 2016, 37(8), 10539-10544.
[http://dx.doi.org/10.1007/s13277-016-4929-x] [PMID: 26852748]
[94]
Catuogno, S.; Cerchia, L.; Romano, G.; Pognonec, P.; Condorelli, G.; de Franciscis, V. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene, 2013, 32(3), 341-351.
[http://dx.doi.org/10.1038/onc.2012.51] [PMID: 22370637]
[95]
Xiang, F.; Wu, R.; Ni, Z.; Pan, C.; Zhan, Y.; Xu, J.; Meng, X.; Kang, X. MyD88 expression is associated with paclitaxel resistance in lung cancer A549 cells. Oncol. Rep., 2014, 32(5), 1837-1844.
[http://dx.doi.org/10.3892/or.2014.3433] [PMID: 25175786]
[96]
Wang, R.; Huang, J.; Feng, B.; De, W.; Chen, L. Identification of ING4 (inhibitor of growth 4) as a modulator of docetaxel sensitivity in human lung adenocarcinoma. Mol. Med., 2012, 18, 874-886.
[http://dx.doi.org/10.2119/molmed.2011.00230] [PMID: 22460125]
[97]
Liu, Z.; Lin, H.; Gan, Y.; Cui, C.; Zhang, B.; Gu, L.; Zhou, J.; Zhu, G.; Deng, D. P16 methylation leads to paclitaxel resistance of advanced non-small cell lung cancer. J. Cancer, 2019, 10(7), 1726-1733.
[http://dx.doi.org/10.7150/jca.26482] [PMID: 31205528]
[98]
Zhan, X.K.; Li, J.L.; Zhang, S.; Xing, P.Y.; Xia, M.F. Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis. Oncol. Lett., 2018, 16(3), 3628-3634.
[http://dx.doi.org/10.3892/ol.2018.9097] [PMID: 30127971]
[99]
Hunter, T.B.; Manimala, N.J.; Luddy, K.A.; Catlin, T.; Antonia, S.J. Paclitaxel and TRAIL synergize to kill paclitaxel-resistant small cell lung cancer cells through a caspase-independent mechanism mediated through AIF. Anticancer Res., 2011, 31(10), 3193-3204.
[PMID: 21965726]
[100]
Liu, Y.; Wu, X.; Sun, Y.; Chen, F. Silencing of X-linked inhibitor of apoptosis decreases resistance to cisplatin and paclitaxel but not gemcitabine in non-small cell lung cancer. J. Int. Med. Res., 2011, 39(5), 1682-1692.
[http://dx.doi.org/10.1177/147323001103900510] [PMID: 22117968]
[101]
Kim, K.C.; Baek, S.H.; Lee, C. Curcumin-induced downregulation of Axl receptor tyrosine kinase inhibits cell proliferation and circumvents chemoresistance in non-small lung cancer cells. Int. J. Oncol., 2015, 47(6), 2296-2303.
[http://dx.doi.org/10.3892/ijo.2015.3216] [PMID: 26498137]
[102]
Jeon, Y.K.; Kim, C.K.; Koh, J.; Chung, D.H.; Ha, G.H. Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination. Oncotarget, 2016, 7(27), 41811-41824.
[http://dx.doi.org/10.18632/oncotarget.9619] [PMID: 27248820]
[103]
Ho, E.A.; Piquette-Miller, M. Regulation of multidrug resistance by pro-inflammatory cytokines. Curr. Cancer Drug Targets, 2006, 6(4), 295-311.
[http://dx.doi.org/10.2174/156800906777441753] [PMID: 16848721]
[104]
Jones, V.S.; Huang, R.Y.; Chen, L.P.; Chen, Z.S.; Fu, L.; Huang, R.P. Cytokines in cancer drug resistance: cues to new therapeutic strategies. Biochim. Biophys. Acta, 2016, 1865(2), 255-265.
[PMID: 26993403]
[105]
Li, C.; Zhao, X.; Yang, Y.; Liu, S.; Liu, Y.; Li, X. Interleukin-22 (IL-22) regulates apoptosis of paclitaxel-resistant non-small cell lung cancer cells through C-jun N-terminal kinase signaling pathway. Med. Sci. Monit., 2018, 24, 2750-2757.
[http://dx.doi.org/10.12659/MSM.907336] [PMID: 29723165]
[106]
Ban, J.O.; Hwang, C.J.; Park, M.H.; Hwang, I.K.; Jeong, H.S.; Lee, H.P.; Hyun, B.K.; Kim, J.Y.; Youn, H.S.; Ham, Y.W.; Yoon, D.Y.; Han, S.B.; Song, M.J.; Hong, J.T. Enhanced cell growth inhibition by thiacremonone in paclitaxel-treated lung cancer cells. Arch. Pharm. Res., 2015, 38(7), 1351-1362.
[http://dx.doi.org/10.1007/s12272-015-0589-4] [PMID: 25791937]
[107]
Zhang, D.; Qiu, L.; Jin, X.; Guo, Z.; Guo, C. Nuclear factor-kappaB inhibition by parthenolide potentiates the efficacy of Taxol in non-small cell lung cancer in vitro and in vivo. Mol. Cancer Res., 2009, 7(7), 1139-1149.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0410] [PMID: 19584264]
[108]
Jiang, N.; Dong, X.P.; Zhang, S.L.; You, Q.Y.; Jiang, X.T.; Zhao, X.G. Triptolide reverses the Taxol resistance of lung adenocarcinoma by inhibiting the NF-κB signaling pathway and the expression of NF-κB-regulated drug-resistant genes. Mol. Med. Rep., 2016, 13(1), 153-159.
[http://dx.doi.org/10.3892/mmr.2015.4493] [PMID: 26531258]
[109]
Wertz, I.E.; Kusam, S.; Lam, C.; Okamoto, T.; Sandoval, W.; Anderson, D.J.; Helgason, E.; Ernst, J.A.; Eby, M.; Liu, J.; Belmont, L.D.; Kaminker, J.S.; O’Rourke, K.M.; Pujara, K.; Kohli, P.B.; Johnson, A.R.; Chiu, M.L.; Lill, J.R.; Jackson, P.K.; Fairbrother, W.J.; Seshagiri, S.; Ludlam, M.J.; Leong, K.G.; Dueber, E.C.; Maecker, H.; Huang, D.C.; Dixit, V.M. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011, 471(7336), 110-114.
[http://dx.doi.org/10.1038/nature09779] [PMID: 21368834]
[110]
Yokobori, T.; Yokoyama, Y.; Mogi, A.; Endoh, H.; Altan, B.; Kosaka, T.; Yamaki, E.; Yajima, T.; Tomizawa, K.; Azuma, Y.; Onozato, R.; Miyazaki, T.; Tanaka, S.; Kuwano, H. FBXW7 mediates chemotherapeutic sensitivity and prognosis in NSCLCs. Mol. Cancer Res., 2014, 12(1), 32-37.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0341] [PMID: 24165483]
[111]
Sloss, O.; Topham, C.; Diez, M.; Taylor, S. Mcl-1 dynamics influence mitotic slippage and death in mitosis. Oncotarget, 2016, 7(5), 5176-5192.
[http://dx.doi.org/10.18632/oncotarget.6894] [PMID: 26769847]
[112]
Datta, S.; Choudhury, D.; Das, A.; Mukherjee, D.D.; Dasgupta, M.; Bandopadhyay, S.; Chakrabarti, G. Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway. Apoptosis, 2019, 24(5-6), 414-433.
[http://dx.doi.org/10.1007/s10495-019-01526-y] [PMID: 30767087]
[113]
Zhan, Y.; Wang, K.; Li, Q.; Zou, Y.; Chen, B.; Gong, Q.; Ho, H.I.; Yin, T.; Zhang, F.; Lu, Y.; Wu, W.; Zhang, Y.; Tan, Y.; Du, B.; Liu, X.; Xiao, J. The novel autophagy inhibitor alpha-hederin promoted paclitaxel cytotoxicity by increasing reactive oxygen species accumulation in non-small cell lung cancer cells. Int. J. Mol. Sci., 2018, 19(10)E3221
[http://dx.doi.org/10.3390/ijms19103221] [PMID: 30340379]
[114]
Fischer, K.R.; Durrans, A.; Lee, S.; Sheng, J.; Li, F.; Wong, S.T.; Choi, H.; El Rayes, T.; Ryu, S.; Troeger, J.; Schwabe, R.F.; Vahdat, L.T.; Altorki, N.K.; Mittal, V.; Gao, D. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015, 527(7579), 472-476.
[http://dx.doi.org/10.1038/nature15748] [PMID: 26560033]
[115]
Shintani, Y.; Fujiwara, A.; Kimura, T.; Kawamura, T.; Funaki, S.; Minami, M.; Okumura, M. IL-6 Secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J. Thorac. Oncol., 2016, 11(9), 1482-1492.
[http://dx.doi.org/10.1016/j.jtho.2016.05.025] [PMID: 27287412]
[116]
Cañadas, I.; Rojo, F.; Taus, Á.; Arpí, O.; Arumí-Uría, M.; Pijuan, L.; Menéndez, S.; Zazo, S.; Dómine, M.; Salido, M.; Mojal, S.; García de Herreros, A.; Rovira, A.; Albanell, J.; Arriola, E. Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin. Cancer Res., 2014, 20(4), 938-950.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1330] [PMID: 24284055]
[117]
Xiao, D.; He, J. Epithelial mesenchymal transition and lung cancer. J. Thorac. Dis., 2010, 2(3), 154-159.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2010.02. 03.7] [PMID: 22263037]
[118]
Mahmood, M.Q.; Ward, C.; Muller, H.K.; Sohal, S.S.; Walters, E.H. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med. Oncol., 2017, 34(3), 45.
[http://dx.doi.org/10.1007/s12032-017-0900-y] [PMID: 28197929]
[119]
Ham, S.Y.; Kwon, T.; Bak, Y.; Yu, J.H.; Hong, J.; Lee, S.K.; Yu, D.Y.; Yoon, D.Y. Mucin 1-mediated chemo-resistance in lung cancer cells. Oncogenesis, 2016, 5e185
[http://dx.doi.org/10.1038/oncsis.2015.47]]
[120]
Han, M.L.; Zhao, Y.F.; Tan, C.H.; Xiong, Y.J.; Wang, W.J.; Wu, F.; Fei, Y.; Wang, L.; Liang, Z.Q. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells. Acta Pharmacol. Sin., 2016, 37(12), 1606-1622.
[http://dx.doi.org/10.1038/aps.2016.93] [PMID: 27840408]
[121]
Yang, T.; Li, H.; Chen, T.; Ren, H.; Shi, P.; Chen, M. LncRNA MALAT1 depressed chemo-sensitivity of NSCLC cells through directly functioning on miR-197-3p/p120 catenin axis. Mol. Cells, 2019, 42(3), 270-283.
[http://dx.doi.org/10.14348/molcells.2019.2364 ] [PMID: 30841025]
[122]
Li, D.D.; Qin, X.C.; Yang, Y.; Chu, H.X.; Li, R.L.; Ma, L.X.; Ding, H.W.; Zhao, Q.C. Daurinoline suppressed the migration and invasion of chemo-resistant human non-small cell lung cancer cells by reversing EMT and Notch-1 and sensitized the cells to Taxol. Environ. Toxicol. Pharmacol., 2019, 66, 109-115.
[http://dx.doi.org/10.1016/j.etap.2018.12.005] [PMID: 30641414]
[123]
McCubrey, J.A.; Steelman, L.S.; Abrams, S.L.; Lee, J.T.; Chang, F.; Bertrand, F.E.; Navolanic, P.M.; Terrian, D.M.; Franklin, R.A.; D’Assoro, A.B.; Salisbury, J.L.; Mazzarino, M.C.; Stivala, F.; Libra, M. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul., 2006, 46, 249-279.
[http://dx.doi.org/10.1016/j.advenzreg.2006.01.004] [PMID: 16854453]
[124]
Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta, 2011, 1813(9), 1619-1633.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.012] [PMID: 21167873]
[125]
Okano, J.; Rustgi, A.K. Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. J. Biol. Chem., 2001, 276(22), 19555-19564.
[http://dx.doi.org/10.1074/jbc.M011164200] [PMID: 11278851]
[126]
Selimovic, D.; Hassan, M.; Haikel, Y.; Hengge, U.R. Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell. Signal., 2008, 20(2), 311-322.
[http://dx.doi.org/10.1016/j.cellsig.2007.10.015] [PMID: 18068334]
[127]
Lin, X.; Liao, Y.; Chen, X.; Long, D.; Yu, T.; Shen, F. Regulation of oncoprotein 18/stathmin signaling by ERK concerns the resistance to taxol in nonsmall cell lung cancer cells. Cancer Biother. Radiopharm., 2016, 31(2), 37-43.
[http://dx.doi.org/10.1089/cbr.2015.1921] [PMID: 26881937]
[128]
Suyama, H.; Igishi, T.; Sano, H.; Matsumoto, S.; Shigeoka, Y.; Nakanishi, H.; Endo, M.; Burioka, N.; Hitsuda, Y.; Shimizu, E. ERK activation and subsequent RB phosphorylation are important determinants of the sensitivity to paclitaxel in lung adenocarcinoma cells. Int. J. Oncol., 2004, 24(6), 1499-1504.
[PMID: 15138593]
[129]
Zuo, J.; Jiang, H.; Zhu, Y.H.; Wang, Y.Q.; Zhang, W.; Luan, J.J. Regulation of MAPKs signaling contributes to the growth inhibition of 1,7-dihydroxy-3,4-dimethoxy-xanthone on multidrug resistance A549/taxol cells. Evid. Based Complement. Alternat. Med., 2016, 20162018704
[http://dx.doi.org/10.1155/2016/2018704] [PMID: 27403196]
[130]
Xie, C.Q.; Zhou, P.; Zuo, J.; Li, X.; Chen, Y.; Chen, J.W. Triptolide exerts pro-apoptotic and cell cycle arrest activity on drug-resistant human lung cancer A549/Taxol cells via modulation of MAPK and PI3K/Akt signaling pathways. Oncol. Lett., 2016, 12(5), 3586-3590.
[http://dx.doi.org/10.3892/ol.2016.5099] [PMID: 27900040]
[131]
Sarris, E.G.; Saif, M.W.; Syrigos, K.N. The biological role of PI3K pathway in lung cancer. Pharmaceuticals (Basel), 2012, 5(11), 1236-1264.
[http://dx.doi.org/10.3390/ph5111236] [PMID: 24281308]
[132]
Aldonza, M.B.; Hong, J.Y.; Bae, S.Y.; Song, J.; Kim, W.K.; Oh, J.; Shin, Y.; Lee, S.H.; Lee, S.K. suppression of mapk signaling and reversal of mtor-dependent mdr1-associated multidrug resistance by 21α-methylmelianodiol in lung cancer cells. PLoS One, 2015, 10(6)e0127841
[http://dx.doi.org/10.1371/journal.pone.0127841] [PMID: 26098947]
[133]
Vogt, P.K.; Hart, J.R.; Gymnopoulos, M.; Jiang, H.; Kang, S.; Bader, A.G.; Zhao, L.; Denley, A. Phosphatidylinositol 3-kinase: the oncoprotein. Curr. Top. Microbiol. Immunol., 2010, 347, 79-104.
[http://dx.doi.org/10.1007/82_2010_80] [PMID: 20582532]
[134]
Tsuruta, F.; Masuyama, N.; Gotoh, Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J. Biol. Chem., 2002, 277(16), 14040-14047.
[http://dx.doi.org/10.1074/jbc.M108975200] [PMID: 11842081]
[135]
Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta, 2011, 1813(11), 1978-1986.
[http://dx.doi.org/10.1016/j.bbamcr.2011.03.010] [PMID: 21440011]
[136]
Dan, H.C.; Cooper, M.J.; Cogswell, P.C.; Duncan, J.A.; Ting, J.P.; Baldwin, A.S. Akt-dependent regulation of NF-kappaB is controlled by mTOR and Raptor in association with IKK. Genes Dev., 2008, 22(11), 1490-1500.
[http://dx.doi.org/10.1101/gad.1662308] [PMID: 18519641]
[137]
Page, C.; Lin, H.J.; Jin, Y.; Castle, V.P.; Nunez, G.; Huang, M.; Lin, J. Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res., 2000, 20(1A), 407-416.
[PMID: 10769688]
[138]
Schmidt, M.; Hövelmann, S.; Beckers, T.L. A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis. Br. J. Cancer, 2002, 87(8), 924-932.
[http://dx.doi.org/10.1038/sj.bjc.6600566] [PMID: 12373610]
[139]
Cantley, L.C.; Neel, B.G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4240-4245.
[http://dx.doi.org/10.1073/pnas.96.8.4240] [PMID: 10200246]
[140]
Song, Y.H.; Zhang, C.Q.; Chen, F.F.; Lin, X.Y. Upregulation of neural precursor cell expressed developmentally downregulated 4-1 is associated with poor prognosis and chemoresistance in lung adenocarcinoma. Chin. Med. J. (Engl.), 2018, 131(1), 16-24.
[http://dx.doi.org/10.4103/0366-6999.221262] [PMID: 29271375]
[141]
Qian, Z.; Li, M.; Wang, R.; Xiao, Q.; Wang, J.; Li, M.; He, D.; Xiao, X. Knockdown of CABYR-a/b increases chemosensitivity of human non-small cell lung cancer cells through inactivation of Akt. Mol. Cancer Res., 2014, 12(3), 335-347.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0391] [PMID: 24362251]
[142]
Sun, H.; Zhu, A.; Zhou, X.; Wang, F. Suppression of pyruvate dehydrogenase kinase-2 re-sensitizes paclitaxel-resistant human lung cancer cells to paclitaxel. Oncotarget, 2017, 8(32), 52642-52650.
[http://dx.doi.org/10.18632/oncotarget.16991] [PMID: 28881758]
[143]
Han, F.; Zhang, L.; Zhou, Y.; Yi, X. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells. Int. J. Clin. Exp. Pathol., 2015, 8(8), 8937-8947.
[PMID: 26464635]
[144]
Lu, X.; Zhou, D.; Hou, B.; Liu, Q.X.; Chen, Q.; Deng, X.F.; Yu, Z.B.; Dai, J.G.; Zheng, H. Dichloroacetate enhances the antitumor efficacy of chemotherapeutic agents via inhibiting autophagy in non-small-cell lung cancer. Cancer Manag. Res., 2018, 10, 1231-1241.
[http://dx.doi.org/10.2147/CMAR.S156530] [PMID: 29844702]
[145]
Ye, L.; Pu, C.; Tang, J.; Wang, Y.; Wang, C.; Qiu, Z.; Xiang, T.; Zhang, Y.; Peng, W. Transmembrane-4 L-six family member-1 (TM4SF1) promotes non-small cell lung cancer proliferation, invasion and chemo-resistance through regulating the DDR1/Akt/ERK-mTOR axis. Respir. Res., 2019, 20(1), 106.
[http://dx.doi.org/10.1186/s12931-019-1071-5] [PMID: 31142317]
[146]
Ohta, S.; Nishio, K.; Kubota, N.; Ohmori, T.; Funayama, Y.; Ohira, T.; Nakajima, H.; Adachi, M.; Saijo, N. Characterization of a taxol-resistant human small-cell lung cancer cell line. Jpn. J. Cancer Res., 1994, 85(3), 290-297.
[http://dx.doi.org/10.1111/j.1349-7006.1994.tb02096.x] [PMID: 7514586]
[147]
Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin, S.; Matthias, P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J., 2003, 22(5), 1168-1179.
[http://dx.doi.org/10.1093/emboj/cdg115] [PMID: 12606581]
[148]
Yu, J.; Zhou, J.; Xu, F.; Bai, W.; Zhang, W. High expression of Aurora-B is correlated with poor prognosis and drug resistance in non-small cell lung cancer. Int. J. Biol. Markers, 2018, 33(2), 215-221.
[http://dx.doi.org/10.1177/1724600817753098] [PMID: 29707994]
[149]
Wang, X.; Qi, G.; Zhang, J.; Wu, J.; Zhou, N.; Li, L.; Ma, J. Knockdown of long noncoding RNA small nucleolar RNA host gene 12 inhibits cell growth and induces apoptosis by upregulating mIR-138 in nonsmall cell lung cancer. DNA Cell Biol., 2017, 36(11), 892-900.
[http://dx.doi.org/10.1089/dna.2017.3830] [PMID: 28872894]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy