Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Theoretical Studies Concerning Important Tropical Infections

Author(s): Marcus Tullius Scotti, Alex France Messias Monteiro, Jéssika de Oliveira Viana, Francisco Jaime Bezerra Mendonça Junior, Hamilton M. Ishiki, Ernestine Nkwengoua Tchouboun, Rodrigo Santos A. De Araújo and Luciana Scotti*

Volume 27, Issue 5, 2020

Page: [795 - 834] Pages: 40

DOI: 10.2174/0929867326666190711121418

Price: $65

Abstract

Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated with poverty, flourish in impoverished environments, and thrive best in tropical areas, where they tend to present overlap. They comprise several diseases, and the symptoms vary dramatically from disease to disease, often causing from extreme pain, and untold misery that anchors populations to poverty, permanent disability, and death. They affect more than 1 billion people worldwide; mostly in poor populations living in tropical and subtropical climates. In this review, several complementary in silico approaches are presented; including identification of new therapeutic targets, novel mechanisms of activity, high-throughput screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship and recent molecular docking studies. Current and active research against Sleeping Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully lead to safer, more effective, less costly and more widely available treatments against these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.

Keywords: Neglected tropical diseases, leishmaniasis, Trypanosoma cruzi, Trypanosoma brucei, Chagas disease, in silico.

« Previous
[1]
WHO - World Health Organization; Control of the Leishmaniasis, Genebra, Suica, 2010.Available at:. http://apps.who.int/iris/bitstream/10665/44412/1/WHO_TRS_949_eng.pdf (Accessed: January 15, 2018).
[2]
WHO - World Health Organization. WHO Global Malaria Programme. World Malaria Report, Geneva, Switzerland, 2012.Available at:. http://www.who.int/malaria/mpac/ mpac_director_report_march_2013.pdf (Accessed: January 15, 2018).
[3]
Grybchuk, D.; Akopyants, N.S.; Kostygov, A.Y.; Konovalovas, A.; Lye, L.F.; Dobson, D.E.; Zangger, H.; Fasel, N.; Butenko, A.; Frolov, A.O.; Votýpka, J.; d’Avila-Levy, C.M.; Kulich, P.; Moravcová, J.; Plevka, P.; Rogozin, I.B.; Serva, S.; Lukeš, J.; Beverley, S.M.; Yurchenko, V. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA, 2018, 115(3), E506-E515.
[http://dx.doi.org/10.1073/pnas.1717806115] [PMID: 29284754]
[4]
WHO. http://www.who.int/leishmaniasis/en/ (Accessed: February 14, 2018).
[5]
de Mello, T.F.; Bitencourt, H.R.; Pedroso, R.B.; Aristides, S.M.; Lonardoni, M.V.C.; Silveira, T.G.V. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp. Parasitol., 2014, 136, 27-34.
[http://dx.doi.org/10.1016/j.exppara.2013.11.003] [PMID: 24269198]
[6]
Gosch, C.S.; Marques, C.P.; Resende, B.S.; Souza, J.D.S.; Rocha, R.A.D.S.; Lopes, D.S.S.; Gosch, M.S.; Dias, F.R.; Dorta, M.L. American tegumentary leishmaniasis: epidemiological and molecular characterization of prevalent Leishmania species in the State of Tocantins, Brazil, 2011-2015. Rev. Inst. Med. Trop. São Paulo, 2017, 59 e91
[http://dx.doi.org/10.1590/s1678-9946201759091] [PMID: 29267599]
[7]
Manjolin, L.C.; dos Reis, M.B. Maquiaveli, Cdo.C.; Santos-Filho, O.A.; da Silva, E.R. Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection. Food Chem., 2013, 141(3), 2253-2262.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.025] [PMID: 23870955]
[8]
Keller, A.A.; Breitling, R.; Hemmerich, P.; Kappe, K.; Braun, M.; Wittig, B.; Schaefer, B.; Lorkowski, S.; Reissmann, S. Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. J. Cell. Biochem., 2014, 115(2), 243-252.
[http://dx.doi.org/10.1002/jcb.24654] [PMID: 24038170]
[9]
da Silva, S.S. Thomé, Gda.S.; Cataneo, A.H.D.; Miranda, M.M.; Felipe, I.; Andrade, C.G.T.D.; Watanabe, M.A.E.; Piana, G.M.; Sforcin, J.M.; Pavanelli, W.R.; Conchon-Costa, I. Brazilian propolis antileishmanial and immunomodulatory effects. Evid. Based Complement. Alternat. Med., 2013, 2013 673058
[http://dx.doi.org/10.1155/2013/673058] [PMID: 23762152]
[10]
Gomes, D.C.O.; Muzitano, M.F.; Costa, S.S.; Rossi-Bergmann, B. Effectiveness of the immunomodulatory extract of Kalanchoe pinnata against murine visceral leishmaniasis. Parasitology, 2010, 137(4), 613-618.
[http://dx.doi.org/10.1017/S0031182009991405] [PMID: 19961648]
[11]
Syed, U.F.R.; Hamid, L.S.; Muhammad, N.A.; Matloob, A.; Mujahid, H.B. Novel quinolyl-thienylchalcones and their 2-pyrazoline derivatives with diverse substitution pattern as antileishmanial agents against Leishmania major. Med. Chem. Res., 2012, 21(7), 1322-1333.
[http://dx.doi.org/10.1007/s00044-011-9647-8]
[12]
Drugs for Neglected Diseases Initiative. Diseases & Projects, Available at:, http://www.dndi.org/ (Accessed: January 15, 2018).
[13]
Scotti, L.; Ferreira, E.I.; Silva, M.S.; Scotti, M.T. Chemometric studies on natural products as potential inhibitors of the NADH oxidase from Trypanosoma cruzi using the VolSurf approach. Molecules, 2010, 15(10), 7363-7377.
[http://dx.doi.org/10.3390/molecules15107363] [PMID: 20966878]
[14]
WHO. Chagas disease (American trypanosomiasis), Available at:, http://www.who.int/mediacentre/factsheets/fs340/ en/ (Accessed: March 23, 2018).
[15]
McGhee, R.B.; Cosgrove, W.B. Biology and physiology of the lower Trypanosomatidae. Microbiol. Rev., 1980, 44(1), 140-173.
[http://dx.doi.org/10.1128/MMBR.44.1.140-173.1980] [PMID: 6997722]
[16]
Ogungbe, I.V.; Setzer, W.N. In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules, 2013, 18(7), 7761-7847.
[http://dx.doi.org/10.3390/molecules18077761] [PMID: 23823876]
[17]
Pham, J.S.; Dawson, K.L.; Jackson, K.E.; Lim, E.E.; Pasaje, C.F.A.; Turner, K.E.C.; Ralph, S.A. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int. J. Parasitol. Drugs Drug Resist., 2013, 4(1), 1-13.
[http://dx.doi.org/10.1016/j.ijpddr.2013.10.001] [PMID: 24596663]
[18]
Lüscher, A.; de Koning, H.P.; Mäser, P. Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting. Curr. Pharm. Des., 2007, 13(6), 555-567.
[http://dx.doi.org/10.2174/138161207780162809] [PMID: 17346174]
[19]
Steinmann, P.; Stone, C.M.; Sutherland, C.S.; Tanner, M.; Tediosi, F. Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense: review. Trop. Med. Int. Health, 2015, 20(6), 707-718.
[http://dx.doi.org/10.1111/tmi.12483] [PMID: 25694261]
[20]
Deborggraeve, S.; Büscher, P. Recent progress in molecular diagnosis of sleeping sickness. Expert Rev. Mol. Diagn., 2012, 12(7), 719-730.
[http://dx.doi.org/10.1586/erm.12.72] [PMID: 23153239]
[21]
World Health Organization. WHO includes combination of eflornithine and nifurtimox in its Essential List of Medicines for the treatment of human African trypanosomiasis, 2009. Available at:, http://www.who.int/neglected_diseases/dis-ease_management/drug_combination/en/index.html (Accessed: 17 February, 2018).
[22]
Ranjbarian, F. Targets and strategies for drug development against human African sleeping sickness, 2017.Available at:. http://umu.diva-portal.org/ (Accessed: March, 2018).
[23]
Yun, O.; Priotto, G.; Tong, J.; Flevaud, L.; Chappuis, F. NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl. Trop. Dis., 2010, 4(5) e720
[http://dx.doi.org/10.1371/journal.pntd.0000720] [PMID: 20520803]
[24]
Drugs for Neglected Diseases initiative. Human African trypanosomiasis: Target Product Profile (TPP), 2009.Available at:. http://www.dndi.org/diseases/hat/target-product-rofile.html (Accessed: 17 February, 2018).
[25]
Smirlis, D.; Soares, M.B. Selection of molecular targets for drug development against Trypanosomatids. Pro. Proteo. Leish. Tryp, 2014, 74, 43-76.
[http://dx.doi.org/10.1007/978-94-007-7305-9_2] [PMID: 24264240]
[26]
Bernal, F.A.; Coy-Barrera, E. In-silico analyses of sesquiterpene-related compounds on selected Leishmania enzyme-based targets. Molecules, 2014, 19(5), 5550-5569.
[http://dx.doi.org/10.3390/molecules19055550] [PMID: 24786692]
[27]
Leitao, A.; Montanari, C.A.; Donnici, C.L. The use of chemometric methods on combinatorial chemistry. Quim. Nova, 2000, 23(2), 178-184.
[http://dx.doi.org/10.1590/S0100-40422000000200007]
[28]
Ooms, F. Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem., 2000, 7(2), 141-158.
[http://dx.doi.org/10.2174/0929867003375317] [PMID: 10637360]
[29]
Duffy, B.C.; Zhu, L.; Decornez, H.; Kitchen, D.B. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. Bioorg. Med. Chem., 2012, 20(18), 5324-5342.
[http://dx.doi.org/10.1016/j.bmc.2012.04.062] [PMID: 22938785]
[30]
Uliassi, E.; Fiorani, G.; Krauth-Siegel, R.L.; Bergamini, C.; Fato, R.; Bianchini, G.; Carlos Menéndez, J.; Molina, M.T.; López-Montero, E.; Falchi, F.; Cavalli, A.; Gul, S.; Kuzikov, M.; Ellinger, B.; Witt, G.; Moraes, C.B.; Freitas-Junior, L.H.; Borsari, C.; Costi, M.P.; Bolognesi, M.L. Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR) and display trypanocidal activity. Eur. J. Med. Chem., 2017, 141, 138-148.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.005] [PMID: 29031061]
[31]
Setzer, W.N.; Ogungbe, I.V. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl. Trop. Dis., 2012, 6(7) e1727
[http://dx.doi.org/10.1371/journal.pntd.0001727] [PMID: 22848767]
[32]
Xiaofeng, Y.U.; Prajwal, N.; Ghulam, M.; Vlad, C.; Galina, I.L.; Rebecca, C.W. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim. Biophys. Acta, 2016, 1860(100), 67-78.
[http://dx.doi.org/10.1016/j.bbagen.2015.10.015] [PMID: 26493722]
[33]
Hristozov, D.; Da Costa, F.B.; Gasteiger, J. Sesquiterpene lactones-based classification of the family asteraceae using neural networks and k-nearest neighbors. J. Chem. Inf. Model., 2007, 47(1), 9-19.
[http://dx.doi.org/10.1021/ci060046x] [PMID: 17238243 ]
[34]
Da Costa, F.B.; Terfloth, L.; Gasteiger, J. Sesquiterpene lactone-based classification of three Asteraceae tribes: a study based on self-organizing neural networks applied to chemosystematics. Phytochemistry, 2005, 66(3), 345-353.
[http://dx.doi.org/10.1016/j.phytochem.2004.12.006] [PMID: 15680991]
[35]
Scotti, M.T.; Fernandes, M.B.; Ferreira, M.J.; Emerenciano, V.P. Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg. Med. Chem., 2007, 15(8), 2927-2934.
[http://dx.doi.org/10.1016/j.bmc.2007.02.005] [PMID: 17336532]
[36]
Heilmann, J.; Wasescha, M.R.; Schmidt, T.J. The influence of glutathione and cysteine levels on the cytotoxicity of helenanolide type sesquiterpene lactones against KB cells. Bioorg. Med. Chem., 2001, 9(8), 2189-2194.
[http://dx.doi.org/10.1016/S0968-0896(01)00131-6] [PMID: 11504656]
[37]
Woerdenbag, H.J.; Merfort, I.; Passreiter, C.M.; Schmidt, T.J.; Willuhn, G.; van Uden, W.; Pras, N.; Kampinga, H.H.; Konings, A.W. Cytotoxicity of flavonoids and sesquiterpene lactones from Arnica species against the GLC4 and the COLO 320 cell lines. Planta Med., 1994, 60(5), 434-437.
[http://dx.doi.org/10.1055/s-2006-959526] [PMID: 7997472]
[38]
Scotti, M.T.; Emerenciano, V.; Ferreira, M.J.; Scotti, L.; Stefani, R.; da Silva, M.S.; Mendonça, Junior, F.J. Self-organizing maps of molecular descriptors for sesquiterpene lactones and their application to the chemotaxonomy of the Asteraceae family. Molecules, 2012, 17(4), 4684-4702.
[http://dx.doi.org/10.3390/molecules17044684] [PMID: 22522398]
[39]
Durrant, J.D.; Amaro, R.E.; Xie, L.; Urbaniak, M.D.; Ferguson, M.A.J.; Haapalainen, A.; Chen, Z.; Di Guilmi, A.M.; Wunder, F.; Bourne, P.E.; McCammon, J.A. A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology. PLOS Comput. Biol., 2010, 6(1) e1000648
[http://dx.doi.org/10.1371/journal.pcbi.1000648] [PMID: 20098496]
[40]
Masand, V.H.; El-Sayed, N.N.E.; Mahajan, D.T.; Rastija, V. QSAR analysis for 6-arylpyrazine-2-carboxamides as Trypanosoma brucei inhibitors. SAR QSAR Environ. Res., 2017, 28(2), 165-177.
[http://dx.doi.org/10.1080/1062936X.2017.1292407] [PMID: 28235390]
[41]
Fabian, C. Herrmann, Mairin Lenz, Joachim Jose, Marcel Kaiser, Reto Brun and Thomas J. Schmidt. In silico identification and in vitro activity of novel natural inhibitors of Trypanosoma brucei glyceraldehyde-3-phosphatede-hydrogenase. Molecules, 2015, 20(9), 16154-16169.
[http://dx.doi.org/10.3390/molecules200916154] [PMID: 26404225]
[42]
Srivastava, A.; Badjatia, N.; Lee, J.H.; Hao, B.; Günzl, A. An RNA polymerase II-associated TFIIF-like complex is indispensable for SL RNA gene transcription in Trypanosoma brucei. Nucleic Acids Res., 2018, 46(4), 1695-1709.
[http://dx.doi.org/10.1093/nar/gkx1198] [PMID: 29186511]
[43]
Schmidt, T.J.; Da Costa, F.B.; Lopes, N.P.; Kaiser, M.; Brun, R. In silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob. Agents Chemother., 2014, 58(1), 325-332.
[http://dx.doi.org/10.1128/AAC.01263-13] [PMID: 24165182]
[44]
Dawidowski, M.; Emmanouilidis, L.; Kalel, V.C.; Tripsianes, K.; Schorpp, K.; Hadian, K.; Kaiser, M.; Mäser, P.; Kolonko, M.; Tanghe, S.; Rodriguez, A.; Schliebs, W.; Erdmann, R.; Sattler, M.; Popowicz, G.M. Inhibitors of PEX14 disrupt protein import into glycosomes and kill Trypanosoma parasites. Science, 2017, 355(6332), 1416-1420.
[http://dx.doi.org/10.1126/science.aal1807] [PMID: 28360328]
[45]
Durrant, J.D.; Hall, L.; Swift, R.V.; Landon, M.; Schnaufer, A.; Amaro, R.E. Novel naphthalene-based inhibitors of Trypanosoma brucei RNA editing ligase 1. PLoS Negl. Trop. Dis., 2010, 4(8) e803
[http://dx.doi.org/10.1371/journal.pntd.0000803] [PMID: 20808768]
[46]
Herrmann, F.C.; Lenz, M.; Jose, J.; Kaiser, M.; Brun, R.; Schmidt, T.J. In silico identification and in vitro activity of novel natural inhibitors of Trypanosoma brucei glyceraldehyde-3-phosphate-dehydrogenase. Molecules, 2015, 20(9), 16154-16169.
[http://dx.doi.org/10.3390/molecules200916154] [PMID: 26404225]
[47]
Rodrigo, J.; Diogo, T.; Alberto, A.M.R. Dá vila. ProtozoaDB 2.0: A Trypanosoma brucei case study. Pathogens, 2017, 6(32), 1-13.
[http://dx.doi.org/10.3390/pathogens6030032] [PMID: 28726736]
[48]
Diaz, R.; Luengo-Arratta, S.A.; Seixas, J.D.; Amata, E.; Devine, W.; Cordon-Obras, C.; Rojas-Barros, D.I.; Jimenez, E.; Ortega, F.; Crouch, S.; Colmenarejo, G.; Fiandor, J.M.; Martin, J.J.; Berlanga, M.; Gonzalez, S.; Manzano, P.; Navarro, M.; Pollastri, M.P. Identification and characterization of hundreds of potent and selective inhibitors of Trypanosoma brucei growth from a kinase-targeted library screening campaign. PLoS Negl. Trop. Dis., 2014, 8(10) e3253
[http://dx.doi.org/10.1371/journal.pntd.0003253] [PMID: 25340575]
[49]
Steinmann, M.E.; Schmidt, R.S.; Macêdo, J.P.; Kunz Renggli, C.; Bütikofer, P.; Rentsch, D.; Mäser, P.; Sigel, E. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei. PLoS One, 2017, 12(12) e0188219
[http://dx.doi.org/10.1371/journal.pone.0188219] [PMID: 29244877]
[50]
Tulloch, L.B.; Menzies, S.K.; Fraser, A.L.; Gould, E.R.; King, E.F.; Zacharova, M.K.; Florence, G.J.; Smith, T.K. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues. PLoS Negl. Trop. Dis., 2017, 11(9) e0005886
[http://dx.doi.org/10.1371/journal.pntd.0005886] [PMID: 28873407]
[51]
Dürüst, Y.; Karakuş, H.; Kaiser, M.; Tasdemir, D. Synthesis and anti-protozoal activity of novel dihydropyrrolo[3,4-d][1,2,3]triazoles. Eur. J. Med. Chem., 2012, 48, 296-304.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.028] [PMID: 22217867]
[52]
Balaña-Fouce, R.; Reguera, R.M.; Cubría, J.C.; Ordóñez, D. The pharmacology of leishmaniasis. Gen. Pharmacol., 1998, 30(4), 435-443.
[http://dx.doi.org/10.1016/S0306-3623(97)00268-1] [PMID: 9580315]
[53]
Santos, A.O.; Ueda-Nakamura, T.; Dias Filho, B.P.; Veiga, Junior, V.F.; Pinto, A.C.; Nakamura, C.V. Effect of Brazilian copaiba oils on Leishmania amazonensis. J. Ethnopharmacol., 2008, 120(2), 204-208.
[http://dx.doi.org/10.1016/j.jep.2008.08.007] [PMID: 18775772]
[54]
WHO - World Health Organization.. Leishmaniasis, 2013.http://www.who.int/leishmaniasis/en/
[55]
Singh, N.; Mishra, B.B.; Bajpai, S.; Singh, R.K.; Tiwari, V.K. Natural product based leads to fight against leishmaniasis. Bioorg. Med. Chem., 2014, 22(1), 18-45.
[http://dx.doi.org/10.1016/j.bmc.2013.11.048] [PMID: 24355247]
[56]
Bhargava, P.; Singh, R. Developments in diagnosis and antileishmanial drugs. Interdiscip. Perspect. Infect. Dis., 2012, 2012626838
[http://dx.doi.org/10.1155/2012/626838] [PMID: 23118748]
[57]
WHO - World Health Organization. Leishmaniasis, 2015.Available at:. http://www.who.int/mediacentre/factsheets/fs375/en/
[58]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006] [PMID: 16418526]
[59]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5) e35671
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[60]
Karagiannis-Voules, D-A.; Scholte, R.G.C.; Guimarães, L.H.; Utzinger, J.; Vounatsou, P. Bayesian geostatistical modeling of leishmaniasis incidence in Brazil. PLoS Negl. Trop. Dis., 2013, 7(5) e2213
[http://dx.doi.org/10.1371/journal.pntd.0002213] [PMID: 23675545]
[61]
Micheletti, A.C.; Beatriz, A. Progressos recentes na pesquisa de compostos orgânicos com potencial atividade leishmanicida. Rev. Virtual Quím., 2012, 4, 268-286.
[62]
Croft, S.L.; Olliaro, P. Leishmaniasis chemotherapy--challenges and opportunities. Clin. Microbiol. Infect., 2011, 17(10), 1478-1483.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03630.x] [PMID: 21933306]
[63]
Singh, B.; Sundar, S. Leishmaniasis: vaccine candidates and perspectives. Vaccine, 2012, 30(26), 3834-3842.
[http://dx.doi.org/10.1016/j.vaccine.2012.03.068] [PMID: 22475861]
[64]
Iman, M.; Huang, Z.; Szoka, F.C., Jr; Jaafari, M.R. Characterization of the colloidal properties, in vitro antifungal activity, antileishmanial activity and toxicity in mice of a distigmasterylhemisuccinoyl-glycero-phosphocholine. Int. J. Pharm., 2011, 408(1-2), 163-172.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.044] [PMID: 21277963]
[65]
Mitropoulos, P.; Konidas, P.; Durkin-Konidas, M. New World cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J. Am. Acad. Dermatol., 2010, 63(2), 309-322.
[http://dx.doi.org/10.1016/j.jaad.2009.06.088] [PMID: 20303613]
[66]
Desjeux, P. The increase in risk factors for leishmaniasis worldwide. Trans. R. Soc. Trop. Med. Hyg., 2001, 95(3), 239-243.
[http://dx.doi.org/10.1016/S0035-9203(01)90223-8] [PMID: 11490989]
[67]
Coll, P. [Active drugs against Mycobacterium tuberculosis.]. Enferm. Infecc. Microbiol. Clin., 2009, 27(8), 474-480.
[http://dx.doi.org/10.1016/j.eimc.2009.06.010] [PMID: 19766360]
[68]
Sundar, S.; Olliaro, P.L. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Ther. Clin. Risk Manag., 2007, 3(5), 733-740.
[PMID: 18472998]
[69]
Malebo, H.M.; Wenzler, T.; Cal, M.; Swaleh, S.M.; Omolo, M.O.; Hassanali, A.; Séquin, U.; Häussinger, D.; Dalsgaard, P.; Hamburger, M.; Brun, R.; Ndiege, I.O. Anti-protozoal activity of aporphine and protoberberine alkaloids from Annickia kummeriae (Engl. & Diels) Setten & Maas (Annonaceae). BMC Complement. Altern. Med., 2013, 13(48), 48.
[http://dx.doi.org/10.1186/1472-6882-13-48] [PMID: 23445637]
[70]
Cerqueira, N.M.; Gesto, D.; Oliveira, E.F.; Santos-Martins, D.; Brás, N.F.; Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Receptor-based virtual screening protocol for drug discovery. Arch. Biochem. Biophys., 2015, 582, 56-67.
[http://dx.doi.org/10.1016/j.abb.2015.05.011] [PMID: 26045247]
[71]
Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; Ansari, F.L.; Qureshi, N.A. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem., 2016, 115, 230-244.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.022] [PMID: 27017551]
[72]
Agnihotri, P.; Mishra, A.K.; Mishra, S.; Sirohi, V.K.; Sahasrabuddhe, A.A.; Pratap, J.V. Identification of novel inhibitors of Leishmania donovani γ-Glutamylcysteine synthetase using structure-based virtual screening, docking, molecular dynamics simulation, and in vitro studies. J. Chem. Inf. Model., 2017, 57(4), 815-825.
[http://dx.doi.org/10.1021/acs.jcim.6b00642] [PMID: 28322559]
[73]
Jacob, R.B.; Andersen, T.; McDougal, O.M. Accessible high-throughput virtual screening molecular docking software for students and educators. PLOS Comput. Biol., 2012, 8(5) e1002499
[http://dx.doi.org/10.1371/journal.pcbi.1002499] [PMID: 22693435]
[74]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des, 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[75]
Pandey, R.K.; Prajapati, P.; Goyal, S.; Grover, A.; Prajapati, V.K. Molecular modeling and virtual screening approach to discover potential antileishmanial inhibitors against ornithine decarboxylase. Comb. Chem. High Throughput Screen., 2016, 19(10), 813-823.
[http://dx.doi.org/10.2174/1386207319666160907100134] [PMID: 27604958]
[76]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br. J. Pharmacol., 2007, 152(1), 9-20.
[http://dx.doi.org/10.1038/sj.bjp.0707305] [PMID: 17549047]
[77]
Darvas, F.; Keseru, G.; Papp, A.; Dormán, G.; Urge, L.; Krajcsi, P. In silico and ex silico ADME approaches for drug discovery. Curr. Top. Med. Chem., 2002, 2(12), 1287-1304.
[http://dx.doi.org/10.2174/1568026023392841] [PMID: 12470281]
[78]
DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: new estimates of drug development costs. J. Health Econ., 2003, 22(2), 151-185.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[79]
Sateriale, A.; Bessoff, K.; Sarkar, I.N.; Huston, C.D. Drug repurposing: mining protozoan proteomes for targets of known bioactive compounds. J. Am. Med. Inform. Assoc., 2014, 21(2), 238-244.
[http://dx.doi.org/10.1136/amiajnl-2013-001700] [PMID: 23757409]
[80]
Fraczkiewicz, R.; Lobell, M.; Göller, A.H.; Krenz, U.; Schoenneis, R.; Clark, R.D.; Hillisch, A. Best of both worlds: combining pharma data and state of the art modeling technology to improve in Silico pKa prediction. J. Chem. Inf. Model., 2015, 55(2), 389-397.
[http://dx.doi.org/10.1021/ci500585w] [PMID: 25514239]
[81]
Lounnas, V.; Ritschel, T.; Kelder, J.; McGuire, R.; Bywater, R.P.; Foloppe, N. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery. Comput. Struct. Biotechnol. J., 2013, 5 e201302011
[http://dx.doi.org/10.5936/csbj.201302011] [PMID: 24688704]
[82]
Marr, J.J. Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J. Lab. Clin. Med., 1991, 118(2), 111-119.
[PMID: 1906917]
[83]
Erić, S.; Ke, S.; Barata, T.; Solmajer, T.; Antić Stanković, J.; Juranić, Z.; Savić, V.; Zloh, M. Target fishing and docking studies of the novel derivatives of aryl-aminopyridines with potential anticancer activity. Bioorg. Med. Chem., 2012, 20(17), 5220-5228.
[http://dx.doi.org/10.1016/j.bmc.2012.06.051] [PMID: 22841617]
[84]
Desai, P.V.; Patny, A.; Sabnis, Y.; Tekwani, B.; Gut, J.; Rosenthal, P.; Srivastava, A.; Avery, M. Identification of novel parasitic cysteine protease inhibitors using virtual screening. 1. The ChemBridge database. J. Med. Chem., 2004, 47(26), 6609-6615.
[http://dx.doi.org/10.1021/jm0493717] [PMID: 15588096]
[85]
Adibpour, N.; Rahim, F.; Rezaeei, S.; Khalaj, A.; Ebrahimi, A. In silico designing selective inhibitor of drugs, medicinal plants compounds and experimental ligands for pteridine reductase targeting visceral leishmaniasis. Afr. J. Microbiol. Res., 2012, 6(5), 917-926.
[http://dx.doi.org/10.5897/AJMR-11-738]
[86]
Gangwar, S.; Baig, M.S.; Shah, P.; Biswas, S.; Batra, S.; Siddiqi, M.I.; Goyal, N. Identification of novel inhibitors of dipeptidylcarboxypeptidase of Leishmania donovani via ligand-based virtual screening and biological evaluation. Chem. Biol. Drug Des., 2012, 79(2), 149-156.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01262.x] [PMID: 22014034]
[87]
Figueroa-Villar, J.D.; Sales, E.M. The importance of nucleoside hydrolase enzyme (NH) in studies to treatment of Leishmania: A review. Chem. Biol. Interact., 2017, 263, 18-27.
[http://dx.doi.org/10.1016/j.cbi.2016.12.004] [PMID: 27939867]
[88]
Cunningham, M.L.; Beverley, S.M. Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Mol. Biochem. Parasitol., 2001, 113(2), 199-213.
[http://dx.doi.org/10.1016/S0166-6851(01)00213-4] [PMID: 11295174]
[89]
Bello, A.R.; Nare, B.; Freedman, D.; Hardy, L.; Beverley, S.M. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA, 1994, 91(24), 11442-11446.
[http://dx.doi.org/10.1073/pnas.91.24.11442] [PMID: 7972081]
[90]
Romero, A.H.; López, S.E. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets. J. Mol. Graph. Model., 2017, 76, 313-329.
[http://dx.doi.org/10.1016/j.jmgm.2017.07.013] [PMID: 28763686]
[91]
El-Sayed, N.M.; Myler, P.J.; Blandin, G.; Berriman, M.; Crabtree, J.; Aggarwal, G.; Caler, E.; Renauld, H.; Worthey, E.A.; Hertz-Fowler, C.; Ghedin, E.; Peacock, C.; Bartholomeu, D.C.; Haas, B.J.; Tran, A.N.; Wortman, J.R.; Alsmark, U.C.; Angiuoli, S.; Anupama, A.; Badger, J.; Bringaud, F.; Cadag, E.; Carlton, J.M.; Cerqueira, G.C.; Creasy, T.; Delcher, A.L.; Djikeng, A.; Embley, T.M.; Hauser, C.; Ivens, A.C.; Kummerfeld, S.K.; Pereira-Leal, J.B.; Nilsson, D.; Peterson, J.; Salzberg, S.L.; Shallom, J.; Silva, J.C.; Sundaram, J.; Westenberger, S.; White, O.; Melville, S.E.; Donelson, J.E.; Andersson, B.; Stuart, K.D.; Hall, N. Comparative genomics of trypanosomatid parasitic protozoa. Science, 2005, 309(5733), 404-409.
[http://dx.doi.org/10.1126/science.1112181] [PMID: 16020724]
[92]
Koch, O.; Cappel, D.; Nocker, M.; Jäger, T.; Flohé, L.; Sotriffer, C.A.; Selzer, P.M. Molecular dynamics reveal binding mode of glutathionylspermidine by trypanothione synthetase. PLoS One, 2013, 8(2) e56788
[http://dx.doi.org/10.1371/journal.pone.0056788] [PMID: 23451087]
[93]
Beck, J.T.; Ullman, B. Biopterin conversion to reduced folates by Leishmania donovani promastigotes. Mol. Biochem. Parasitol., 1991, 49(1), 21-28.
[http://dx.doi.org/10.1016/0166-6851(91)90126-Q] [PMID: 1775157]
[94]
Callahan, H.L.; Kelley, C.; Pereira, T.; Grogl, M. Microtubule inhibitors: structure-activity analyses suggest rational models to identify potentially active compounds. Antimicrob. Agents Chemother., 1996, 40(4), 947-952.
[http://dx.doi.org/10.1128/AAC.40.4.947] [PMID: 8849257]
[95]
Werbovetz, K.A.; Brendle, J.J.; Sackett, D.L. Purification, characterization, and drug susceptibility of tubulin from Leishmania. Mol. Biochem. Parasitol., 1999, 98(1), 53-65.
[http://dx.doi.org/10.1016/S0166-6851(98)00146-7] [PMID: 10029309]
[96]
Castro-Pinto, D.B.; Echevarria, A.; Genestra, M.S.; Cysne-Finkelstein, L.; Leon, L.L. Trypanothione reductase activity is prominent in metacyclic promastigotes and axenic amastigotes of Leishmania amazonesis. Evaluation of its potential as a therapeutic target. J. Enzyme Inhib. Med. Chem., 2004, 19(1), 57-63.
[http://dx.doi.org/10.1080/14756360310001624966] [PMID: 15202494]
[97]
Slunt, K.M.; Grace, J.M.; Macdonald, T.L.; Pearson, R.D. Effect of mitonafide analogs on topoisomerase II of Leishmania chagasi. Antimicrob. Agents Chemother., 1996, 40(3), 706-709.
[http://dx.doi.org/10.1128/AAC.40.3.706] [PMID: 8851597]
[98]
Caffrey, C.R.; Lima, A.P.; Steverding, D. Cysteine peptidases of kinetoplastid parasites. Adv. Exp. Med. Biol., 2011, 712, 84-99.
[http://dx.doi.org/10.1007/978-1-4419-8414-2_6] [PMID: 21660660]
[99]
Eberle, C.; Lauber, B.S.; Fankhauser, D.; Kaiser, M.; Brun, R.; Krauth-Siegel, R.L.; Diederich, F. Improved inhibitors of trypanothione reductase by combination of motifs: synthesis, inhibitory potency, binding mode, and antiprotozoal activities. ChemMedChem, 2011, 6(2), 292-301.
[http://dx.doi.org/10.1002/cmdc.201000420] [PMID: 21275053]
[100]
Palmeri, A.; Gherardini, P.F.; Tsigankov, P.; Ausiello, G.; Späth, G.F.; Zilberstein, D.; Helmer-Citterich, M. PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae. BMC Genomics, 2011, 12, 614.
[http://dx.doi.org/10.1186/1471-2164-12-614] [PMID: 22182631]
[101]
Glisic, S.; Sencanski, M.; Perovic, V.; Stevanovic, S.; García-Sosa, A.T. Arginase flavonoid anti-Leishmanial in silico inhibitors flagged against anti-targets. Molecules, 2016, 21(5), 589.
[http://dx.doi.org/10.3390/molecules21050589] [PMID: 27164067]
[102]
Lavorato, S.N.; Duarte, M.C.; Andrade, P.H.R.D.; Coelho, E.A.F.; Alves, R.J. Synthesis, antileishmanial activity and QSAR studies of 2-chloro-N-arylacetamides. Braz. J. Pharm. Sci., 2017, 53(1) e16067
[http://dx.doi.org/10.1590/s2175-97902017000116067]
[103]
Tahghighi, A.; Hamzeh‐Mivehroud, M.; Asadpour Zeynali, K.; Foroumadi, A.; Dastmalchi, S. QSAR and docking studies on the (5‐nitroheteroaryl‐1, 3, 4‐thiadiazole‐2‐yl) piperazinyl analogs with antileishmanial activity. J. Chemometr., 2016, 30(5), 284-293.
[http://dx.doi.org/10.1002/cem.2789]
[104]
Krauth-Siegel, L.R.; Comini, M.A.; Schlecker, T. The trypanothione system. Subcell. Biochem., 2007, 44, 231-251.
[http://dx.doi.org/10.1007/978-1-4020-6051-9_11] [PMID: 18084897]
[105]
Leroux, A.E.; Krauth-Siegel, R.L. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol. Biochem. Parasitol., 2016, 206(1-2), 67-74.
[http://dx.doi.org/10.1016/j.molbiopara.2015.11.003] [PMID: 26592324]
[106]
Colotti, G.; Baiocco, P.; Fiorillo, A.; Boffi, A.; Poser, E.; Chiaro, F.D.; Ilari, A. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Future Med. Chem., 2013, 5(15), 1861-1875.
[http://dx.doi.org/10.4155/fmc.13.146] [PMID: 24144416]
[107]
Hunter, W.N.; Bailey, S.; Habash, J.; Harrop, S.J.; Helliwell, J.R.; Aboagye-Kwarteng, T.; Smith, K.; Fairlamb, A.H. Active site of trypanothione reductase. A target for rational drug design. J. Mol. Biol., 1992, 227(1), 322-333.
[http://dx.doi.org/10.1016/0022-2836(92)90701-K] [PMID: 1522596]
[108]
Masood, M.M.; Hasan, P.; Tabrez, S.; Ahmad, M.B.; Yadava, U.; Daniliuc, C.G.; Sonawane, Y.A.; Azam, A.; Rub, A.; Abid, M. Anti-leishmanial and cytotoxic activities of amino acid-triazole hybrids: Synthesis, biological evaluation, molecular docking and in silico physico-chemical properties. Bioorg. Med. Chem. Lett., 2017, 27(9), 1886-1891.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.049] [PMID: 28359789]
[109]
Ramu, D.; Garg, S.; Ayana, R.; Keerthana, A.K.; Sharma, V.; Saini, C.P.; Sen, S.; Pati, S.; Singh, S. Novel β-carboline-quinazolinone hybrids disrupt Leishmania donovani redox homeostasis and show promising antileishmanial activity. Biochem. Pharmacol., 2017, 129, 26-42.
[http://dx.doi.org/10.1016/j.bcp.2016.12.012] [PMID: 28017772]
[110]
Rodrigues, K.A.F.; Dias, C.N.S.; Néris, P.L.N. Rocha, Jda.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; de Medeiros, I.A.; Keesen, Tde.S.; de Oliveira, T.B.; de Lima, Mdo.C.; Balliano, T.L.; de Aquino, T.M.; de Moura, R.O.; Mendonça Junior, F.J.; de Oliveira, M.R. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem., 2015, 106, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.011] [PMID: 26513640]
[111]
Ribeiro, F.F.; Junior, F.J.B.M.; da Silva, M.S.; Scotti, M.T.; Scotti, L. Computational and investigative study of flavonoids active against Trypanosoma cruzi and Leishmania spp. Nat. Prod. Commun., 2015, 10(6), 917-920.
[http://dx.doi.org/10.1177/1934578X1501000630] [PMID: 26197515]
[112]
Pandey, R.K.; Verma, P.; Sharma, D.; Bhatt, T.K.; Sundar, S.; Prajapati, V.K. High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomed. Pharmacother., 2016, 83, 141-152.
[http://dx.doi.org/10.1016/j.biopha.2016.06.010] [PMID: 27470561]
[113]
Ogungbe, I.V.; Erwin, W.R.; Setzer, W.N. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J. Mol. Graph. Model., 2014, 48, 105-117.
[http://dx.doi.org/10.1016/j.jmgm.2013.12.010] [PMID: 24463105]
[114]
Villalobos-Rocha, J.C.; Sánchez-Torres, L.; Nogueda-Torres, B.; Segura-Cabrera, A.; García-Pérez, C.A.; Bocanegra-García, V.; Palos, I.; Monge, A.; Rivera, G. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives. Parasitol. Res., 2014, 113(6), 2027-2035.
[http://dx.doi.org/10.1007/s00436-014-3850-8] [PMID: 24691716]
[115]
Gundampati, R.K.; Sahu, S.; Shukla, A.; Pandey, R.K.; Patel, M.; Banik, R.M.; Jagannadham, M.V. Tryparedoxin peroxidase of Leishmania braziliensis: homology modeling and inhibitory effects of flavonoids for anti-leishmanial activity. Bioinformation, 2014, 10(6), 353-357.
[http://dx.doi.org/10.6026/97320630010353] [PMID: 25097378]
[116]
Dar, A.A.; Shadab, M.; Khan, S.; Ali, N.; Khan, A.T. One-Pot synthesis and evaluation of antileishmanial activities of functionalized S-Alkyl/Aryl benzothiazole-2-carbothioate scaffold. J. Org. Chem., 2016, 81(8), 3149-3160.
[http://dx.doi.org/10.1021/acs.joc.6b00113] [PMID: 26999637]
[117]
das Neves, G.M.; Kagami, L.P.; Gonçalves, I.L.; Eifler-Lima, ., V.L. Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med. Chem., 2019, 11(16), 2107-2130.
[http://dx.doi.org/10.4155/fmc-2018-0512] [PMID: 31370699]
[118]
Pandey, R.K.; Sharma, D.; Bhatt, T.K.; Sundar, S.; Prajapati, V.K. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach. J. Biomol. Struct. Dyn., 2015, 33(12), 2541-2553.
[http://dx.doi.org/10.1080/07391102.2015.1085904] [PMID: 26305585]
[119]
Pandey, R.K.; Kumbhar, B.V.; Srivastava, S.; Malik, R.; Sundar, S.; Kunwar, A.; Prajapati, V.K. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. J. Biomol. Struct. Dyn., 2017, 35(1), 141-158.
[http://dx.doi.org/10.1080/07391102.2015.1135298] [PMID: 27043972]
[120]
Pandey, R.K.; Kumbhar, B.V.; Sundar, S.; Kunwar, A.; Prajapati, V.K. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. J. Recept. Signal Transduct. Res., 2017, 37(1), 60-70.
[http://dx.doi.org/10.3109/10799893.2016.1171344] [PMID: 27147242]
[121]
Rauf, M.K.; Shaheen, U.; Asghar, F.; Badshah, A.; Nadhman, A.; Azam, S.; Ali, M.I.; Shahnaz, G.; Yasinzai, M. Antileishmanial, DNA interaction, and docking studies of some ferrocene-based heteroleptic pentavalent antimonials. Arch. Pharm. (Weinheim), 2016, 349(1), 50-62.
[http://dx.doi.org/10.1002/ardp.201500312] [PMID: 26627058]
[122]
Iman, M.; Kaboutaraki, H.B.; Jafari, R.; Hosseini, S.A.; Moghimi, A.; Khamesipour, A.; Harchegani, A.B.; Davood, A. Molecular dynamics simulation and docking studies of selenocyanate derivatives as anti-leishmanial agents. Comb. Chem. High Throughput Screen., 2016, 19(10), 847-854.
[http://dx.doi.org/10.2174/1386207319666160907102235] [PMID: 27604957]
[123]
Vishwakarma, P.; Parmar, N.; Chandrakar, P.; Sharma, T.; Kathuria, M.; Agnihotri, P.K.; Siddiqi, M.I.; Mitra, K.; Kar, S. Ammonium trichloro [1,2-ethanediolato-O,O′]-tellurate cures experimental visceral leishmaniasis by redox modulation of Leishmania donovani trypanothione reductase and inhibiting host integrin linked PI3K/Akt pathway. Cell. Mol. Life Sci., 2018, 75(3), 563-588.
[http://dx.doi.org/10.1007/s00018-017-2653-3] [PMID: 28900667]
[124]
Sangshetti, J.N.; Kalam Khan, F.A.; Kulkarni, A.A.; Patil, R.H.; Pachpinde, A.M.; Lohar, K.S.; Shinde, D.B. Antileishmanial activity of novel indolyl-coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg. Med. Chem. Lett., 2016, 26(3), 829-835.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.085] [PMID: 26778149]
[125]
Gao, J.; Liang, L.; Zhu, Y.; Qiu, S.; Wang, T.; Zhang, L. Ligand and structure-based approaches for the identification of peptide deformylase inhibitors as antibacterial drugs. Int. J. Mol. Sci., 2016, 17(7), 1141-1150.
[http://dx.doi.org/10.3390/ijms17071141] [PMID: 27428963]
[126]
Taha, M.; Ismail, N.H.; Ali, M.; Rashid, U.; Imran, S.; Uddin, N.; Khan, K.M. Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorg. Chem., 2017, 71, 192-200.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.005] [PMID: 28228228]
[127]
Ong, H.B.; Sienkiewicz, N.; Wyllie, S.; Fairlamb, A.H. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. J. Biol. Chem., 2011, 286(12), 10429-10438.
[http://dx.doi.org/10.1074/jbc.M110.209593] [PMID: 21239486]
[128]
Sienkiewicz, N.; Ong, H.B.; Fairlamb, A.H. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol. Microbiol., 2010, 77(3), 658-671.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07236.x] [PMID: 20545846]
[129]
Nare, B.; Luba, J.; Hardy, L.W.; Beverley, S. New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology, 1997, 114(Suppl.), S101-S110.
[http://dx.doi.org/10.1017/S0031182097001133] [PMID: 9309772]
[130]
Patil, S.R.; Asrondkar, A.; Patil, V.; Sangshetti, J.N.; Kalam Khan, F.A.; Damale, M.G.; Patil, R.H.; Bobade, A.S.; Shinde, D.B. Antileishmanial potential of fused 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiols: Synthesis, biological evaluations and computational studies. Bioorg. Med. Chem. Lett., 2017, 27(16), 3845-3850.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.053] [PMID: 28693910]
[131]
Sangshetti, J.N.; Shaikh, R.I.; Khan, F.A.K.; Patil, R.H.; Marathe, S.D.; Gade, W.N.; Shinde, D.B. Synthesis, antileishmanial activity and docking study of N′-substitutedbenzylidene-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetohydrazides. Bioorg. Med. Chem. Lett., 2014, 24(6), 1605-1610.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.035] [PMID: 24513045]
[132]
Khademvatan, S.; Adibpour, N.; Eskandari, A.; Rezaee, S.; Hashemitabar, M.; Rahim, F. In silico and in vitro comparative activity of novel experimental derivatives against Leishmania major and Leishmania infantum promastigotes. Exp. Parasitol., 2013, 135(2), 208-216.
[http://dx.doi.org/10.1016/j.exppara.2013.07.004] [PMID: 23872452]
[133]
Mendoza-Martínez, C.; Galindo-Sevilla, N.; Correa-Basurto, J.; Ugalde-Saldivar, V.M.; Rodríguez-Delgado, R.G.; Hernández-Pineda, J.; Padierna-Mota, C.; Flores-Alamo, M.; Hernández-Luis, F. Antileishmanial activity of quinazoline derivatives: synthesis, docking screens, molecular dynamic simulations and electrochemical studies. Eur. J. Med. Chem., 2015, 92, 314-331.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.051] [PMID: 25576738]
[134]
Taha, M.; Ismail, N.H.; Imran, S.; Anouar, E.H.; Selvaraj, M.; Jamil, W.; Ali, M.; Kashif, S.M.; Rahim, F.; Khan, K.M.; Adenan, M.I. Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. Eur. J. Med. Chem., 2017, 126, 1021-1033.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.019] [PMID: 28012342]
[135]
Bekhit, A.A.; Hassan, A.M.M.; Abd El Razik, H.A.; El-Miligy, M.M.M.; El-Agroudy, E.J. Bekhit, Ael-D. New heterocyclic hybrids of pyrazole and its bioisosteres: design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur. J. Med. Chem., 2015, 94, 30-44.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.038] [PMID: 25768697]
[136]
Leite, F.H.A.; Froes, T.Q.; da Silva, S.G.; de Souza, E.I.M.; Vital-Fujii, D.G.; Trossini, G.H.G.; Pita, S.S.D.R.; Castilho, M.S. An integrated approach towards the discovery of novel non-nucleoside Leishmania major pteridine reductase 1 inhibitors. Eur. J. Med. Chem., 2017, 132, 322-332.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.043] [PMID: 28407565]
[137]
Sosa, A.M.; Amaya, S.; Salamanca Capusiri, E.; Gilabert, M.; Bardón, A.; Giménez, A.; Vera, N.R.; Borkosky, S.A. Active sesquiterpene lactones against Leishmania amazonensis and Leishmania braziliensis. Nat. Prod. Res., 2016, 30(22), 2611-2615.
[http://dx.doi.org/10.1080/14786419.2015.1126260] [PMID: 26755152]
[138]
Di Pisa, F.; Landi, G.; Dello Iacono, L.; Pozzi, C.; Borsari, C.; Ferrari, S.; Santucci, M.; Santarem, N.; Cordeiro-da-Silva, A.; Moraes, C.B.; Alcantara, L.M.; Fontana, V.; Freitas-Junior, L.H.; Gul, S.; Kuzikov, M.; Behrens, B.; Pöhner, I.; Wade, R.C.; Costi, M.P.; Mangani, S. Chroman-4-one derivatives targeting pteridine reductase 1 and showing anti-parasitic activity. Molecules, 2017, 22(3), 426-441.
[http://dx.doi.org/10.3390/molecules22030426] [PMID: 28282886]
[139]
Herrmann, F.C.; Sivakumar, N.; Jose, J.; Costi, M.P.; Pozzi, C.; Schmidt, T.J. In silico identification and in vitro evaluation of natural inhibitors of Leishmania major pteridine reductase I. Molecules, 2017, 22(12), 2166-2179.
[http://dx.doi.org/10.3390/molecules22122166] [PMID: 29211037]
[140]
Chawla, B.; Madhubala, R. Drug targets in Leishmania. J. Parasit. Dis., 2010, 34(1), 1-13.
[http://dx.doi.org/10.1007/s12639-010-0006-3] [PMID: 21526026]
[141]
Corona, P.; Gibellini, F.; Cavalli, A.; Saxena, P.; Carta, A.; Loriga, M.; Luciani, R.; Paglietti, G.; Guerrieri, D.; Nerini, E.; Gupta, S.; Hannaert, V.; Michels, P.A.M.; Ferrari, S.; Costi, P.M. Structure-based selectivity optimization of piperidine-pteridine derivatives as potent Leishmania pteridine reductase inhibitors. J. Med. Chem., 2012, 55(19), 8318-8329.
[http://dx.doi.org/10.1021/jm300563f] [PMID: 22946585]
[142]
Nare, B.; Hardy, L.W.; Beverley, S.M. The roles of pteridine reductase 1 and synthase in pteridine metabolism in the Protozoan parasite Leishmania major. J. Biol. Chem., 1997, 272, 13883-13891.
[http://dx.doi.org/10.1074/jbc.272.21.13883] [PMID: 9153248]
[143]
McKerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol., 2006, 1, 497-536.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100151] [PMID: 18039124]
[144]
Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol., 2002, 120(1), 1-21.
[http://dx.doi.org/10.1016/S0166-6851(01)00438-8] [PMID: 11849701]
[145]
Guedes, H.L.; Rezende, J.M.; Fonseca, M.A.; Salles, C.M.; Rossi-Bergmann, B.; De-Simone, S.G. Identification of serine proteases from Leishmania braziliensis. Z. Natforsch. C J. Biosci., 2007, 62(5-6), 373-381.
[http://dx.doi.org/10.1515/znc-2007-5-610] [PMID: 17708443]
[146]
Silva-Lopez, R.E.; Morgado-Díaz, J.A.; Chávez, M.A.; Giovanni-De-Simone, S. Effects of serine protease inhibitors on viability and morphology of Leishmania (Leishmania) amazonensis promastigotes. Parasitol. Res., 2007, 101(6), 1627-1635.
[http://dx.doi.org/10.1007/s00436-007-0706-5] [PMID: 17726617]
[147]
Munday, J.C.; McLuskey, K.; Brown, E.; Coombs, G.H.; Mottram, J.C. Oligopeptidase B deficient mutants of Leishmania major. Mol. Biochem. Parasitol., 2011, 175(1), 49-57.
[http://dx.doi.org/10.1016/j.molbiopara.2010.09.003] [PMID: 20883728]
[148]
Goyal, S.; Grover, S.; Dhanjal, J.K.; Goyal, M.; Tyagi, C.; Chacko, S.; Grover, A. Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis. J. Mol. Model., 2014, 20(3), 2099-2107.
[http://dx.doi.org/10.1007/s00894-014-2099-6] [PMID: 24567150]
[149]
Sodero, A.C.R.; Dos Santos, A.C.; Mello, J.F.R.; DE Jesus, J.B.; DE Souza, A.M.; Rodrigues, M.I.; DE Simone, S.G.; Rodrigues, C.R.; DE Matos Guedes, H.L. Oligopeptidase B and B2: comparative modelling and virtual screening as searching tools for new antileishmanial compounds. Parasitology, 2017, 144(4), 536-545.
[http://dx.doi.org/10.1017/S0031182016002237] [PMID: 28031079]
[150]
Passalacqua, T.G.; Torres, F.A.E.; Nogueira, C.T.; de Almeida, L.; Del Cistia, M.L.; dos Santos, M.B.; Dutra, L.A.; Bolzani, V.S.; Regasini, L.O.; Graminha, M.A.; Marchetto, R.; Zottis, A. The 2′,4′-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species. Bioorg. Med. Chem. Lett., 2015, 25(17), 3564-3568.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.085] [PMID: 26169126]
[151]
Cook, W.J.; Senkovich, O.; Chattopadhyay, D. An unexpected phosphate binding site in glyceraldehyde 3-phosphate dehydrogenase: crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme. BMC Struct. Biol., 2009, 9, 9-22.
[http://dx.doi.org/10.1186/1472-6807-9-9] [PMID: 19243605]
[152]
Lozano, N.B.H.; Oliveira, R.F.; Weber, K.C.; Honorio, K.M.; Guido, R.V.; Andricopulo, A.D.; Da Silva, A.B.F. Identification of electronic and structural descriptors of adenosine analogues related to inhibition of leishmanial glyceraldehyde-3-phosphate dehydrogenase. Molecules, 2013, 18(5), 5032-5050.
[http://dx.doi.org/10.3390/molecules18055032] [PMID: 23629757]
[153]
Kim, H.; Feil, I.K.; Verlinde, C.L.; Petra, P.H.; Hol, W.G. Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry, 1995, 34(46), 14975-14986.
[http://dx.doi.org/10.1021/bi00046a004] [PMID: 7578111]
[154]
da Matta, C.B.B.; de Queiroz, A.C.; Santos, M.S.; Alexandre-Moreira, M.S.; Gonçalves, V.T. Del Cistia, Cde.N.; Sant’Anna, C.M.R.; DaCosta, J.B.N. Novel dialkylphosphorylhydrazones: Synthesis, leishmanicidal evaluation and theoretical investigation of the proposed mechanism of action. Eur. J. Med. Chem., 2015, 101, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.014] [PMID: 26107111]
[155]
Verlinde, C.L.; Hannaert, V.; Blonski, C.; Willson, M.; Périé, J.J.; Fothergill-Gilmore, L.A.; Opperdoes, F.R.; Gelb, M.H.; Hol, W.G.; Michels, P.A. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist. Updat., 2001, 4(1), 50-65.
[http://dx.doi.org/10.1054/drup.2000.0177] [PMID: 11512153]
[156]
Silva, L.A.; Vinaud, M.C.; Castro, A.M.; Cravo, P.V.L.; Bezerra, J.C.B. In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments. BioMed Res. Int., 2015, 2015 965725
[http://dx.doi.org/10.1155/2015/965725] [PMID: 25918726]
[157]
Bressi, J.C.; Verlinde, C.L.; Aronov, A.M.; Shaw, M.L.; Shin, S.S.; Nguyen, L.N.; Suresh, S.; Buckner, F.S.; Van Voorhis, W.C.; Kuntz, I.D.; Hol, W.G.J.; Gelb, M.H. Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design. J. Med. Chem., 2001, 44(13), 2080-2093.
[http://dx.doi.org/10.1021/jm000472o] [PMID: 11405646]
[158]
Iverson, T.M. Catalytic mechanisms of complex II enzymes: a structural perspective. Biochim. Biophys. Acta, 2013, 1827(5), 648-657.
[http://dx.doi.org/10.1016/j.bbabio.2012.09.008] [PMID: 22995215]
[159]
Merlino, A.; Vieites, M.; Gambino, D.; Coitiño, E.L. Homology modeling of T. cruzi and L. major NADH-dependent fumarate reductases: ligand docking, molecular dynamics validation, and insights on their binding modes. J. Mol. Graph. Model., 2014, 48, 47-59.
[http://dx.doi.org/10.1016/j.jmgm.2013.12.001] [PMID: 24370672]
[160]
Marr, J.J.; Berens, R.L.; Nelson, D.J. Purine metabolism in Leishmania donovani and Leishmania braziliansis. Biochim. Biophys. Acta (BBA) -. Gen. Subj., 1978, 544, 360-371.
[http://dx.doi.org/10.1016/0304-4165(78)90104-6] [PMID: 719006]
[161]
Ansari, M.Y.; Equbal, A.; Dikhit, M.R.; Mansuri, R.; Rana, S.; Ali, V.; Sahoo, G.C.; Das, P. Establishment of correlation between in-silico and in-vitro test analysis against Leishmania HGPRT to inhibitors. Int. J. Biol. Macromol., 2016, 83, 78-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.051] [PMID: 26616453]
[162]
Shih, S.; Hwang, H-Y.; Carter, D.; Stenberg, P.; Ullman, B. Localization and targeting of the Leishmania donovani hypoxanthine-guanine phosphoribosyltransferase to the glycosome. J. Biol. Chem., 1998, 273(3), 1534-1541.
[http://dx.doi.org/10.1074/jbc.273.3.1534] [PMID: 9430693]
[163]
Park, J.; Gupta, R.S. Adenosine kinase and ribokinase--the RK family of proteins. Cell. Mol. Life Sci., 2008, 65(18), 2875-2896.
[http://dx.doi.org/10.1007/s00018-008-8123-1] [PMID: 18560757]
[164]
Datta, A.K.; Datta, R.; Sen, B. Antiparasitic chemotherapy: tinkering with the purine salvage pathway. Adv. Exp. Med. Biol., 2008, 625, 116-132.
[http://dx.doi.org/10.1007/978-0-387-77570-8_10] [PMID: 18365663]
[165]
Kar, R.K.; Ansari, M.Y.; Suryadevara, P.; Sahoo, B.R.; Sahoo, G.C.; Dikhit, M.R.; Das, P. Computational elucidation of structural basis for ligand binding with Leishmania donovani adenosine kinase. BioMed Res. Int., 2013, 2013609289
[http://dx.doi.org/10.1155/2013/609289] [PMID: 23984386]
[166]
Souza, T.A.C.B.; Trindade, D.M.; Tonoli, C.C.C.; Santos, C.R.; Ward, R.J.; Arni, R.K.; Oliveira, A.H.C.; Murakami, M.T. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: stability, oligomerization and structural determinants of nucleotide binding. Mol. Biosyst., 2011, 7(7), 2189-2195.
[http://dx.doi.org/10.1039/c0mb00307g] [PMID: 21528129]
[167]
Parks, R.E., Jr; Brown, P.R.; Cheng, Y.C.; Agarwal, K.C.; Kong, C.M.; Agarwal, R.P.; Parks, C.C. Purine metabolism in primitive erythrocytes. Comp. Biochem. Physiol. B, 1973, 45(2), 355-364.
[http://dx.doi.org/10.1016/0305-0491(73)90070-9] [PMID: 4351428]
[168]
Lombardi, D.; Lacombe, M.L.; Paggi, M.G. nm23: unraveling its biological function in cell differentiation. J. Cell. Physiol., 2000, 182(2), 144-149.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200002)182:2<144:AID-JCP2>3.0.CO;2-6] [PMID: 10623877]
[169]
Lacombe, M.L.; Milon, L.; Munier, A.; Mehus, J.G.; Lambeth, D.O. The human Nm23/nucleoside diphosphate kinases. J. Bioenerg. Biomembr., 2000, 32(3), 247-258.
[http://dx.doi.org/10.1023/A:1005584929050] [PMID: 11768308]
[170]
Sundin, G.W.; Shankar, S.; Chugani, S.A.; Chopade, B.A.; Kavanaugh-Black, A.; Chakrabarty, A.M. Nucleoside diphosphate kinase from Pseudomonas aeruginosa: characterization of the gene and its role in cellular growth and exopolysaccharide alginate synthesis. Mol. Microbiol., 1996, 20(5), 965-979.
[http://dx.doi.org/10.1111/j.1365-2958.1996.tb02538.x] [PMID: 8809750]
[171]
Mishra, A.K.; Singh, N.; Agnihotri, P.; Mishra, S.; Singh, S.P.; Kolli, B.K.; Chang, K.P.; Sahasrabuddhe, A.A.; Siddiqi, M.I.; Pratap, J.V. Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization. J. Comput. Aided Mol. Des., 2017, 31(6), 547-562.
[http://dx.doi.org/10.1007/s10822-017-0022-9] [PMID: 28551817]
[172]
McCall, L-I.; El Aroussi, A.; Choi, J.Y.; Vieira, D.F.; De Muylder, G.; Johnston, J.B.; Chen, S.; Kellar, D.; Siqueira-Neto, J.L.; Roush, W.R.; Podust, L.M.; McKerrow, J.H. Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase. PLoS Negl. Trop. Dis., 2015, 9(3) e0003588
[http://dx.doi.org/10.1371/journal.pntd.0003588] [PMID: 25768284]
[173]
Warfield, J.; Setzer, W.N.; Ogungbe, I.V. Interactions of antiparasitic sterols with sterol 14α-demethylase (CYP51) of human pathogens. Springerplus, 2014, 3, 679-689.
[http://dx.doi.org/10.1186/2193-1801-3-679] [PMID: 25932361]
[174]
Hargrove, T.Y.; Wawrzak, Z.; Liu, J.; Waterman, M.R.; Nes, W.D.; Lepesheva, G.I. Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol. J. Lipid Res., 2012, 53(2), 311-320.
[http://dx.doi.org/10.1194/jlr.M021865] [PMID: 22135275]
[175]
Melo, T.S.; Gattass, C.R.; Soares, D.C.; Cunha, M.R.; Ferreira, C.; Tavares, M.T.; Saraiva, E.; Parise-Filho, R.; Braden, H.; Delorenzi, J.C. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. Parasitol. Int., 2016, 65(3), 227-237.
[http://dx.doi.org/10.1016/j.parint.2016.01.001] [PMID: 26772973]
[176]
Ogungbe, I.V.; Ng, J.D.; Setzer, W.N. Interactions of antiparasitic alkaloids with Leishmania protein targets: a molecular docking analysis. Future Med. Chem., 2013, 5(15), 1777-1799.
[http://dx.doi.org/10.4155/fmc.13.114] [PMID: 24144413]
[177]
Fyfe, P.K.; Westrop, G.D.; Ramos, T.; Müller, S.; Coombs, G.H.; Hunter, W.N. Structure of Leishmania major cysteine synthase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2012, 68(Pt 7), 738-743.
[http://dx.doi.org/10.1107/S1744309112019124] [PMID: 22750854]
[178]
Caffrey, C.R.; Steverding, D. Kinetoplastid papain-like cysteine peptidases. Mol. Biochem. Parasitol., 2009, 167(1), 12-19.
[http://dx.doi.org/10.1016/j.molbiopara.2009.04.009] [PMID: 19409421]
[179]
Gomes, M.N.; Alcântara, L.M.; Neves, B.J.; Melo-Filho, C.C.; Freitas-Junior, L.H.; Moraes, C.B.; Ma, R.; Franzblau, S.G.; Muratov, E.; Andrade, C.H. Computer-aided discovery of two novel chalcone-like compounds active and selective against Leishmania infantum. Bioorg. Med. Chem. Lett., 2017, 27(11), 2459-2464.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.010] [PMID: 28434763]
[180]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[181]
Besteiro, S.; Williams, R.A.; Coombs, G.H.; Mottram, J.C. Protein turnover and differentiation in Leishmania. Int. J. Parasitol., 2007, 37(10), 1063-1075.
[http://dx.doi.org/10.1016/j.ijpara.2007.03.008] [PMID: 17493624]
[182]
Schröder, J.; Noack, S.; Marhöfer, R.J.; Mottram, J.C.; Coombs, G.H.; Selzer, P.M. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB. PLoS One, 2013, 8(10) e77460
[http://dx.doi.org/10.1371/journal.pone.0077460] [PMID: 24146999]
[183]
Rogers, M.; Kropf, P.; Choi, B.S.; Dillon, R.; Podinovskaia, M.; Bates, P.; Müller, I. Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog., 2009, 5(8) e1000555
[http://dx.doi.org/10.1371/journal.ppat.1000555] [PMID: 19696894]
[184]
da Silva, M.F.; Floeter-Winter, L.M. Arginase in Leishmania. Subcell. Biochem., 2014, 74, 103-117.
[http://dx.doi.org/10.1007/978-94-007-7305-9_4] [PMID: 24264242]
[185]
dos Reis, M.B.; Manjolin, L.C. Maquiaveli, Cdo.C.; Santos-Filho, O.A.; da Silva, E.R. Inhibition of Leishmania (Leishmania) amazonensis and rat arginases by green tea EGCG, (+)-catechin and (-)-epicatechin: a comparative structural analysis of enzyme-inhibitor interactions. PLoS One, 2013, 8(11) e78387
[http://dx.doi.org/10.1371/journal.pone.0078387] [PMID: 24260115]
[186]
Reguera, R.M.; Balaña-Fouce, R.; Showalter, M.; Hickerson, S.; Beverley, S.M. Leishmania major lacking arginase (ARG) are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice. Mol. Biochem. Parasitol., 2009, 165(1), 48-56.
[http://dx.doi.org/10.1016/j.molbiopara.2009.01.001] [PMID: 19393161]
[187]
da Silva, E.R.; Castilho, T.M.; Pioker, F.C.; Tomich de Paula Silva, C.H.; Floeter-Winter, L.M. Genomic organisation and transcription characterisation of the gene encoding Leishmania (Leishmania) amazonensis arginase and its protein structure prediction. Int. J. Parasitol., 2002, 32(6), 727-737.
[http://dx.doi.org/10.1016/S0020-7519(02)00002-4] [PMID: 12062491]
[188]
Adinehbeigi, K.; Razi Jalali, M.H.; Shahriari, A.; Bahrami, S. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum. Pathog. Glob. Health, 2017, 111(4), 176-185.
[http://dx.doi.org/10.1080/20477724.2017.1312777] [PMID: 28385129]
[189]
Siqueira-Neto, J.L.; Song, O.R.; Oh, H.; Sohn, J.H.; Yang, G.; Nam, J.; Jang, J.; Cechetto, J.; Lee, C.B.; Moon, S.; Genovesio, A.; Chatelain, E.; Christophe, T.; Freitas-Junior, L.H. Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl. Trop. Dis., 2010, 4(5) e675
[http://dx.doi.org/10.1371/journal.pntd.0000675] [PMID: 20454559]
[190]
Nes, W.D.; Zhou, W.; Ganapathy, K.; Liu, J.; Vatsyayan, R.; Chamala, S.; Hernandez, K.; Miranda, M. Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans. Arch. Biochem. Biophys., 2009, 481(2), 210-218.
[http://dx.doi.org/10.1016/j.abb.2008.11.003] [PMID: 19014901]
[191]
Lorente, S.O.; Rodrigues, J.C.; Jiménez Jiménez, C.; Joyce-Menekse, M.; Rodrigues, C.; Croft, S.L.; Yardley, V.; de Luca-Fradley, K.; Ruiz-Pérez, L.M.; Urbina, J.; de Souza, W.; González Pacanowska, D.; Gilbert, I.H. Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob. Agents Chemother., 2004, 48(8), 2937-2950.
[http://dx.doi.org/10.1128/AAC.48.8.2937-2950.2004] [PMID: 15273104]
[192]
Azam, S.S.; Abro, A.; Raza, S.; Saroosh, A. Structure and dynamics studies of sterol 24-C-methyltransferase with mechanism based inactivators for the disruption of ergosterol biosynthesis. Mol. Biol. Rep., 2014, 41(7), 4279-4293.
[http://dx.doi.org/10.1007/s11033-014-3299-y] [PMID: 24574002]
[193]
Azam, S.S.; Abro, A.; Raza, S. Binding pattern analysis and structural insight into the inhibition mechanism of Sterol 24-C methyltransferase by docking and molecular dynamics approach. J. Biomol. Struct. Dyn., 2015, 33(12), 2563-2577.
[http://dx.doi.org/10.1080/07391102.2014.1002423] [PMID: 25669324]
[194]
Hassan, P.; Fergusson, D.; Grant, K.M.; Mottram, J.C. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol. Biochem. Parasitol., 2001, 113(2), 189-198.
[http://dx.doi.org/10.1016/S0166-6851(01)00220-1] [PMID: 11295173]
[195]
Li, S.; Wilson, M.E.; Donelson, J.E. Leishmania chagasi: a gene encoding a protein kinase with a catalytic domain structurally related to MAP kinase kinase. Exp. Parasitol., 1996, 82(2), 87-96.
[http://dx.doi.org/10.1006/expr.1996.0012] [PMID: 8617352]
[196]
Wang, Q.; Melzer, I.M.; Kruse, M.; Sander-Juelch, C.; Wiese, M. LmxMPK4, a mitogen-activated protein (MAP) kinase homologue essential for promastigotes and amastigotes of Leishmania mexicana. Kinetoplastid Biol. Dis., 2005, 4, 6-14.
[http://dx.doi.org/10.1186/1475-9292-4-6] [PMID: 16384531]
[197]
Wiese, M. Leishmania MAP kinases--familiar proteins in an unusual context. Int. J. Parasitol., 2007, 37(10), 1053-1062.
[http://dx.doi.org/10.1016/j.ijpara.2007.04.008] [PMID: 17548090]
[198]
Gupta, C.L.; Khan, M.K.A.; Khan, M.F.; Tiwari, A.K. Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdiscip. Sci., 2013, 5(2), 136-144.
[http://dx.doi.org/10.1007/s12539-013-0164-y] [PMID: 23740395]
[199]
Gupta, C.L.; Akhtar, S.; Kumar, N.; Ali, J.; Pathak, N.; Bajpai, P. In silico elucidation and inhibition studies of selected phytoligands against mitogen-activated protein kinases of protozoan parasites. Interdiscip. Sci., 2016, 8(1), 41-52.
[http://dx.doi.org/10.1007/s12539-015-0269-6] [PMID: 26264054]
[200]
Wang, J.C. DNA topoisomerases. Annu. Rev. Biochem., 1996, 65, 635-692.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.003223] [PMID: 8811192]
[201]
Das, A.; Dasgupta, A.; Sengupta, T.; Majumder, H.K. Topoisomerases of kinetoplastid parasites as potential chemotherapeutic targets. Trends Parasitol., 2004, 20(8), 381-387.
[http://dx.doi.org/10.1016/j.pt.2004.06.005] [PMID: 15246322]
[202]
Saha, S.; Acharya, C.; Pal, U.; Chowdhury, S.R.; Sarkar, K.; Maiti, N.C.; Jaisankar, P.; Majumder, H.K. A novel spirooxindole derivative inhibits the growth of Leishmania donovani parasites both in vitro and in vivo by targeting type IB topoisomerase. Antimicrob. Agents Chemother., 2016, 60(10), 6281-6293.
[http://dx.doi.org/10.1128/AAC.00352-16] [PMID: 27503653]
[203]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[204]
Berry, M.; Fielding, B.; Gamieldien, J. Practical considerations in virtual screening and molecular docking.Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology; Tran, Q.N.; Hamid, A.R., Eds.; , 2015, pp. 487-502.
[http://dx.doi.org/10.1016/B978-0-12-802508-6.00027-2]
[205]
Yuriev, E.; Holien, J.; Ramsland, P.A. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J. Mol. Recognit., 2015, 28(10), 581-604.
[http://dx.doi.org/10.1002/jmr.2471] [PMID: 25808539]
[206]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[207]
Aguilera, E.; Varela, J.; Birriel, E.; Serna, E.; Torres, S.; Yaluff, G.; de Bilbao, N.V.; Aguirre-López, B.; Cabrera, N.; Díaz Mazariegos, S.; de Gómez-Puyou, M.T.; Gómez-Puyou, A.; Pérez-Montfort, R.; Minini, L.; Merlino, A.; Cerecetto, H.; González, M.; Alvarez, G. Potent and Selective Inhibitors of Trypanosoma cruzi Triosephosphate Isomerase with Concomitant Inhibition of Cruzipain: Inhibition of Parasite Growth through Multitarget Activity. ChemMedChem, 2016, 11(12), 1328-1338.
[http://dx.doi.org/10.1002/cmdc.201500385] [PMID: 26492824]
[208]
Martinez-Mayorga, K.; Byler, K.G.; Ramirez-Hernandez, A.I.; Terrazas-Alvares, D.E. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discov. Today, 2015, 20(7), 890-898.
[http://dx.doi.org/10.1016/j.drudis.2015.02.004] [PMID: 25697479 ]
[209]
Vital, D.G.; Damasceno, F.S.; Rapado, L.N.; Silber, A.M.; Vilella, F.S.; Ferreira, R.S.; Maltarollo, V.G.; Trossini, G.H. Application of bioisosterism in design of the semicarbazone derivatives as cruzain inhibitors: a theoretical and experimental study. J. Biomol. Struct. Dyn., 2017, 35(6), 1244-1259.
[http://dx.doi.org/10.1080/07391102.2016.1176603] [PMID: 27064715]
[210]
Silva-Júnior, E.F.; Silva, E.P.S.; França, P.H.B.; Silva, J.P.N.; Barreto, E.O.; Silva, E.B.; Ferreira, R.S.; Gatto, C.C.; Moreira, D.R.M.; Siqueira-Neto, J.L.; Mendonça-Junior, F.J.B.; Lima, M.C.A.; Bortoluzzi, J.H.; Scotti, M.T.; Scotti, L.; Meneghetti, M.R.; Aquino, T.M.; Araújo-Júnior, J.X. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24, 4228-4240.
[211]
Silva-Júnior, E.F.; França, P.H.B.; Ribeiro, F.F.; Mendonça-Junior, F.J.B.; Scotti, M.T.; Scotti, L.; Aquino, T.M.; Araújo-Júnior, J.X. Molecular Docking Studies Applied to a Dataset of Cruzain Inhibitors. Curr. Comp. Aided Drug Des., 2017, 13, 1-8.
[212]
Pauli, I.; Ferreira, L.G.; de Souza, M.L.; Oliva, G.; Ferreira, R.S.; Dessoy, M.A.; Slafer, B.W.; Dias, L.C.; Andricopulo, A.D. Molecular modeling and structure-activity relationships for a series of benzimidazole derivatives as cruzain inhibitors. Future Med. Chem., 2017, 9(7), 641-657.
[http://dx.doi.org/10.4155/fmc-2016-0236] [PMID: 28509592]
[213]
de Souza, A.S.; de Oliveira, M.T.; Andricopulo, A.D. Development of a pharmacophore for cruzain using oxadiazoles as virtual molecular probes: quantitative structure-activity relationship studies. J. Comput. Aided Mol. Des., 2017, 31(9), 801-816.
[http://dx.doi.org/10.1007/s10822-017-0039-0] [PMID: 28795372]
[214]
Elizondo-Jimenez, S.; Moreno-Herrera, A.; Reyes-Olivares, R.; Dorantes-Gonzalez, E.; Nogueda-Torres, B.; Oliveira, E.A.G.; Romeiro, N.C.; Lima, L.M.; Palos, I.; Rivera, G. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents. Med. Chem., 2017, 13(2), 149-158.
[http://dx.doi.org/10.2174/1573406412666160701022230] [PMID: 27396731]
[215]
Beig, M.; Oellien, F.; Garoff, L.; Noack, S.; Krauth-Siegel, R.L.; Selzer, P.M. Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. PLoS Negl. Trop. Dis., 2015, 9(6) e0003773
[http://dx.doi.org/10.1371/journal.pntd.0003773] [PMID: 26042772]
[216]
Hossain, M.U.; Oany, A.R.; Ahmad, S.A.I.; Hasan, M.A.; Khan, M.A.; Siddikey, M.A.A. Identification of potential inhibitor and enzyme-inhibitor complex on trypanothione reductase to control Chagas disease. Comput. Biol. Chem., 2016, 65, 29-36.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.10.002] [PMID: 27744094]
[217]
Lima, C.R.; Carels, N.; Guimaraes, A.C.; Tufféry, P.; Derreumaux, P. In silico structural characterization of protein targets for drug development against Trypanosoma cruzi. J. Mol. Model., 2016, 22(10), 244-258.
[http://dx.doi.org/10.1007/s00894-016-3115-9] [PMID: 27665464]
[218]
Arias, D.G.; Herrera, F.E.; Garay, A.S.; Rodrigues, D.; Forastieri, P.S.; Luna, L.E.; Bürgi, M.D.; Prieto, C.; Iglesias, A.A.; Cravero, R.M.; Guerrero, S.A. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase. Eur. J. Med. Chem., 2017, 125, 1088-1097.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.055] [PMID: 27810595]
[219]
Minini, L.; Álvarez, G.; González, M.; Cerecetto, H.; Merlino, A. Molecular docking and molecular dynamics simulation studies of Trypanosoma cruzi triosephosphate isomerase inhibitors. Insights into the inhibition mechanism and selectivity. J. Mol. Graph. Model., 2015, 58, 40-49.
[http://dx.doi.org/10.1016/j.jmgm.2015.02.002] [PMID: 25829097]
[220]
Ortiz, C.; Moraca, F.; Medeiros, A.; Botta, M.; Hamilton, N.; Comini, M.A. Binding Mode and Selectivity of Steroids towards Glucose-6-phosphate Dehydrogenase from the Pathogen Trypanosoma cruzi. Molecules, 2016, 21(3), 368.
[http://dx.doi.org/10.3390/molecules21030368] [PMID: 26999093]
[221]
de V C Sinatti, V.; R Baptista, L.P.; Alves-Ferreira, M.; Dardenne, L.; Hermínio Martins da Silva, J.; Guimarães, A.C.. In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches. J. Mol. Graph. Model., 2017, 77, 168-180.
[http://dx.doi.org/10.1016/j.jmgm.2017.08.007] [PMID: 28865321]
[222]
Carraro, R.; Iribarne, F.; Paulino, M. Analysis of cyclosporin A and a set of analogs as inhibitors of a T. cruzi cyclophilin by docking and molecular dynamics. J. Biomol. Struct. Dyn., 2016, 34(2), 399-413.
[http://dx.doi.org/10.1080/07391102.2015.1038584] [PMID: 26046477]
[223]
de Almeida, H.; Leroux, V.; Motta, F.N.; Grellier, P.; Maigret, B.; Santana, J.M.; Bastos, I.M. Identification of novel Trypanosoma cruzi prolyl oligopeptidase inhibitors by structure-based virtual screening. J. Comput. Aided Mol. Des., 2016, 30(12), 1165-1174.
[http://dx.doi.org/10.1007/s10822-016-9985-1] [PMID: 27770305]
[224]
Nordvang, R.T.; Nyffenegger, C.; Holck, J.; Jers, C.; Zeuner, B.; Sundekilde, U.K.; Meyer, A.S.; Mikkelsen, J.D. It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity. PLoS One, 2016, 11(7) e0158434
[http://dx.doi.org/10.1371/journal.pone.0158434] [PMID: 27367145]
[225]
Yoshino, R.; Yasuo, N.; Hagiwara, Y.; Ishida, T.; Inaoka, D.K.; Amano, Y.; Tateishi, Y.; Ohno, K.; Namatame, I.; Niimi, T.; Orita, M.; Kita, K.; Akiyama, Y.; Sekijima, M. In silico, in vitro, X-ray crystallography, and integrated strategies for discovering spermidine synthase inhibitors for Chagas disease. Sci. Rep., 2017, 7(1), 6666.
[http://dx.doi.org/10.1038/s41598-017-06411-9] [PMID: 28751689]
[226]
Ogungbe, I.V.; Setzer, W.N. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-Part III: In-silico molecular docking investigations. Molecules, 2016, 21(10), 1-48.
[http://dx.doi.org/10.3390/molecules21101389] [PMID: 27775577]
[227]
Venkatesan, S.K.; Saudagar, P.; Shukla, A.K.; Dubey, V.K. Screening natural products database for identification of potential antileishmanial chemotherapeutic agents. Interdiscip. Sci., 2011, 3(3), 217-231.
[http://dx.doi.org/10.1007/s12539-011-0101-x] [PMID: 21956744]
[228]
Herrmann, F.C.; Schmidt, T.J. In silico screening of natural product databases reveals new potential leads against neglected diseases. Planta Med., 2013, 79, PA12.
[http://dx.doi.org/10.1055/s-0033-1351916]
[229]
Napralert.. Natural Products Alert, Available at:, http://napralert.org
[230]
Buckingham, J., Ed.; Dictionary of Natural Products on DVD; CRC Press: Boca Raton, FL, USA, 2016.
[231]
ZINC.. Bioinformatics and Chemical Informatics Research Center, Department of Pharmaceutical Chemistry, University of California: San Francisco, CA. USA. Available at:, http://zinc.docking.org/browse/catalogs/natural-products
[232]
Scotti, M.T.; Herrera-Acevedo, C.; Oliveira, T.B.; Costa, R.P.O.; Santos, S.Y.K.O.; Rodrigues, R.P.; Scotti, L.; Da-Costa, F.B. SistematX, an online web-based cheminformatics tool for data management of secondary metabolites. Molecules, 2018, 23(1) E103
[http://dx.doi.org/10.3390/molecules23010103] [PMID: 29301376]
[233]
Izumi, E.; Ueda-Nakamura, T.; Dias Filho, B.P.; Veiga Júnior, V.F.; Nakamura, C.V. Natural products and Chagas’ disease: a review of plant compounds studied for activity against Trypanosoma cruzi. Nat. Prod. Rep., 2011, 28(4), 809-823.
[http://dx.doi.org/10.1039/c0np00069h] [PMID: 21290079]
[234]
McCulley, S.F.; Setzer, W.N. An in-silico investigation of anti-Chagas phytochemicals. Curr. Clin. Pharmacol., 2014, 9(3), 205-257.
[http://dx.doi.org/10.2174/157488470903140806114147] [PMID: 23173969]
[235]
Ribeiro, F.F.; Junior, F.J.B.M.; da Silva, M.S.; Scotti, M.T.; Scotti, L. Computational and investigative study of flavonoids against Trypanosoma cruzi and Leishmania spp. Nat. Prod. Commun., 2015, 10(6), 917-920.
[http://dx.doi.org/10.1177/1934578X1501000630] [PMID: 26197515]
[236]
Argüelles, A.J.; Cordell, G.A.; Maruenda, H. Molecular docking and binding mode analysis of plant alkaloids as in vitro and in silico inhibitors of trypanothione reductase from Trypanosoma cruzi. Nat. Prod. Commun., 2016, 11(1), 57-62.
[http://dx.doi.org/10.1177/1934578X1601100118] [PMID: 26996020]
[237]
Asthana, S.; Agarwal, T.; Banerjee, I.; Ray, S.S. In silico screening to elucidate the therapeutic potentials of asparagamine A. Int. J. Pharm. Pharm. Sci., 2014, 6, 247-253.
[238]
Saha, D.; Sharma, A. Docking-based screening of natural product database in quest for dual site inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Med. Chem. Res., 2015, 24, 316-333.
[http://dx.doi.org/10.1007/s00044-014-1122-x]
[239]
Herrera Acevedo, C.; Scotti, L.; Feitosa Alves, M.; Formiga Melo Diniz, M.F.; Scotti, M.T. Computer-aided drug design using sesquiterpene lactones as sources of new structures with potential activity against infectious neglected diseases. Molecules, 2017, 22(1) E79
[http://dx.doi.org/10.3390/molecules22010079] [PMID: 28054952]
[240]
Fabian, L.; Sulsen, V.; Frank, F.; Cazorla, S.; Malchiodi, E.; Martino, V.; Lizarraga, E.; Catalán, C.; Moglioni, A.; Muschietti, L.; Finkielsztein, L. In silico study of structural and geometrical requirements of natural sesquiterpene lactones with trypanocidal activity. Mini Rev. Med. Chem., 2013, 13(10), 1407-1414.
[http://dx.doi.org/10.2174/13895575113139990066] [PMID: 23815577]
[241]
Sacconnay, L.; Angleviel, M.; Randazzo, G.M.; Queiroz, M.M.; Queiroz, E.F.; Wolfender, J-L.; Carrupt, P-A.; Nurisso, A. Computational studies on sirtuins from Trypanosoma cruzi: structures, conformations and interactions with phytochemicals. PLoS Negl. Trop. Dis., 2014, 8(2) e2689
[http://dx.doi.org/10.1371/journal.pntd.0002689] [PMID: 24551254]
[242]
Irwin, J.J.; Shoichet, B.K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[243]
Capriles, P.V.; Baptista, L.P.; Guedes, I.A.; Guimarães, A.C.; Custódio, F.L.; Alves-Ferreira, M.; Dardenne, L.E. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment. J. Mol. Graph. Model., 2015, 55, 134-147.
[http://dx.doi.org/10.1016/j.jmgm.2014.11.002] [PMID: 25528729]
[244]
Xu, C.; Cheng, F.; Chen, L.; Du, Z.; Li, W.; Liu, G.; Lee, P.W.; Tang, Y. In silico prediction of chemical Ames mutagenicity. J. Chem. Inf. Model., 2012, 52(11), 2840-2847.
[http://dx.doi.org/10.1021/ci300400a] [PMID: 23030379]
[245]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[246]
Whitty, A. Growing PAINS in academic drug discovery. Future Med. Chem., 2011, 3(7), 797-801.
[http://dx.doi.org/10.4155/fmc.11.44] [PMID: 21644825]
[247]
da Silva, C.F.; Batista, D.D.G.J.; de Araújo, J.S.; Cunha-Junior, E.F.; Stephens, C.E.; Banerjee, M.; Farahat, A.A.; Akay, S.; Fisher, M.K.; Boykin, D.W.; Soeiro, M.N.C. Phenotypic evaluation and in silico ADMET properties of novel arylimidamides in acute mouse models of Trypanosoma cruzi infection. Drug Des. Devel. Ther., 2017, 11, 1095-1105.
[http://dx.doi.org/10.2147/DDDT.S120618] [PMID: 28435221]
[248]
D.A. Silva, C.F. Daliry, A.; DA Silva, P.B.; Akay, S.; Banerjee, M.; Farahat, A.A.; Fisher, M.K.; Hu, L.; Kumar, A.; Liu, Z.; Stephens, C.E.; Boykin, D.W.; Correia Soeiro, M.D. The efficacy of novel arylimidamides against Trypanosoma cruzi in vitro. Parasitology, 2011, 138(14), 1863-1869.
[http://dx.doi.org/10.1017/S0031182011001429] [PMID: 21902869]
[249]
Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[250]
Santos, C.C.; Lionel, J.R.; Peres, R.B.; Batista, M.M.; da Silva, P.B.; de Oliveira, G.M.; da Silva, C.F.; Batista, D.G.J.; Souza, S.M.O.; Andrade, C.H.; Neves, B.J.; Braga, R.C.; Patrick, D.A.; Bakunova, S.M.; Tidwell, R.R.; Soeiro, M.N.C. In vitro, in silico and in vivo analysis of novel aromatic amidines against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2018, 62(2), e02205-e02217.
[http://dx.doi.org/10.1128/AAC.02205-17] [PMID: 29203486]
[251]
An, Y.; Sherman, W.; Dixon, S.L. Kernel-based partial least squares: application to fingerprint-based QSAR with model visualization. J. Chem. Inf. Model., 2013, 53(9), 2312-2321.
[http://dx.doi.org/10.1021/ci400250c] [PMID: 23901898]
[252]
Nefertiti, A.S.G.; Batista, M.M.; Da Silva, P.B.; Batista, D.G.J.; Da Silva, C.F.; Peres, R.B.; Torres-Santos, E.C.; Cunha-Junior, E.F.; Holt, E.; Boykin, D.W.; Brun, R.; Wenzler, T.; Soeiro, M.N.C. The trypanocidal effect of novel quinolines: In vitro and in vivo studies. Antimicrob. Agents Chemother., in Press
[http://dx.doi.org/10.1128/AAC.01936-17] [PMID: 29203485]
[253]
Lara, L.S.; Moreira, C.S.; Calvet, C.M.; Lechuga, G.C.; Souza, R.S.; Bourguignon, S.C.; Ferreira, V.F.; Rocha, D.; Pereira, M.C.S. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: identification of a promising hit compound. Eur. J. Med. Chem., 2018, 144, 572-581.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.052] [PMID: 29289882]
[254]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[255]
Alberca, L.N.; Sbaraglini, M.L.; Balcazar, D.; Fraccaroli, L.; Carrillo, C.; Medeiros, A.; Benitez, D.; Comini, M.; Talevi, A. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. J. Comput. Aided Mol. Des., 2016, 30(4), 305-321.
[http://dx.doi.org/10.1007/s10822-016-9903-6] [PMID: 26891837]
[256]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A.C.; Wishart, D.S. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res., 2011, 39(Database issue), D1035-D1041.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]
[257]
Novick, P.A.; Ortiz, O.F.; Poelman, J.; Abdulhay, A.Y.; Pande, V.S. SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery. PLoS One, 2013, 8(11) e79568
[http://dx.doi.org/10.1371/journal.pone.0079568] [PMID: 24223973]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy