Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Perspective and Potential of A2A and A3 Adenosine Receptors as Therapeutic Targets for the Treatment of Rheumatoid Arthritis

Author(s): Yogendra Pal, Nabamita Bandyopadhyay, Rashmi S. Pal, Sarfaraz Ahmed and Shantanu Bandopadhyay*

Volume 25, Issue 26, 2019

Page: [2859 - 2874] Pages: 16

DOI: 10.2174/1381612825666190710111658

Price: $65

Abstract

Adenosine is a purine nucleoside which is an effective controller of inflammation. The inflammatory effect of adenosine is expressed via its four receptor subtypes viz. A1, A2A, A2B and A3. The various inflammatory conditions including rheumatoid arthritis (RA) are initiated by adenosine receptors of which A2A and A3 play a vital role. RA primarily is an auto-immune disorder which is manifested as chronic inflammation in the synovial lining of joints. In order to develop an effective treatment, the role of cytokines, IL–1, TNF-α and IL–6 is crucial. Besides, the knowledge of PI3K-PKB/Akt and NF-kB signaling pathway is also important to understand the antiinflammatory targets. Methotrexate along with various other molecules like, NSAIDs and DMARDs are presently used as treatment lines for controlling RA. The enhanced knowledge of the preclinical stages and pathogenesis along with recent potent therapeutics raises the hopes that RA can be prevented in the near future.

Keywords: Inflammation, cytokines, TNF-α, cAMP, signaling pathway, GPCR.

[1]
Bowater RP, Gates AJ. Nucleotides: Structure and properties eLS. Chichester: John Wiley & Sons Ltd 2015.
[2]
Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 1929; 68(3): 213-37.
[http://dx.doi.org/10.1113/jphysiol.1929.sp002608] [PMID: 16994064]
[3]
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev 2018; 98(3): 1591-625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[4]
Liu H, Xia Y. Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol (1985) 2015; 119(10): 1173-82.
[5]
Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53(4): 527-52.
[PMID: 11734617]
[6]
Shanley TP, Bshesh K. Therapeutic targeting of adenosine receptors in inflammatory diseases. Expert Opin Ther Targets 2000; 4(4): 447-58.
[7]
Fredholm BB, Chern Y, Franco R, Sitkovsky M. Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 2007; 83(5): 263-76.
[http://dx.doi.org/10.1016/j.pneurobio.2007.07.005] [PMID: 17804147]
[8]
Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 2008; 1783(5): 673-94.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.024] [PMID: 18302942]
[9]
Xia Y, Zheng X, Wang E, et al. Synthesis of adenosine analogues with indole moiety as human adenosine A3 receptor ligands. R Soc Open Sci 2018; 5(2)171596
[http://dx.doi.org/10.1098/rsos.171596]
[10]
Fredholm BB, Irenius E, Kull B, Schulte G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 2001; 61(4): 443-8.
[http://dx.doi.org/10.1016/S0006-2952(00)00570-0] [PMID: 11226378]
[11]
Shryock JC, Snowdy S, Baraldi PG, et al. A2A-adenosine receptor reserve for coronary vasodilation. Circulation 1998; 98(7): 711-8.
[http://dx.doi.org/10.1161/01.CIR.98.7.711] [PMID: 9715864]
[12]
Carr CS, Hill RJ, Masamune H, et al. Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia. Cardiovasc Res 1997; 36(1): 52-9.
[http://dx.doi.org/10.1016/S0008-6363(97)00160-0] [PMID: 9415272]
[13]
Eckle T, Koeppen M, Eltzschig HK. Role of extracellular adenosine in acute lung injury. Physiology (Bethesda) 2009; 24: 298-306.
[http://dx.doi.org/10.1152/physiol.00022.2009] [PMID: 19815856]
[14]
Day YJ, Huang L, McDuffie MJ, et al. Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 2003; 112(6): 883-91.
[http://dx.doi.org/10.1172/JCI15483] [PMID: 12975473]
[15]
Wei CJ, Li W, Chen JF. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 2011; 1808(5): 1358-79.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.018] [PMID: 21185258]
[16]
Boison D, Chen JF, Fredholm BB. Adenosine signaling and function in glial cells. Cell Death Differ 2010; 17(7): 1071-82.
[http://dx.doi.org/10.1038/cdd.2009.131] [PMID: 19763139]
[17]
Day YJ, Marshall MA, Huang L, McDuffie MJ, Okusa MD, Linden J. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 2004; 286(2): G285-93.
[http://dx.doi.org/10.1152/ajpgi.00348.2003] [PMID: 14715520]
[18]
Colgan SP, Eltzschig HK. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol 2012; 74: 153-75.
[http://dx.doi.org/10.1146/annurev-physiol-020911-153230] [PMID: 21942704]
[19]
Johansson B, Halldner L, Dunwiddie TV, et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 2001; 98(16): 9407-12.
[http://dx.doi.org/10.1073/pnas.161292398] [PMID: 11470917]
[20]
Fishman P, Bar-Yehuda S, Vagman L. Adenosine and other low molecular weight factors released by muscle cells inhibit tumor cell growth. Cancer Res 1998; 58(14): 3181-7.
[PMID: 9679987]
[21]
Pérez-Cabeza de Vaca R, Domínguez-López M, Guerrero-Celis N, Rodríguez-Aguilera JR, Chagoya de Sánchez V. Inflammation is regulated by the adenosine derivative molecule, IFC-305, during reversion of cirrhosis in a CCl4 rat model. Int Immunopharmacol 2018; 54: 12-23.
[http://dx.doi.org/10.1016/j.intimp.2017.10.019] [PMID: 29100033]
[22]
Gao N, Hu HZ, Liu S, Gao C, Xia Y, Wood JD. Stimulation of adenosine A1 and A2A receptors by AMP in the submucosal plexus of guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 2007; 292(2): G492-500.
[http://dx.doi.org/10.1152/ajpgi.00257.2006] [PMID: 17023550]
[23]
Sullivan GW. Adenosine A2A receptor agonists as anti-inflammatory agents. Curr Opin Investig Drugs 2003; 4(11): 1313-9.
[PMID: 14758770]
[24]
Lappas CM, Sullivan GW, Linden J. Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 2005; 14(7): 797-806.
[http://dx.doi.org/10.1517/13543784.14.7.797] [PMID: 16022569]
[25]
Fishman P, Cohen S. The A3 adenosine receptor (A3AR): therapeutic target and predictive biological marker in rheumatoid arthritis. Clin Rheumatol 2016; 35(9): 2359-62.
[http://dx.doi.org/10.1007/s10067-016-3202-4] [PMID: 26886128]
[26]
Sachdeva S, Gupta M. Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm J 2013; 21(3): 245-53.
[http://dx.doi.org/10.1016/j.jsps.2012.05.011] [PMID: 23960840]
[27]
Fredholm BB. Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 1995; 76(2): 93-101.
[http://dx.doi.org/10.1111/j.1600-0773.1995.tb00111.x] [PMID: 7746802]
[28]
Nyce JW. Insight into adenosine receptor function using antisense and gene-knockout approaches. Trends Pharmacol Sci 1999; 20(2): 79-83.
[http://dx.doi.org/10.1016/S0165-6147(99)01305-X] [PMID: 10101969]
[29]
H and P.J.. S. A1 adenosine receptor agonists: Medicinal chemistry and therapeutic potential. Med Chem 2006; 3: 125-51.
[30]
Lasley RD. Adenosine receptors and membrane microdomains. Biochim Biophys Acta 2011; 1808(5): 1284-9.
[http://dx.doi.org/10.1016/j.bbamem.2010.09.019] [PMID: 20888790]
[31]
Piirainen H, Ashok Y, Nanekar RT, Jaakola VP. Structural features of adenosine receptors: from crystal to function. Biochim Biophys Acta 2011; 1808(5): 1233-44.
[http://dx.doi.org/10.1016/j.bbamem.2010.05.021] [PMID: 20595055]
[32]
Jespers W, Schiedel AC, Heitman LH, et al. Structural mapping of adenosine receptor mutations: Ligand binding and signaling mechanisms. Trends Pharmacol Sci 2018; 39(1): 75-89.
[http://dx.doi.org/10.1016/j.tips.2017.11.001] [PMID: 29203139]
[33]
Al-Shar’i NA, Al-Balas QA. Molecular dynamics simulations of adenosine receptors: advances, applications and trends. Curr Pharm Des 2019; 25(7): 783-816.
[http://dx.doi.org/10.2174/1381612825666190304123414] [PMID: 30834825]
[34]
Mahmod Al-Qattan MN, Mordi MN. Molecular basis of modulating adenosine receptors activities. Curr Pharm Des 2019; 25(7): 817-31.
[http://dx.doi.org/10.2174/1381612825666190304122624] [PMID: 30834826]
[35]
Shaik K, Deb PK, Mailavaram RP, et al. 7-Amino-2-aryl/hetero-aryl-5-oxo-5,8-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitriles: Synthesis and adenosine receptor binding studies. Chem Biol Drug Des 2019; 94(2): 1568-73.
[http://dx.doi.org/10.1111/cbdd.13528] [PMID: 30985956]
[36]
Samanta PN, Kar S, Leszczynski J. Recent advances of in-silico modeling of potent antagonists for the adenosine receptors. Curr Pharm Des 2019; 25(7): 750-73.
[http://dx.doi.org/10.2174/1381612825666190304123545] [PMID: 30836910]
[37]
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent advances in the in-silico structure-based and ligand-based approaches for the design and discovery of agonists and antagonists of A2A adenosine receptor. Curr Pharm Des 2019; 25(7): 774-82.
[http://dx.doi.org/10.2174/1381612825666190306162006] [PMID: 30848185]
[38]
Deb PK, Chandrashekaran B, Mailabaram R, et al. Molecular modelling approaches for the discovery of adenosine A2b receptor antagonists: current status and future perspectives Drug Discov Today 2019; pii: S1359-6446(19)30045-5.
[PMID: 31103731]
[39]
Deb PK. Recent updates in the computer aided drug design strategies for the discovery of agonists and antagonists of adenosine receptors. Curr Pharm Des 2019; 25(7): 747-9.
[http://dx.doi.org/10.2174/1381612825999190515120510] [PMID: 31232230]
[40]
Poulsen SA, Quinn RJ. Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem 1998; 6(6): 619-41.
[http://dx.doi.org/10.1016/S0968-0896(98)00038-8] [PMID: 9681130]
[41]
Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5(3): 247-64.
[http://dx.doi.org/10.1038/nrd1983] [PMID: 16518376]
[42]
Yuzlenko O, Kieć-Kononowicz K. Potent adenosine A1 and A2A receptors antagonists: recent developments. Curr Med Chem 2006; 13(30): 3609-25.
[http://dx.doi.org/10.2174/092986706779026093] [PMID: 17168726]
[43]
Albrecht-Küpper BE, Leineweber K, Nell PG. Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal 2012; 8(Suppl. 1): 91-9.
[http://dx.doi.org/10.1007/s11302-011-9274-3] [PMID: 22081230]
[44]
Vallon V, Osswald H. Adenosine receptors and the kidney. Handb Exp Pharmacol 2009; (193): 443-70.
[http://dx.doi.org/10.1007/978-3-540-89615-9_15] [PMID: 19639291]
[45]
Wilson CN. Adenosine receptors and asthma in humans. Br J Pharmacol 2008; 155(4): 475-86.
[http://dx.doi.org/10.1038/bjp.2008.361] [PMID: 18852693]
[46]
Fredholm BB, Cunha RA, Svenningsson P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr Top Med Chem 2003; 3(4): 413-26.
[http://dx.doi.org/10.2174/1568026033392200] [PMID: 12570759]
[47]
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev 2011; 63(1): 1-34.
[http://dx.doi.org/10.1124/pr.110.003285] [PMID: 21303899]
[48]
Boison D, Singer P, Shen HY, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia-opportunities for pharmacotherapy. Neuropharmacology 2012; 62(3): 1527-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.048] [PMID: 21315743]
[49]
de Lera Ruiz M, Lim YH, Zheng J. Adenosine A2A receptor as a drug discovery target. J Med Chem 2014; 57(9): 3623-50.
[http://dx.doi.org/10.1021/jm4011669] [PMID: 24164628]
[50]
Rivkees SA, Reppert SM. RFL9 encodes an A2b-adenosine receptor. Mol Endocrinol 1992; 6(10): 1598-604.
[PMID: 1333049]
[51]
Pierce KD, Furlong TJ, Selbie LA, Shine J. Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 1992; 187(1): 86-93.
[http://dx.doi.org/10.1016/S0006-291X(05)81462-7] [PMID: 1325798]
[52]
Feoktistov I, Biaggioni I. Adenosine A2B receptors. Pharmacol Rev 1997; 49(4): 381-402.
[PMID: 9443164]
[53]
Gao Z, Chen T, Weber MJ, Linden J. A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells cross-talk between cyclic AMP and protein kinase c pathways. J Biol Chem 1999; 274(9): 5972-80.
[http://dx.doi.org/10.1074/jbc.274.9.5972] [PMID: 10026223]
[54]
Panjehpour M, Castro M, Klotz KN. Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br J Pharmacol 2005; 145(2): 211-8.
[http://dx.doi.org/10.1038/sj.bjp.0706180] [PMID: 15753948]
[55]
Sun Y, Huang P. Adenosine A2B receptor: From cell biology to human diseases. Front Chem 2016; 4: 37.
[http://dx.doi.org/10.3389/fchem.2016.00037]
[56]
Kolachala V, Asamoah V, Wang L, et al. TNF-alpha upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 2005; 62(22): 2647-57.
[http://dx.doi.org/10.1007/s00018-005-5328-4] [PMID: 16322943]
[57]
Klinger M, Freissmuth M, Nanoff C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 2002; 14(2): 99-108.
[http://dx.doi.org/10.1016/S0898-6568(01)00235-2] [PMID: 11781133]
[58]
Herrera C, Casadó V, Ciruela F, et al. Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol Pharmacol 2001; 59(1): 127-34.
[http://dx.doi.org/10.1124/mol.59.1.127] [PMID: 11125033]
[59]
Pacheco R, Martinez-Navio JM, Lejeune M, et al. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci USA 2005; 102(27): 9583-8.
[http://dx.doi.org/10.1073/pnas.0501050102] [PMID: 15983379]
[60]
Arin RM, Vallejo AI, Rueda Y, Fresnedo O, Ochoa B. The A2B adenosine receptor colocalizes with adenosine deaminase in resting parietal cells from gastric mucosa. Biochemistry (Mosc) 2015; 80(1): 120-5.
[http://dx.doi.org/10.1134/S0006297915010149] [PMID: 25754047]
[61]
Rosenberger P, Schwab JM, Mirakaj V, et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 2009; 10(2): 195-202.
[http://dx.doi.org/10.1038/ni.1683] [PMID: 19122655]
[62]
Tak E, Ridyard D, Badulak A, et al. Protective role for netrin-1 during diabetic nephropathy. J Mol Med 2013; 91(9): 1071-80.
[http://dx.doi.org/10.1007/s00109-013-1041-1] [PMID: 23636509]
[63]
Rodrigues S, De Wever O, Bruyneel E, Rooney RJ, Gespach C. Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene 2007; 26(38): 5615-25.
[http://dx.doi.org/10.1038/sj.onc.1210347] [PMID: 17334389]
[64]
Sun Y, Duan Y, Eisenstein AS, et al. A novel mechanism of control of NFκB activation and inflammation involving A2B adenosine receptors. J Cell Sci 2012; 125(Pt 19): 4507-17.
[http://dx.doi.org/10.1242/jcs.105023] [PMID: 22767505]
[65]
Moriyama K, Sitkovsky MV. Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem 2010; 285(50): 39271-88.
[http://dx.doi.org/10.1074/jbc.M109.098293] [PMID: 20926384]
[66]
Sun Y, Hu W, Yu X, et al. Actinin-1 binds to the C-terminus of A2B adenosine receptor (A2BAR) and enhances A2BAR cell-surface expression. Biochem J 2016; 473(14): 2179-86.
[http://dx.doi.org/10.1042/BCJ20160272] [PMID: 27208173]
[67]
Patel L, Thaker A. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. Ren Fail 2014; 36(6): 916-24.
[http://dx.doi.org/10.3109/0886022X.2014.900404] [PMID: 24678970]
[68]
Tak E, Ridyard D, Kim JH, et al. CD73-dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic nephropathy. J Am Soc Nephrol 2014; 25(3): 547-63.
[http://dx.doi.org/10.1681/ASN.2012101014] [PMID: 24262796]
[69]
Zhang W, Zhang Y, Wang W, et al. Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res 2013; 112(11): 1466-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300166] [PMID: 23584256]
[70]
Figler RA, Wang G, Srinivasan S, et al. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 2011; 60(2): 669-79.
[http://dx.doi.org/10.2337/db10-1070] [PMID: 21270276]
[71]
Johnston-Cox H, Koupenova M, Yang D, et al. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 2012; 7(7)e40584
[http://dx.doi.org/10.1371/journal.pone.0040584] [PMID: 22848385]
[72]
Johnston-Cox H, Eisenstein AS, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS One 2014; 9(6)e98775
[http://dx.doi.org/10.1371/journal.pone.0098775] [PMID: 24892847]
[73]
Ribeiro JA, Sebastião AM. Enhancement of tetrodotoxin-induced axonal blockade by adenosine, adenosine analogues, dibutyryl cyclic AMP and methylxanthines in the frog sciatic nerve. Br J Pharmacol 1984; 83(2): 485-92.
[http://dx.doi.org/10.1111/j.1476-5381.1984.tb16511.x] [PMID: 6091833]
[74]
Palmer TM, Stiles GL. Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A(3) adenosine receptor. Mol Pharmacol 2000; 57(3): 539-45.
[http://dx.doi.org/10.1124/mol.57.3.539] [PMID: 10692494]
[75]
Koscsó B, Csóka B, Pacher P, Haskó G. Investigational A3 adenosine receptor targeting agents. Expert Opin Investig Drugs 2011; 20(6): 757-68.
[http://dx.doi.org/10.1517/13543784.2011.573785] [PMID: 21457061]
[76]
Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008; 7(9): 759-70.
[http://dx.doi.org/10.1038/nrd2638] [PMID: 18758473]
[77]
Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 2012; 17(7-8): 359-66.
[http://dx.doi.org/10.1016/j.drudis.2011.10.007] [PMID: 22033198]
[78]
Rudich N, Ravid K, Sagi-Eisenberg R. Mast cell adenosine receptors function: A focus on the A3 adenosine receptor and inflammation. Front Immunol 2012; 3: 134.
[http://dx.doi.org/10.3389/fimmu.2012.00134]
[79]
Choi IY, Lee JC, Ju C, et al. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol 2011; 179(4): 2042-52.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.006] [PMID: 21854743]
[80]
Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11(1): 1-46.
[http://dx.doi.org/10.1007/s11302-014-9436-1] [PMID: 25527177]
[81]
Polosa R, Blackburn MR. Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. Trends Pharmacol Sci 2009; 30(10): 528-35.
[http://dx.doi.org/10.1016/j.tips.2009.07.005] [PMID: 19762093]
[82]
Borea PA, Varani K, Vincenzi F, et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67(1): 74-102.
[http://dx.doi.org/10.1124/pr.113.008540] [PMID: 25387804]
[83]
Gessi S, Merighi S, Varani K, et al. Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A(3) adenosine subtype. J Cell Physiol 2007; 211(3): 826-36.
[http://dx.doi.org/10.1002/jcp.20994] [PMID: 17348028]
[84]
Antonioli L, Fornai M, Blandizzi C, Pacher P, Hasko G. Adenosine signaling and the immune system: When a lot could be too much. Immunol Lett 2019; 205: 9-15.
[http://dx.doi.org/10.1016/j.imlet.2018.04.006]
[85]
Burnstock G. Purinergic signalling: Therapeutic developments. Front Pharmacol 2017; 8: 661.
[86]
Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract Res Clin Rheumatol 2017; 31(1): 3-18.
[http://dx.doi.org/10.1016/j.berh.2017.08.003] [PMID: 29221595]
[87]
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6: 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9]
[88]
Shim JH, Stavre Z, Gravallese EM. Bone loss in rheumatoid arthritis: basic mand clinical implications. Calcif Tissue Int 2018; 102(5): 533-46.
[http://dx.doi.org/10.1007/s00223-017-0373-1] [PMID: 29204672]
[89]
Huh YH, Lee G, Lee KB, Koh JT, Chun JS, Ryu JH. HIF-2α-induced chemokines stimulate motility of fibroblast-like synoviocytes and chondrocytes into the cartilage-pannus interface in experimental rheumatoid arthritis mouse models. Arthritis Res Ther 2015; 17(302): 302.
[http://dx.doi.org/10.1186/s13075-015-0816-x] [PMID: 26510617]
[90]
Catrina AI, Ytterberg AJ, Reynisdottir G, Malmström V, Klareskog L. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat Rev Rheumatol 2014; 10(11): 645-53.
[http://dx.doi.org/10.1038/nrrheum.2014.115] [PMID: 25072264]
[91]
Lazzerini PE, Capecchi PL, Acampa M, Galeazzi M, Laghi-Pasini F. Arrhythmic risk in rheumatoid arthritis: the driving role of systemic inflammation. Autoimmun Rev 2014; 13(9): 936-44.
[http://dx.doi.org/10.1016/j.autrev.2014.05.007] [PMID: 24874445]
[92]
Ferrero ME. A new approach to the inflammatory/autoimmune diseases. Recent Pat Antiinfect Drug Discov 2009; 4(2): 108-13.
[http://dx.doi.org/10.2174/157489109788490343] [PMID: 19519545]
[93]
Arshad A, Rashid R, Benjamin K. The effect of disease activity on fat-free mass and resting energy expenditure in patients with rheumatoid arthritis versus noninflammatory arthropathies/soft tissue rheumatism. Mod Rheumatol 2007; 17(6): 470-5.
[http://dx.doi.org/10.3109/s10165-007-0628-1] [PMID: 18084698]
[94]
Hitchon CA, El-Gabalawy HS. The synovium in rheumatoid arthritis. Open Rheumatol J 2011; 5: 107-14.
[http://dx.doi.org/10.2174/1874312901105010107] [PMID: 22279509]
[95]
Gierut A, Perlman H, Pope RM. Innate immunity and rheumatoid arthritis. Rheum Dis Clin North Am 2010; 36(2): 271-96.
[http://dx.doi.org/10.1016/j.rdc.2010.03.004] [PMID: 20510234]
[96]
Kurkó J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z. Genetics of rheumatoid arthritis - a comprehensive review. Clin Rev Allergy Immunol 2013; 45(2): 170-9.
[http://dx.doi.org/10.1007/s12016-012-8346-7] [PMID: 23288628]
[97]
Gazitt T, Lood C, Elkon KB. Citrullination in rheumatoid arthritis: A process promoted by neutrophil lysis? Rambam Maimonides Med J 2016; 7(4)
[http://dx.doi.org/10.5041/RMMJ.10254]
[98]
Song YW, Kang EH. Autoantibodies in rheumatoid arthritis: rheumatoid factors and anticitrullinated protein antibodies. QJM 2010; 103(3): 139-46.
[http://dx.doi.org/10.1093/qjmed/hcp165] [PMID: 19926660]
[99]
Iwaszkiewicz C, Puszczewicz M, Białkowska-Puszczewicz G. Diagnostic value of the anti-Sa antibody compared with the anti-cyclic citrullinated peptide antibody in rheumatoid arthritis. Int J Rheum Dis 2015; 18(1): 46-51.
[http://dx.doi.org/10.1111/1756-185X.12544] [PMID: 25488711]
[100]
Mansour HE, Metwaly KM, Hassan IA, Elshamy HA, Elbeblawy MM. Antibodies to mutated citrullinated vimentin in rheumatoid arthritis: diagnostic value, association with radiological damage and axial skeleton affection. Clin Med Insights Arthritis Musculoskelet Disord 2010; 3: 33-42.
[http://dx.doi.org/10.4137/CMAMD.S4827] [PMID: 21124694]
[101]
Remuzgo-Martínez S, Genre F, López-Mejías R, et al. Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis. Sci Rep 2016; 6(29713): 29713.
[http://dx.doi.org/10.1038/srep29713] [PMID: 27403809]
[102]
Geusens P. The role of RANK ligand/osteoprotegerin in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2012; 4(4): 225-33.
[http://dx.doi.org/10.1177/1759720X12438080] [PMID: 22859921]
[103]
Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol 2018; 15(6): 575-85.
[http://dx.doi.org/10.1038/cmi.2017.137]
[104]
Glant TT, Mikecz K, Rauch TA. Epigenetics in the pathogenesis of rheumatoid arthritis. BMC Med 2014; 12(35): 35.
[http://dx.doi.org/10.1186/1741-7015-12-35] [PMID: 24568138]
[105]
Eng GP. Optimizing biological treatment in rheumatoid arthritis with the aid of therapeutic drug monitoring. Dan Med J 2016; 63(11): B5311.
[106]
Komatsu N, Takayanagi H. Inflammation and bone destruction in arthritis: synergistic activity of immune and mesenchymal cells in joints. Front Immunol 2012; 3(77): 77.
[http://dx.doi.org/10.3389/fimmu.2012.00077] [PMID: 22566958]
[107]
Haskó G, Pacher P. A2A receptors in inflammation and injury: lessons learned from transgenic animals. J Leukoc Biol 2008; 83(3): 447-55.
[http://dx.doi.org/10.1189/jlb.0607359] [PMID: 18160539]
[108]
Guerrero A. A2A adenosine receptor agonists and their potential therapeutic applications. An update. Curr Med Chem 2018; 25(30): 3597-612.
[http://dx.doi.org/10.2174/0929867325666180313110254] [PMID: 29532748]
[109]
Kreckler LM, Wan TC, Ge ZD, Auchampach JA. Adenosine inhibits tumor necrosis factor-alpha release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther 2006; 317(1): 172-80.
[http://dx.doi.org/10.1124/jpet.105.096016] [PMID: 16339914]
[110]
Abbasi M, Mousavi MJ, Jamalzehi S, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 2019; 234(7): 10018-31.
[http://dx.doi.org/10.1002/jcp.27860]
[111]
Ryzhov S, Zaynagetdinov R, Goldstein AE, et al. Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 2008; 324(2): 694-700.
[http://dx.doi.org/10.1124/jpet.107.131540] [PMID: 17965229]
[112]
Németh ZH, Lutz CS, Csóka B, et al. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol 2005; 175(12): 8260-70.
[http://dx.doi.org/10.4049/jimmunol.175.12.8260] [PMID: 16339566]
[113]
Schnurr M, Toy T, Shin A, et al. Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 2004; 103(4): 1391-7.
[http://dx.doi.org/10.1182/blood-2003-06-1959] [PMID: 14551144]
[114]
Panther E, Idzko M, Herouy Y, et al. Expression and function of adenosine receptors in human dendritic cells. FASEB J 2001; 15(11): 1963-70.
[http://dx.doi.org/10.1096/fj.01-0169com] [PMID: 11532976]
[115]
Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13(1): 41-51.
[http://dx.doi.org/10.1038/nrrheum.2016.178] [PMID: 27829671]
[116]
Cronstein BN, Levin RI, Philips M, Hirschhorn R, Abramson SB, Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 1992; 148(7): 2201-6.
[PMID: 1347551]
[117]
Mayne M, Fotheringham J, Yan HJ, et al. Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann Neurol 2001; 49(6): 727-35.
[http://dx.doi.org/10.1002/ana.1010] [PMID: 11409424]
[118]
Cushley MJ, Tattersfield AE, Holgate ST. Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol 1983; 15(2): 161-5.
[http://dx.doi.org/10.1111/j.1365-2125.1983.tb01481.x] [PMID: 6303374]
[119]
Ryzhov S, Zaynagetdinov R, Goldstein AE, et al. Effect of A2B adenosine receptor gene ablation on proinflammatory adenosine signaling in mast cells. J Immunol 2008; 180(11): 7212-20.
[http://dx.doi.org/10.4049/jimmunol.180.11.7212] [PMID: 18490720]
[120]
Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA. Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 2000; 275(6): 4429-34.
[http://dx.doi.org/10.1074/jbc.275.6.4429] [PMID: 10660615]
[121]
Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13(1): 41-51.
[http://dx.doi.org/10.1038/nrrheum.2016.178] [PMID: 27829671]
[122]
Pejman L, Omrani H, Mirzamohammadi Z, Shahbazfar AA, Khalili M, Keyhanmanesh R. The effect of adenosine A2A and A2B antagonists on tracheal responsiveness, serum levels of cytokines and lung inflammation in guinea pig model of asthma. Adv Pharm Bull 2014; 4(2): 131-8.
[PMID: 24511476]
[123]
Trevethick MA, Mantell SJ, Stuart EF, Barnard A, Wright KN, Yeadon M. Treating lung inflammation with agonists of the adenosine A2A receptor: promises, problems and potential solutions. Br J Pharmacol 2008; 155(4): 463-74.
[http://dx.doi.org/10.1038/bjp.2008.329] [PMID: 18846036]
[124]
Pedata F, Pugliese AM, Coppi E, et al. Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia. Mediators Inflamm 2014; 2014805198
[125]
Odashima M, Bamias G, Rivera-Nieves J, et al. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 2005; 129(1): 26-33.
[http://dx.doi.org/10.1053/j.gastro.2005.05.032] [PMID: 16012931]
[126]
Haskó G, Csóka B, Németh ZH, Vizi ES, Pacher PA. (2B) adenosine receptors in immunity and inflammation. Trends Immunol 2009; 30(6): 263-70.
[http://dx.doi.org/10.1016/j.it.2009.04.001] [PMID: 19427267]
[127]
van Waarde A, Dierckx RAJO, Zhou X, et al. Potential therapeutic applications of adenosine A2A receptor ligands and opportunities for A2A receptor imaging. Med Res Rev 2018; 38(1): 5-56.
[http://dx.doi.org/10.1002/med.21432] [PMID: 28128443]
[128]
Ochaion A, Bar-Yehuda S, Cohen S, et al. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. Biochem Pharmacol 2008; 76(4): 482-94.
[http://dx.doi.org/10.1016/j.bcp.2008.05.032] [PMID: 18602896]
[129]
Varani K, Padovan M, Vincenzi F, et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 2011; 13(6): R197.
[http://dx.doi.org/10.1186/ar3527] [PMID: 22146575]
[130]
Hasko G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol 2013; 4: 85.
[http://dx.doi.org/10.3389/fimmu.2013.00085]
[131]
Montesinos MC, Yap JS, Desai A, Posadas I, McCrary CT, Cronstein BN. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum 2000; 43(3): 656-63.
[http://dx.doi.org/10.1002/1529-0131(200003)43:3<656:AID-ANR23>3.0.CO;2-H] [PMID: 10728760]
[132]
Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets-what are the challenges? Nat Rev Drug Discov 2013; 12(4): 265-86.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[133]
Fan CC, Vitols KS, Huennekens FM. Inhibition of dihydrofolate reductase by methotrexate: a new look at an old problem. Adv Enzyme Regul 1980; 18: 41-52.
[http://dx.doi.org/10.1016/0065-2571(80)90007-2] [PMID: 6934688]
[134]
Bleyer WA. The clinical pharmacology of methotrexate: new applications of an old drug. Cancer 1978; 41(1): 36-51.
[http://dx.doi.org/10.1002/1097-0142(197801)41:1<36:AID-CNCR2820410108>3.0.CO;2-I] [PMID: 342086]
[135]
Groff GD, Shenberger KN, Wilke WS, Taylor TH. Low dose oral methotrexate in rheumatoid arthritis: an uncontrolled trial and review of the literature. Semin Arthritis Rheum 1983; 12(4): 333-47.
[http://dx.doi.org/10.1016/0049-0172(83)90014-8] [PMID: 6348949]
[136]
Thompson RN, Watts C, Edelman J, Esdaile J, Russell AS. A controlled two-centre trial of parenteral methotrexate therapy for refractory rheumatoid arthritis. J Rheumatol 1984; 11(6): 760-3.
[PMID: 6394758]
[137]
Williams HJ, Willkens RF, Samuelson CO Jr, et al. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum 1985; 28(7): 721-30.
[http://dx.doi.org/10.1002/art.1780280702] [PMID: 3893441]
[138]
Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chabner BA. The pharmacology and clinical use of methotrexate. N Engl J Med 1983; 309(18): 1094-104.
[http://dx.doi.org/10.1056/NEJM198311033091805] [PMID: 6353235]
[139]
Deutsch JC, Elwood PC, Portillo RM, Macey MG, Kolhouse JF. Role of the membrane-associated folate binding protein (folate receptor) in methotrexate transport by human KB cells. Arch Biochem Biophys 1989; 274(2): 327-37.
[http://dx.doi.org/10.1016/0003-9861(89)90446-3] [PMID: 2552922]
[140]
Rajagopalan PT, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci USA 2002; 99(21): 13481-6.
[http://dx.doi.org/10.1073/pnas.172501499] [PMID: 12359872]
[141]
Hinks A, Moncrieffe H, Martin P, et al. Association of the 5-aminoimidazole-4-carboxamide ribonucleotide transformylase gene with response to methotrexate in juvenile idiopathic arthritis. Ann Rheum Dis 2011; 70(8): 1395-400.
[http://dx.doi.org/10.1136/ard.2010.146191] [PMID: 21515602]
[142]
Chu E, Drake JC, Boarman D, Baram J, Allegra CJ. Mechanism of thymidylate synthase inhibition by methotrexate in human neoplastic cell lines and normal human myeloid progenitor cells. J Biol Chem 1990; 265(15): 8470-8.
[PMID: 2341391]
[143]
Hornung N, Stengaard-Pedersen K, Ehrnrooth E, Ellingsen T, Poulsen JH. The effects of low-dose methotrexate on thymidylate synthetase activity in human peripheral blood mononuclear cells. Clin Exp Rheumatol 2000; 18(6): 691-8.
[PMID: 11138330]
[144]
Chan ES, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Res 2002; 4(4): 266-73.
[http://dx.doi.org/10.1186/ar419] [PMID: 12106498]
[145]
Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 2001; 60(8): 729-35.
[http://dx.doi.org/10.1136/ard.60.8.729] [PMID: 11454634]
[146]
Stamp LK, Hazlett J, Roberts RL, Frampton C, Highton J, Hessian PA. Adenosine receptor expression in rheumatoid synovium: a basis for methotrexate action. Arthritis Res Ther 2012; 14(3): R138.
[http://dx.doi.org/10.1186/ar3871] [PMID: 22682496]
[147]
Holmes AP, Nunes AR, Cann MJ, Kumar P. Ecto-5′-nucleotidase, adenosine and transmembrane adenylyl cyclase signalling regulate basal carotid body chemoafferent outflow and establish the sensitivity to hypercapnia. Adv Exp Med Biol 2015; 860: 279-89.
[http://dx.doi.org/10.1007/978-3-319-18440-1_32] [PMID: 26303492]
[148]
Nemoto E, Kunii R, Tada H, Tsubahara T, Ishihata H, Shimauchi H. Expression of CD73/ecto-5′-nucleotidase on human gingival fibroblasts and contribution to the inhibition of interleukin-1alpha-induced granulocyte-macrophage colony stimulating factor production. J Periodontal Res 2004; 39(1): 10-9.
[http://dx.doi.org/10.1111/j.1600-0765.2004.00698.x] [PMID: 14687222]
[149]
Montesinos MC, Desai A, Cronstein BN. Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis. Arthritis Res Ther 2006; 8(2): R53.
[http://dx.doi.org/10.1186/ar1914] [PMID: 16519795]
[150]
Mitsuhashi M, Liu J, Cao S, Shi X, Ma X. Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin E2 derived from mammary carcinomas. J Leukoc Biol 2004; 76(2): 322-32.
[http://dx.doi.org/10.1189/jlb.1203641] [PMID: 15123779]
[151]
Gashi AA, Rexhepi S, Berisha I, Kryeziu A, Ismaili J, Krasniqi G. Treatment of rheumatoid arthritis with biologic DMARDS (Rituximab and Etanercept). Med Arh 2014; 68(1): 51-3.
[http://dx.doi.org/10.5455/medarh.2014.68.51-53] [PMID: 24783914]
[152]
Ho LJ, Lai JH. Small-molecule inhibitors for autoimmune arthritis: success, failure and the future. Eur J Pharmacol 2015; 747: 200-5.
[http://dx.doi.org/10.1016/j.ejphar.2014.08.031] [PMID: 25220243]
[153]
Heegaard C, Dreyer L, Egsmose C, Madsen OR. Test-retest reliability of the disease activity score 28 CRP (DAS28-CRP), the simplified disease activity index (SDAI) and the clinical disease activity index (CDAI) in rheumatoid arthritis when based on patient self-assessment of tender and swollen joints. Clin Rheumatol 2013; 32(10): 1493-500.
[http://dx.doi.org/10.1007/s10067-013-2300-9] [PMID: 23754243]
[154]
Dennison EM, Cooper C. Corticosteroids in rheumatoid arthritis. BMJ 1998; 316(7134): 789-90.
[http://dx.doi.org/10.1136/bmj.316.7134.789] [PMID: 9549442]
[155]
Bar-Yehuda S, Silverman MH, Kerns WD, Ochaion A, Cohen S, Fishman P. The anti-inflammatory effect of A3 adenosine receptor agonists: a novel targeted therapy for rheumatoid arthritis. Expert Opin Investig Drugs 2007; 16(10): 1601-13.
[http://dx.doi.org/10.1517/13543784.16.10.1601] [PMID: 17922624]
[156]
Vincenzi F, Padovan M, Targa M, et al. A(2A) adenosine receptors are differentially modulated by pharmacological treatments in rheumatoid arthritis patients and their stimulation ameliorates adjuvant-induced arthritis in rats. PLoS One 2013; 8(1)e54195
[http://dx.doi.org/10.1371/journal.pone.0054195] [PMID: 23326596]
[157]
Ravani A, Vincenzi F, Bortoluzzi A, et al. Role and function of A2A and A(3) adenosine receptors in patients with ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. Int J Mol Sci 2017; 18(4)E697
[http://dx.doi.org/10.3390/ijms18040697]
[158]
Montes GC, Hammes N, da Rocha MD, et al. Treatment with adenosine receptor agonist ameliorates pain induced by acute and chronic inflammation. J Pharmacol Exp Ther 2016; 358(2): 315-23.
[http://dx.doi.org/10.1124/jpet.115.231241] [PMID: 27194479]
[159]
Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A(3) receptor subtype. Bioorg Med Chem Lett 2011; 21(2): 818-23.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.094] [PMID: 21163647]
[160]
Park CH, Lee C, Yang JS, et al. Discovery of thienopyrimidine-based FLT3 inhibitors from the structural modification of known IKKβ inhibitors. Bioorg Med Chem Lett 2014; 24(12): 2655-60.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.058] [PMID: 24813730]
[161]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3-d]pyrimidine derivatives. Chem Biol Drug Des 2018; 91(4): 962-9.
[http://dx.doi.org/10.1111/cbdd.13155] [PMID: 29194979]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy